Как выбрать конденсатор: Как выбрать конденсатор для электродвигателя 380 на 220В, 12В и т.д.

Содержание

Как выбрать конденсатор для электродвигателя 380 на 220В, 12В и т.д.

Имея собственный дом, дачу или гараж иногда возникает необходимость изготовления электроприборов, где применяется электродвигатель. Конструкторы применяют для этих целей имеющийся под рукой двигатель, очень часто трехфазный. Для подключения таких устройств к однофазной сети применяются фазосдвигающие конденсаторы. Для мощных устройств требуется подобрать рабочий конденсатор и пусковой. Для электродвигателя небольшой мощности можно использовать один рабочий. В этой статье мы расскажем читателям сайта Сам Электрик, как выбрать конденсатор для электродвигателя.

Важно знать

Конструктор должен знать, что для разгона мощного электродвигателя в первый момент требуется большая емкость конденсатора. По мере набора оборотов, она должна уменьшаться. Т.е. номинал пускового конденсатора должен быть больше рабочего.

Важно! Нельзя использовать электролитические конденсаторы как рабочие. Для этих целей применяют неполярные емкости на рабочее напряжение, превышающее сетевое в 1,5-2 раза. Для этих целей применяют старые советские типа МБГЧ, МГБО и т.п. или специально сконструированные пленочные комплектующие типа СВВ с металлическим напылением. 

Существуют специальные емкости, в корпусе которых совмещены два конденсатора – пусковой и рабочий, как показано на фото:

Они имеют два конденсатора разного номинала, конструктивно размещенные в одном корпусе.

Для чего предназначены конденсаторы

В трехфазной сети переменного тока фазы смещены относительно друг друга на 1200. Что позволяет создать вращающийся электромагнитный поток внутри двигателя.

При подключении к однофазной сети вращающийся поток отсутствует. Для его создания применяют фазосдвигающую емкость. Она позволяет создать вращающийся поток электрического поля.

Подбор конденсатора для асинхронного двигателя

Для подключения асинхронного трехфазного двигателя 380 вольт к однофазной сети необходим конденсатор. Электродвигатель имеет два вида соединения обмоток – звездой или треугольником. Соединение треугольником будет эффективнее работать в сети 220 вольт.

Для расчета конденсатора существуют специальные программы. Достаточно ввести данные двигателя и программа сама произведет расчет. Она выдаст рекомендации для подключения рабочего конденсатора и пускового. Таких программ в интернете существует множество. Они получили название калькулятор.

Существует формула, согласно которой производят расчет:

Cраб.=K*Iф/Uсети

По вышеприведенной схеме рассчитывается рабочая емкость конденсатора, где в формуле:

  • U – Напряжение питающей сети. В нашем случае это 220 вольт.
  • Iф – номинальный ток статора. Можно посмотреть на шильдике электродвигателя, или замерить токоизмерительными клещами.
  • К – коэффициент, который зависит от схемы соединения обмоток. Для соединения треугольником он равен 4800, а для соединения звездой 2800.

Если все параметры известны, то правильно рассчитать конденсатор несложно. Результат получаем в мкФ. Эта формула справедлива для выбора рабочей емкости.

Сложнее обстоит дело с пусковым конденсатором. Он подключается к обмоткам на небольшое время. Не более 3 сек в момент запуска двигателя.

Как показано подключение двигателя 380 на 220 Вольт на рисунке снизу:

Подбирают пусковую емкость исходя из условий, что она должна превышать рабочую в 2 -3 раза. Однако есть более простой способ подбора.

В интернете существуют таблицы, согласно которым можно определить необходимую емкость. На рисунке снизу представлена такая таблица. В ней указывают рабочий и пусковой конденсатор.

Таблица выбора емкости конденсатора

Существуют рекомендации, согласно которых легко определить необходимый параметр. На каждые 100 Вт устанавливают емкость, равною 7 мкФ. Пусковая будет составлять 14 мкФ. Рабочее напряжение конденсаторов должно быть не менее 1,5 U сети.

Подбор конденсатора для однофазного двигателя

Наибольшее распространение в быту получили однофазные электродвигатели с пусковой обмоткой. Они устанавливаются в большинстве бытовых приборах. Отсюда их распространение.

Они имеют две обмотки – рабочую и пусковую. Если в трехфазном двигателе конструкцией предусмотрен вращающийся поток, то в однофазном для этого применяется пусковая обмотка, а смещение фазы задается конденсатором. В некоторых схемах вместо емкости применяют резистор или индуктивность, но это скорее исключение.

Наиболее распространенная схема представлена ниже:

Для лучших пусковых характеристик применяется дополнительный конденсатор, подключенный параллельно рабочему. Его подключают кратковременно, не более трех секунд.

Применение электролитических конденсатора в сети переменного тока недопустимо. Т.к. включение полярного конденсатора в сеть переменного тока приводит к закипанию электролита внутри корпуса, что в конечном результате приведет к его взрыву.

Редко применяют схему с электролитическим, но при этом последовательно ему ставят диод. Такая схема оправдана, если необходимо сэкономить место, а двигатель работает кратковременно.

Выбор конденсатора для двигателя производят согласно схеме подключения:

  • Пусковая обмотка, и конденсатор подключаются кратковременно на время запуска. В этом случае на каждый 1 кВт мощности устанавливают 70 мкФ. Можно использовать электролитические с диодом.
  • Пусковая катушка и конденсатор постоянно подключены на все время работы мотора. В этом случае используют не полярные детали емкостью 23-35 мкФ на 1 кВт.
  • Параллельно рабочему конденсатору подключают кратковременно пусковой. В этом случае в качестве пусковой можно применить электролитическую емкость с диодом. Она должна быть в 2-3 раза больше рабочей. Однако, схема должна быть построена таким образом, чтобы пусковой кондер был подключен не более 3 секунд.

Несмотря на рекомендации по подбору, следует контролировать состояние электродвигателя.

Если мотор в процессе работы греется, стоит уменьшить номинал рабочего конденсатора. Если этого не сделать, двигатель перегреется и выйдет из строя.

Устанавливая электродвигатели на другое оборудование, применяйте родные детали, демонтированные вместе с ним с бытовой техникой, например, от стиральной машины. Если это невозможно, придерживайтесь изложенной рекомендации.

Двигатели постоянного тока

Конструктору попадаются маломощные двигатели постоянного тока. Обычно используются на напряжение 12 Вольт. На их корпусе смонтированы небольшие конденсаторы. Пример на фото:

Двигатель на 12В с конденсатором

Возникает вопрос, для чего они предназначены, если без него моторчик работает. Из схемы видно, что он подключается параллельно двигателю.

Это обеспечивает:

  • Защиту сети от высокочастотной составляющей, наводящей помехи на радиоаппаратуру.
  • Выполняет функцию искрогасящего элемента. Он обеспечивает нормальный режим работы, и не позволяет пригорать щеткам к коллектору. Без него коллектор двигателя постоянного тока быстро выйдет из строя. Таким образом, продлевается срок службы коллектора и щеток.

Мы рассмотрели основные нюансы выбора конденсатора для электродвигателя и рассказали, для чего вообще нужен конденсатор в схеме. Надеемся, предоставленная информация была для Вас полезной и интересной!

Как выбрать конденсатор для электродвигателя

Электродвигатели используются в каждом доме, так как они являются движущей силой любого бытового прибора. Кроме того, они являются главным составляющим и электроинструментов. Именно по этой причине домашним мастерам хочется узнать побольше о работе прибора и его характеристиках.


В большинстве случаев электродвигатели имеют систему трехфазного подключения к сети. И для домашней сети они получаются слишком мощными и не отдают полностью свою рабочую силу.

Для таких случаев используется конденсатор для электродвигателя, фото такого прибора в большом количестве есть в сети.

Именно вопрос подключения конденсатора наиболее популярен при интересу к электродвигателю и именно о нем мы поговорим подробно.

Краткое содержимое статьи:

Разновидности конденсаторов пуска

Маломощные электродвигатели, работающие от 200-400 В не нуждаются в установке дополнительного конденсатора пуска. Дело в том, что в каждом устройстве конденсатор уже заранее установлен.

Для слабых по мощности двигателей его достаточно, а вот для того, чтобы работали устройства с повышенной мощностью потребуется дополнительный внешний пусковой конденсатор.

Конденсаторы для асинхронных электродвигателей необходимо подбирать опытным путем, проверяя каждый.

Такой прибор устанавливается параллельно к уже имеющемуся. На некоторое время при разгоне двигателя его оставляют включенным.

Включение и дальнейшая работа конденсатора возможна только при зажатой кнопке пуска. После разгона обязательно потребуется выключить конденсатор, так как при его постоянной работе двигатель будет крутиться на полную мощность.

А при обыкновенной домашней сети с одной фазой это приведет к перегреву и выходу из строя оборудования.

Видов конденсаторов для электродвигателя в настоящее время существует три:

Полярные. Данный вид способен работать только при постоянной подаче тока. Переменное питание быстро выведет из строя электродвигатель.

Неполярные. Они более популярны за счет разнообразных условий работы. То есть такие конденсаторы можно устанавливать и при постоянном токе и при переменном.

С электролитом. Данный вариант конденсатора электродвигателя имеет обычно небольшую емкость и наиболее подходящим вариантом они послужат в использовании к низкочастотным электродвигателям.

Как подобрать конденсатор для двигателя

При выборе конденсатора на трехфазный двигатель важно помнить о том, что мощность в нем должна иметь десятки и сотни микрофарад.

Но электролитические конденсаторы с такой целью выбирать не рекомендуется.

Для них понадобится однополярное подключение, а это потребует установки дополнительного оборудования.

Кроме того, данный вариант может привести к быстрому выходу двигателя из строя в связи с перегревом.

Так же необходимо уметь отличать рабочий конденсатор от пускового. Первый вариант работает на протяжении всего цикла действий двигателя, а второй только помогает ему запуститься.

Рабочий не стоит выбирать, так как его мощность вдвое меньше чем у пускового.

При правильно сделанном выборе конденсатора его рабочие показатели повысятся.

Кроме того, конденсатор, подходящий к двигателю позволит значительно продлить жизнь мотора.

Как подключать конденсаторы

Подключение любого вида конденсаторов должно производиться по точной схеме. Рабочий конденсатор подключается снизу, а пусковой выше параллельно ем.

Кроме того, важно не забыть подключить кнопку пуска, при этом следите за последовательностью проводов.

При помощи такой схемы можно подключать и конденсаторы на проверку. При суммировании мощностей рабочего и пускового конденсаторов будет получаться, что мощность меняется.

Здесь уже требуется наблюдать за состоянием работы непосредственно самого электродвигателя. Если он работает хорошо, то выбрана нужная мощность.

Также можно подключать последовательно несколько конденсаторов пускового типа и смотреть за двигателем.

Как только определена точка нормальной работы, суммируете мощность всех подключенных тестеров и покупать уже следует с общей мощностью. Только так будет понятно, как выбрать конденсатор для электродвигателя.

Фото советы как выбрать конденсатор для электродвигателя

Вам понравилась статья? Поделитесь 😉  

Конденсатор для электродвигателя — какой выбрать? Обзор лучших пусковых конденсаторов смотрите здесь!

Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей. Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка – помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться.

Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя. В первую очередь рекомендуем определиться с правильной емкостью этого вспомогательного устройства, и способами ее точного расчета.

Краткое содержимое статьи:

А, что такое конденсатор?

Его устройство отличается простотой и надежностью – внутри две параллельные пластины в пространстве между ними установлен диэлектрик необходимый для защиты от поляризации в виде заряда, создающегося проводниками. Но различные виды конденсаторов для электродвигателей отличаются поэтому легко ошибиться в момент приобретения.

Рассмотрим их по отдельности:

Полярные версии не подходят для подключения на основе переменного напряжения, поскольку увеличивается опасность исчезновения диэлектрика, что неминуемо приведет к перегреву и возникновению аварийной ситуации – возгоранию либо появлению короткого замыкания.

Версии неполярного типа отличаются качественным взаимодействием с любым напряжением, что обусловлено универсальным вариантом обкладки – она успешно сочетается с повышенной мощностью тока и различными видами диэлектриков.


Электролитические часто называются оксидными считаются лучшими для работы с электродвигателями на основе низкой частоты, поскольку их максимальная емкость, может, достигать 100000 МКФ. Это возможно за счет тонкого вида оксидной пленки, входящей в конструкцию в качестве электрода.

Теперь ознакомьтесь с фото конденсаторов для электродвигателя – это поможет отличить их по внешнему виду. Такая информация пригодится во время покупки, и поможет приобрести необходимое устройство, поскольку все они похожи. Но помощь продавца тоже, может, оказаться полезной – стоит воспользоваться его знаниями, если не хватает своих.

Если необходим конденсатор для работы с трехфазным электродвигателем

Необходимо правильно рассчитать емкость конденсатора электродвигателя, что можно сделать по сложной формуле или с помощью упрощенного способа. Для этого уточняется мощность электродвигателя на каждые 100 Ватт потребуется около 7-8 мкФ от емкости конденсатора.

Но во время расчетов необходимо учитывать уровень воздействия напряжения на обмоточную часть статора. Нельзя чтобы он превысил номинальный уровень.

Если запуск двигателя, может, происходить лишь на основе максимальной нагрузки придется добавить пусковой конденсатор. Он отличается кратковременностью работы, поскольку используется примерно 3 секунды до момента выхода на пик оборотов ротора.

Необходимо учитывать, что для него потребуется мощность увеличенная в 1,5, а емкость примерно в 2,5 – 3 раза, чем у сетевой версии конденсатора.


Если необходим конденсатор для работы с однофазным электродвигателем

Обычно различные конденсаторы для асинхронных электродвигателей используются для работы с напряжением в 220 В с учетом установки в однофазную сеть.

Но процесс их использования немного сложнее, поскольку трехфазные электродвигатели работают с помощью конструктивного подключения, а для однофазных версий потребуется обеспечить смещенный вращательный момент у ротора. Это обеспечивается с помощью увеличенного количества обмотки для запуска, а фаза смещается усилиями конденсатора.

В чем сложность выбора такого конденсатора?

В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства. И они отличаются доступными режимами работы электродвигателей:

  • Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора – 70 мкФ для 1 кВт от мощности электродвигателя;
  • Используется рабочий вариант конденсатора с емкостью в 25 – 35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
  • Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.

Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.


В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.

Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.

Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.

Важно: Пусковая версия конденсатора должна обладать рабочим напряжением не менее 400 В, что связано с появлением всплеска увеличенной мощности до 300 – 600 В, происходящего в процессе пуска либо завершения работы двигателя.

Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:

  • Его часто применяют для бытовых приборов;
  • Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы – конденсатор;
  • Подключается на основе множества схем с помощью конденсатора;
  • Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.

Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.

Фото конденсаторов для электродвигателя

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Неполярный конденсатор

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Блиц-советы

Самой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.

Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра, либо же читать инструкцию, зачастую производители указывают данную информацию там.

Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет – звезда.

При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду

Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.

Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю, а к фазе. Это также является маячком при неправильном подключении.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Читайте далее:

Как подключить трехфазный двигатель к однофазной сети

Как подключить трехфазный двигатель к сети 220 вольт

Как переделать трехфазный двигатель для подключения в однофазную сеть

Подключение трехфазного двигателя к однофазной сети

Подключение трехфазного двигателя к трехфазной сети

Онлайн расчет конденсатора для двигателя

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Пусковой конденсатор позволяет организовать начальный момент вращения вала ротора электромотора. Подключение электрических двигателей в сеть напряжением 220 вольт требует кратковременного присоединения пусковой обмотки через подобную электрическую ёмкость.

Схема подключения «Треугольник»

Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

Схема подключения “Треугольник” и “Звезда”

Использование электролитических конденсаторов

Можно применять даже электролитические конденсаторы, но у них есть особенность – они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно – они имеют свойство взрываться.

Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.

Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400… 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Как определить оптимальную величину емкости

Для этого потребуется несколько конденсаторов, соединяемых параллельно. По ходу соединений амперметром измеряется ток, потребляемый электромотором. Он будет уменьшаться по мере увеличения суммарной емкости. Но с определенной величины ее ток начнет увеличиваться. Минимальному значению величины силы тока соответствует оптимальное значение емкости рабочего конденсатора. Для нормальной работы движка применяются два конденсатора с возможностью параллельного соединения между собой. Схема подключения, содержащая пусковой и рабочий конденсатор, показана далее.


Схемы движков с пусковым и рабочим конденсаторами

При пуске они соединяются, образуя наилучшую по величине емкость для разгона движка. Зачем применять отдельный пусковой конденсатор такой же емкости, если установка получится неоправданно громоздкой. Поэтому выгодно использовать емкость, составленную из двух частей. Хотя в нее входит и рабочий конденсатор, он при пуске становится частью пускового виртуального конденсатора. А отключаемые так и называются — пусковые конденсаторы.

Расчет рабочей емкости

Экспериментальное определение емкости конденсаторов наиболее точное. Однако эксперименты эти занимают немалое время и довольно трудоемки. Поэтому на практике в основном используются оценочные методы. Для них потребуется значение мощности движка и коэффициенты. Они соответствуют схеме «звезда» (12,73) и «треугольник» (24). Величина мощности необходима для расчета силы тока. Для этого ее паспортное значение делится на 220 (величина действующего напряжения электросети). Мощность принимается в ваттах.

Полученное число умножается на соответствующий коэффициент и дает величину микрофарад.

Подбор пусковой емкости

Но упомянутым способом определяется емкость рабочего конденсатора. Если движок задействован в электроприводе, с ним он может не запуститься. Потребуется дополнительный пусковой конденсатор. Чтобы не утруждать себя, выполняя подбор, можно начать с такого же по величине емкости. Если двигатель так и не запускается из-за нагрузки со стороны привода, надо добавлять параллельно конденсаторы для запуска электродвигателя.

После каждого подсоединяемого экземпляра нужно подавать напряжение на движок для проверки запуска. После пуска движка последний из подсоединенных конденсаторов завершит формирование емкости, необходимой для двигателя в режиме запуска. Если по какой-либо причине после пребывания в подсоединенном состоянии к электросети конденсатор отсоединяется от нее, его надо обязательно разрядить.

Для этого следует использовать резистор номиналом в несколько килоом. Предварительно, перед тем как подключить, его выводы надо согнуть так, чтобы их концы получились на том же расстоянии, что и клеммы. Резистор берут за один из выводов пассатижами с изолированными рукоятками. Прижимая выводы резистора к клеммам на несколько секунд, разряжают конденсатор. После этого желательно удостовериться мультиметром-вольтметром, сколько вольт на нем. Желательно, чтобы напряжение либо обнулилось, либо осталось менее 36 В.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Устройство детали

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Лейденские банки, соединённые параллельно

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Обозначение на схемах

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Специфика схем с конденсаторами

Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:

  • включение в «треугольник»;
  • подсоединение в «звезду».

К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.

Схемы подсоединения к линии 380 В

В применении емкостных элементов, при подключении 3-х фазного мотора к сети 380 вольт, нет необходимости.

Включение мотора в трёхфазную сеть

Схемы включения в однофазную сеть

При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:

  • от рабочей катушки;
  • от дополнительной;
  • общий вывод для обеих обмоток.

Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.

Схема для запуска однофазного двигателя

Тип сборки «Треугольник»

Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.

Включение мотора по соединению «треугольник»

Тип сборки «Звезда»

Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.

Подключение «звездой»

Как правильно выбрать конденсатор для сабвуфера

Сабвуфер для машины — это акустическая система, которая функционирует для произведения низких частот звукового диапазона. Автомобильный сабвуфер повышает качество звука, уменьшает нагрузку на колонки.

В нынешнее время практически каждый водитель оборудует свою машину музыкальными устройствами. Нередко можно увидеть на улице потрепанную шестёрку, из окон которой звучит современная музыка в отличном качестве. Чтобы получить качественное звучание музыки в машине с низкочастотным звуком, необходимы или огромные колонки, которые не всегда смогут дать насладиться низкочастотными басами, или же, как альтернатива, сабвуфер. Сейчас даже самые простые аудиосистемы для автомобиля нередко укомплектованы внешним усилителем звука. Для улучшения звука автомобилисты используют конденсаторы сабвуфера в машину.

Многие автолюбители ставят в своем авто качественную акустику

Зачем нужен конденсатор для сабвуфера

Любители громкой, качественной музыки с мощными басами часто сталкиваются с проблемой, когда возникают провалы звука в определённых ситуациях. Не надо в таких случаях грешить на поломку сабвуфера или колонок.

Давайте вернёмся к школьным урокам физики где-то в седьмой класс. Автомобильный сабвуфер, при воспроизведении мощнейшего баса, кратковременно может потребить ток, который не в силах предоставить даже самый сильный аккумулятор. Провода, соединяющие сабвуфер и усилитель, даже если они очень толстые, имеют сопротивление, которое в пик сигнала приводит к снижению напряжения. В эти моменты и происходят так званые провалы звука. Именно в такие моменты и необходим конденсатор для сабвуфера. Он представляет собой электролитический мощное устройство большой ёмкости, которое параллельно подключается к усилителю и аккумулятору автомобиля. При параллельном соединении узлов в пики возрастания тока устройство забирает на себя избыточное напряжение, что помогает сгладить так званые провалы сабвуфера. За счёт очень низкого внутреннего сопротивления самого конденсатора, он в доли секунды заряжается и принимает на себя последующие скачки напряжения.

Исходя из вышесказанного, конденсатор для сабвуфера защищает сам автомобильный сабвуфер от скачков тока, что может стать причиной его поломки, а также сглаживает провалы звука и уменьшает искажения.

Параметры для выбора конденсатора

Рассмотрим основные критерии, которые влияют на качество работы конденсатора.

  1. Мощность. Это первый и главный параметр для выбора. Необходимо покупать устройство, мощность которого будет равна количеству киловатт системы. То есть, если у вас система мощностью пять киловатт, то прибор должен иметь ёмкость не меньше пяти фарад. Специалисты советуют брать устройства ёмкостью немного больше, чем мощность системы.
  2. Разъёмы. Их рабочее напряжение должно достигать двадцати четырёх вольт. Чтобы максимально уменьшить сопротивляемость току, разъёмы фактически всех устройств имеют позолоту.
  3. Комплектация. Проверьте, чтобы в комплектацию входили все требующиеся для установки прибора элементы. Конденсатор от усилителя должен устанавливаться на расстоянии не больше чем на пятьдесят сантиметров.
  4. Скорость зарядки и отдачи заряда. Эти характеристики зависят от того, насколько качественное устройство вы приобретаете. Воздержитесь от покупки подделок и самодельных конденсаторов.
  5. Функция управления зарядом. Эта функция присутствует в более дорогих моделях, но устройства такого плана обезопасят проводку вашего автомобиля. Если прибор, который вы приобрели, не имеет такой функции, то перед установкой его необходимо подзарядить.
  6. Цифровой вольтметр и световая индикация. С помощью вольтметра можно контролировать напряжение устройства. Световые индикаторы показывают уровень заряда прибора.

Для того чтобы покупка радовала вас качественным звуком, необходимо покупать продукцию в сертифицированных магазинах, которые специализируются на продукции автомобильной акустики.

Краткий обзор моделей конденсаторов

С предоставленной информации понятно, что конденсаторы отличаются ёмкостью, набором функций, комплектацией. Соответственно и ценовая категория приборов колеблется от порядка сорока долларов за единицу товара и может достигать трехсот долларов за устройство.

Autofun CAP-10 — один из самых простых и доступных приборов. Стоимость около сорока долларов, ёмкость устройства 1 фарад, рабочая температура до 95 градусов. Пользуется спросом у покупателей за счёт привлекательной цены.

Autofun CAP-10

Конденсаторы торговой марки Hollywood также пользуются спросом у покупателей. Ценовой диапазон моделей этой марки от пятидесяти долларов до двухсот за единицу товара, в зависимости от ёмкости устройства и дополнительных функций.

Конденсатор торговой марки Hollywood

Signat ECC1 — прибор небольшого размера, хотя имеет привлекательные характеристики. Ёмкость — 1 фарад, цена около двухсот пятидесяти условных единиц.

Signat

Brax IPC — разумный силовой конденсатор, цена которого более трехсот долларов. Этот прибор имеет сверхмощные электрические характеристики, принцип работы основан на автоматике. Внутреннее сопротивление в конденсаторе практически отсутствует.

Brax IPC

И ещё одно правило. Для устройств характерной особенностью является соответствие цены и качества прибора. Чем дороже товар вы приобретаете, тем более надёжным он будет в эксплуатации.

Конденсаторы для сабвуфера очень просты в установке, потому не потребуется помощь специалиста. Вы сами можете справиться с этой задачей, следуя простым инструкциям к устройству.

Как выбрать конденсатор для микросхемы

Это все из-за индуктивности:

Скажем, ваш микроконтроллер потребляет ток питания, который увеличивается с 1 мА до 11 мА за 5 нс, а затем обратно до 1 мА каждый раз, когда обрабатывает инструкцию.

ди / дт = 10 мА / 5 нс = 2 000 000 А / с

Теперь напряжение на катушке индуктивности равно v = L di / dt, а след от источника питания до микроконтроллера имеет, скажем, индуктивность 50 нГн …

v = L di / dt = падение напряжения 100 мВ.

Хорошо, он еще не падает, потому что это медленный микро, не использует много тока … но более быстрый микро или другой чип, потребляющий более быстрые / большие пики тока, должен получать энергию от источника низкой индуктивности чтобы избежать падения напряжения, когда он потребляет импульсы тока, а конденсатор, расположенный рядом, является хорошим способом для достижения этого.

Не менее важным является тот факт, что конденсатор удерживает шумовой ток, потребляемый вашим микроустройством, в небольшой локальной петле.

Эффективность петлевой антенны пропорциональна площади, поэтому количество излучаемого шума будет намного меньше, когда конденсатор находится рядом.

Кроме того, если у вас есть другие компоненты, скажем, операционный усилитель в том же источнике питания, тогда конденсатор в микро предотвратит шум микросхемы, который может испортить питание операционного усилителя, что приводит к некоторому мусору на выходе …

Итак, вот вам, заглавные буквы:

  • целостность питания: колпачки служат для локального питания током высокого и низкого напряжения
  • EMI: уменьшить площадь рамочной антенны
  • ЭМС: держите шум вдали от других чувствительных устройств

Теперь, как выбрать значение:

  • Рулон 100x 25V 0805 X7R стоит 1,40 евро за 100 нФ и 5,40 евро за 1 мкФ. Таким образом, купить рулон 100 1 мкФ.
  • Каждый раз, когда вам нужно подключить развязывающий конденсатор к вашей схеме, помните, что если вы потратите 10 минут на чтение таблицы данных и обнаружите, что 100 нФ сработает, то есть вы просто потеряли 10 минут и сэкономили 4 цента, если строите только один блок …
  • Я просто вставил 1 мкФ, гарантированно работать каждый раз. Кроме того, он меньше звонит, лучше работает с электролизерами с низким ЭПР и т. Д.
  • Кроме того, я использую колпачки 25 В, поэтому мне нужно иметь только одно значение для 3,3 В до 15 В …

Конденсатор для сабвуфера, что это, как установить, и зарядить

Автор CarAudioSupport На чтение 5 мин. Просмотров 4.6k. Обновлено

Работа мощных автомобильных сабвуферов может сопровождаться проблемами, связанными с большим потреблением тока этими устройствами. Заметить это можно на пиках НЧ, когда сабвуфер «захлебывается».

Это объясняется просадками напряжения на входе питания саба. Исправить проблему помогает накопитель энергии, роль которого играет емкость конденсатора, включенного в цепь питания сабвуфера.

Зачем нужен конденсатор для сабвуфера

Электрический конденсатор представляет собой двухполюсное устройство, способное накапливать, сохранять и отдавать электрический заряд. Конструктивно он состоит из двух пластин (обкладок), разделенных диэлектриком. Важнейшей характеристикой конденсатора является его емкость, отражающая величину энергии, которую он способен накопить. Единицей измерения емкости служит фарада. Из всех типов конденсаторов, наибольшей емкостью обладают электролитические конденсаторы, а также их дальнейшие усовершенствованные родственники – ионисторы.

Чтобы понять, для чего нужен конденсатор, разберемся, что происходит в электрической сети автомобиля при включении в нее низкочастотной автоакустики, имеющей мощность 1 кВт и более. Простой подсчет показывает, что ток, потребляемый такими устройствами, достигает 100 ампер и выше. Нагрузка имеет неравномерный характер, максимумы достигаются в моменты басовых ударов. Просадка напряжения в момент прохождения автозвуком пика громкости НЧ обусловлена двумя факторами:

  • Наличием внутреннего сопротивления аккумулятора, ограничивающим его способность к быстрой отдаче тока;
  • Влиянием сопротивления соединительных проводов, вызывающим падение напряжения.

Аккумулятор и конденсатор имеют функциональную схожесть. Оба устройства способны накапливать электрическую энергию, впоследствии отдавая ее нагрузке. Конденсатор это делает значительно быстрее и «охотнее» аккумулятора. Такое свойство и лежит в основе идеи его применения.

Конденсатор подсоединяется параллельно аккумулятору. При резком увеличении потребления тока увеличивается падение напряжения на внутреннем сопротивлении аккумулятора и, соответственно, уменьшается на выходных клеммах. В этот момент включается в работу конденсатор. Он отдаёт накопленную энергию, и тем самым компенсирует падение отдаваемой мощности.

Как подобрать конденсатор

Требуемая емкость конденсатора зависит от мощности сабвуфера. Чтобы не вдаваться в сложные вычисления, можно пользоваться простым эмпирическим правилом: на 1 кВт мощности необходима емкость 1 фарада. Превышение этого соотношения идет только на пользу. Поэтому, наиболее распространенный в продаже конденсатор большой емкости в 1 фараду, можно использовать и для сабвуферов мощностью менее 1 кВт. Рабочее напряжение конденсатора должно быть не менее 14 – 18 вольт. Некоторые модели оборудованы цифровым вольтметром – индикатором. Это создает дополнительные удобства в эксплуатации, а электроника, контролирующая заряд конденсатора, позволяет облегчить эту процедуру.

Как подключить конденсатор к сабвуферу

Установка конденсатора не относится к сложным процедурам, но при ее выполнении нужно быть внимательным и соблюдать некоторые правила:

  1. Чтобы избежать заметного падения напряжения, провода, соединяющие конденсатор и усилитель, не должны быть длиннее 50 см.По этой же причине, сечение проводов нужно выбрать достаточно большим;
  1. Следует соблюдать полярность. Плюсовой провод от аккумулятора соединяют с плюсовой клеммой питания усилителя саба и с выводом конденсатора, обозначенным знаком «+». Вывод конденсатора с обозначением «-», соединяется с кузовом автомобиля и с минусовой клеммой питания усилителя. Если усилитель до этого уже был подключен к «массе», минусовой вывод конденсатора можно зажать той же гайкой, соблюдая при этом длину проводов от конденсатора к усилителю в указанных пределах 50 см;
  2. Подключая конденсатор для усилителя, лучше воспользоваться штатными зажимами для присоединения проводов к его выводам. Если они не предусмотрены, можно воспользоваться пайкой. Следует избегать соединения скруткой, ток через конденсатор протекает значительный.


На рисунке 1 проиллюстрировано подключение конденсатора к сабвуферу.

Как зарядить конденсатор для сабвуфера

Подключать к электрической сети автомобиля, следует уже заряженный автомобильный конденсатор. Необходимость выполнения этого действия объясняется свойствами конденсатора, о которых упоминалось выше. Конденсатор заряжается так же быстро, как и разряжается. Поэтому, в момент включения разряженного конденсатора, токовая нагрузка будет чересчур велика.

Если купленный конденсатор на сабвуфер оснащен электроникой, контролирующей зарядный ток, можно не беспокоиться, смело подсоединяйте его к цепям питания. В противном случае, конденсатор следует заряжать до подключения, ограничивая ток. Удобно использовать для этого обыкновенную автомобильную лампочку, включив ее вразрез цепи питания. Рисунок 2 показывает, как правильно заряжать конденсаторы большой ёмкости.

В момент включения, лампа загорится в полный накал. Максимальный скачок тока будет ограничен при этом мощностью лампы и будет равен ее номинальному току. Далее, в процессе заряда, накал лампы будет ослабевать. По окончании процесса зарядки, лампа потухнет. После этого надо отключить конденсатор от зарядной цепи. Затем можно подключить заряженный конденсатор к цепи питания усилителя.

Если после прочтения статьи остались вопросы по подключению, советуем ознакомится со статьей «Как подключить усилитель в автомобиле».

Дополнительные плюсы установки конденсаторов в автомобилях

Кроме решения проблем с работой сабвуфера, подключаемый в сеть автомобиля конденсатор оказывает положительное влияние на режим работы электрооборудования в целом. Проявляется это следующим образом:

  • Конденсатор является хорошим фильтром высокочастотных составляющих сетевого напряжения, возникающих при коммутации нагрузок и работе некоторых электронных приборов, его функции благоприятно сказываются на работе всех систем автомобиля;
  • Применение конденсатора позволяет сгладить скачки напряжения, возникающие при включении и отключении потребителей бортовой сети, что позволяет генератору работать в более ровном режиме;
  • При запуске автомобиля стартером, конденсатор, безусловно, принимает в нем дополнительное участие, отдавая свой заряд в бортовую сеть. Особенно это актуально зимой, когда возможность аккумулятора отдавать ток снижается, а свойства конденсатора не изменяются.

Конденсатор установлен, и вы заметили, что ваш сабвуфер начал играть интересней. Но если маленько постараться можно заставить его играть еще лучше, предлагаем вам ознакомиться со статьей «Как настроить сабвуфер».

Заключение

Мы приложили не мало усилий для создания этой статьи, старались написать ее простым и понятным языком. Но получилось у нас это сделать или нет решать только Вам. Если остались вопросы, создайте тему на «Форуме», мы и наше дружное сообщество обсудим все детали, и найдем на него оптимальный ответ. 

И напоследок, есть желание помочь проекту? Подписывайся на группу “Вконтакте” и  “Instagram”. Спасибо, и добро пожаловать в банду 😉

Как выбрать конденсаторы — правильный путь

А конденсатор везде. В источниках питания, светодиодном освещении, в коммерческой электронике, при обработке сигналов и т. Д. Вам понадобится конденсатор. Какова его конкретная роль в основном? Конденсатор выполняет несколько функций. Это устранит проблемы с шумом в цепи, работая как фильтр. Это основная часть в фильтрах нижних и верхних частот, полосовых, полосовых и т. Д. Также очень важно при выпрямлении получить постоянное постоянное напряжение. В источниках питания конденсатор действует как накопитель энергии.Много приложений для этой простой электронной части. Я больше не буду обсуждать здесь, из чего состоит конденсатор, а просто сосредоточусь на том, как выбрать конденсаторы.

Как выбрать конденсатор — важные факторы

При выборе конденсатора для вашей схемы необходимо учитывать важные параметры. Либо вы хотите перейти на микросхему, либо на сквозную. Либо пленка, либо электролитическая и тд. Давайте обсудим здесь все соображения.

1.Как выбрать конденсатор

Емкость

Емкость — это электрическое свойство конденсатора. Таким образом, это вопрос номер один при выборе конденсатора. Какая емкость вам нужна? Что ж, это зависит от вашего приложения. Если вы собираетесь фильтровать выходное выпрямленное напряжение, то вам наверняка понадобится большая емкость. Однако, если конденсатор предназначен только для фильтрации шума сигнала в цепи небольшого сигнала, тогда подойдет малая емкость от пико до нанофарад.Итак, знайте свое приложение.

Предположим, что приложение действительно предназначено для фильтрации выпрямленного напряжения, тогда вам понадобится большая емкость в сотни микрофарад. Вы можете использовать метод проб и ошибок, пока пульсации напряжения не будут соответствовать требованиям. Или вы можете провести расчеты для начала.

Для моста и двухполупериодного выпрямителя требуемую емкость можно вычислить, как показано ниже.

Cmin = ток нагрузки / (пульсация напряжения X частота)

Где;

Cmin — минимально необходимая емкость

Ток нагрузки — это просто нагрузка выпрямителя

Пульсации напряжения — колебания напряжения от пика до пика при измерении на выходе выпрямителя

Частота — для мостового и двухполупериодного выпрямителей это удвоенная частота сети.

Пример:

Схема ниже представляет собой мостовой выпрямитель с входным напряжением 120 В среднеквадратического значения при 60 Гц, током нагрузки 2 А и требованием пульсации напряжения 43 В от пика к пику. Мы оценим, какой должна быть минимальная емкость, необходимая для C1.

Схема мостового выпрямителя

Cmin = ток нагрузки / (пульсация напряжения X частота)

Cmin = 2A / (43 В X 2 X 60 Гц) = 387 мкФ

На основании моделирования, приведенного ниже, напряжение пульсаций от пика до пика при использовании 387 мкФ составляет 35.5В. Это близко к 43В. Поскольку результатом вычислений является минимальная емкость, при выборе более высокого значения емкости пульсации напряжения будут еще больше уменьшаться.

2. Допуск

— также фактор при выборе конденсатора

Помимо емкости, еще одна вещь, которую следует учитывать при выборе конденсаторов, — это допуск. Если ваше приложение очень критично, то учитывайте очень маленький допуск. Конденсаторы имеют несколько вариантов допуска, например 5%, 10% и 20%.Это ваш призыв. В большинстве случаев более высокий допуск дешевле, чем деталь с более низким допуском. Вы всегда можете использовать деталь с допуском 20% и просто добавить больше полей в свой дизайн.

3. Как выбрать конденсатор

Номинальное напряжение

Конденсатор будет поврежден из-за напряжения. Таким образом, необходимо учитывать напряжение при выборе конденсатора. Вам необходимо знать уровень напряжения, на котором будет установлен конденсатор. Конденсатор в большинстве случаев устанавливается параллельно цепи, устройству или подсхеме.Хотя случаев для последовательной установки конденсатора немного. В своих конструкциях я не допускаю напряжения более 75% . Это означает, что если фактическое напряжение цепи составляет 10 В, минимальное напряжение конденсатора, которое я выберу, составляет 13,33 В (10 В / 0,75). Однако такого напряжения нет. Итак, я перейду на следующий более высокий уровень, то есть на 16 В. Можете ли вы использовать 20 В, 25 В или даже выше? Ответ положительный. Это зависит от вашего бюджета, потому что чем выше напряжение, тем дороже конденсатор. Это также будет зависеть от требований к физическому размеру.Физический размер конденсатора в большинстве случаев прямо пропорционален номинальному напряжению.

Например, в приведенном выше примере схемы максимальный уровень напряжения на конденсаторе — это пиковый уровень 120 В среднеквадратичного значения, который составляет около 170 В (1,41 X 120 В). Таким образом, номинальное напряжение конденсатора должно быть 226,67 В (170 / 0,75). И я выберу стандартное значение рядом с этим.

4. Выбор конденсатора

Номинальный ток — знайте пульсирующий ток

Если вы не любитель электроники и не работаете в поле какое-то время, возможно, вы не знакомы с термином пульсирующий ток.Это термин, обозначающий ток, который проходит через конденсатор. В идеальном случае нет тока, который будет течь к конденсатору, когда он установлен на линии постоянного напряжения. Однако, если фактическое напряжение на конденсаторе не является чистым постоянным током, например, есть небольшие колебания напряжения, это приведет к пульсации тока. Для схемы с низким энергопотреблением и колебаниями напряжения можно пренебречь, вам не следует беспокоиться об этом номинальном токе пульсаций.

Однако для конденсаторов, устанавливаемых для фильтрации пульсирующего постоянного тока от выпрямителя, ток пульсаций имеет решающее значение.Чем выше нагрузка, тем выше ток пульсации. Итак, как выбрать конденсаторы для этого приложения? Для выпрямления в большинстве случаев требуется большая емкость, чтобы получить напряжение, близкое к прямолинейному. Таким образом, первый вариант — рассмотреть электролитический конденсатор. В некоторых приложениях, где пульсации тока очень высоки, электролитический конденсатор больше не будет работать, так как его пульсирующий ток меньше. В этом случае выбираются пленочные конденсаторы, так как они имеют очень высокий номинальный ток пульсации.Однако недостатком является то, что емкость ограничена несколькими микрофарадами, поэтому требуется большее их количество параллельно. Рассматривая приведенную ниже схему выпрямителя, конденсатор фильтра 330 мкФ и нагрузку 2 А от источника переменного тока 120 В среднеквадратического значения при 60 Гц. Это то же самое, что и вышеупомянутая схема, но перерисовано и смоделировано в LTspice. LTspice — это бесплатный инструмент для моделирования схем от Linear Technology. Если вы хотите узнать, как выполнять моделирование на LTspice, прочтите статью «Учебники по моделированию цепи LTSpice для начинающих».

Смоделированный пульсирующий ток равен 3,4592 A .

Полноволновой выпрямитель

Если вы не разбираетесь в моделировании, вы можете оценить фактический ток пульсаций, используя приведенное ниже уравнение.

Iripple = C X dV X Частота

Где;

Iripple — это фактическая пульсация тока, протекающего через конденсатор

С — емкость в цепи

dV — это изменение входного напряжения от нуля до пика

Частота — это частота переменного напряжения (не частота выпрямленного сигнала).

Сделаем расчет по вышеперечисленным данным:

Iripple = C X dV X Частота

Iripple = 330 мкФ X (170 В-0 В) X 60 Гц = 3.366A

Вычисленное значение очень близко к результату моделирования. Затем я буду рассматривать здесь максимальное напряжение тока 75%. Таким образом, выбранный конденсатор должен иметь номинальный ток пульсации не менее 4,5 A (3,366 A / 0,75).

5.

Учитывайте рабочую температуру при выборе конденсаторов

Также необходимо учитывать факторы окружающей среды при выборе конденсаторов. Если ваш продукт будет подвергаться воздействию температуры окружающей среды 100 ° C, не используйте конденсатор, рассчитанный только на 85 ° C.Аналогичным образом, если минимальная температура окружающей среды составляет -30 ° C, не используйте конденсатор, который может выдерживать только температуру -20 ° C.

Эта спецификация кажется очень простой. Однако, если конденсатор подвергается воздействию очень сильного пульсирующего тока, произойдет внутренний нагрев, и это приведет к повышению температуры выше температуры окружающей среды. Значит, нужен больший запас на рабочую температуру. Например, максимальная температура окружающей среды, в которой будет установлен продукт, составляет 60 ° C.Не выбирайте конденсатор, рассчитанный только на 60 ° C. Выберите, возможно, номинальную температуру 105 ° C. Это даст достаточный запас за счет внутреннего нагрева.

6. Выбор диэлектрического материала конденсатора

В микросхеме резистора вы встретите эту опцию при просмотре онлайн-магазинов, таких как Mouser и Digikey. Что означает этот параметр? Это диэлектрический материал, из которого изготовлен конденсатор. Я не могу подробно останавливаться на физике конструкции конденсатора, но в своих проектах я всегда использую диэлектрик X7R, NP0 или C0G.Обычно они имеют более высокий температурный диапазон. Ниже приведены несколько примеров X7R, NP0 или C0G по сравнению с X5R.

X7R, NP0 / C0G диэлектрический материал X5R диэлектрический материал

7. Как выбрать конденсатор

— срок службы Ожидаемый срок службы

Срок службы или ожидаемый срок службы конденсатора — это время, в течение которого конденсатор будет оставаться исправным в соответствии с конструкцией. Это очень важно для электролитических конденсаторов. Для керамических конденсаторов это не проблема, и, вероятно, не стоит на нее обращать внимание при выборе конденсаторов для цепей малых сигналов.Для него все еще есть предел жизни, но его более чем достаточно, чтобы выдержать весь жизненный цикл продукта. В отличие от электролитических конденсаторов, если они не будут должным образом оценены, они выйдут из строя до окончания жизненного цикла продукта, и этого не должно происходить. Пульсации тока сократят срок службы конденсатора. Так что лучше управляй им. В таблицах данных или у поставщиков есть справочные расчеты срока службы конденсаторов. Это простые уравнения, которые можно использовать при выборе конденсатора с учетом ожидаемого срока службы.Некоторые также предоставляют график для облегчения понимания. Ниже пример расчета и графика взяты из таблицы KEMET. KEMET — один из ведущих производителей конденсаторов.

Расчет ожидаемого срока службы конденсатора

8.

Физические размеры и способ монтажа — факторы, влияющие на выбор конденсатора.

Последнее, о чем следует подумать, — это физические размеры, а также способ монтажа. Иногда выбор конденсатора продиктован доступным пространством.Чип-конденсаторы имеют небольшие размеры, но имеют ограниченное значение емкости. С другой стороны, электролитические конденсаторы имеют большую емкость, но они громоздкие. Вы собираетесь использовать поверхностное крепление или деталь со сквозным отверстием? Что ж, решать вам. Оцените свои требования к пространству, прежде чем уходить далеко от других параметров.

Технические характеристики конденсатора образца

Ниже приведены характеристики конденсаторов, которые я взял со страницы электроники Mouser. Он имеет емкость, напряжение, допуск, ток пульсации, рабочую температуру, физические размеры, ориентацию при установке и срок службы.Но учтите, что указанный срок службы — это просто базовый срок службы или это срок службы при максимально допустимой рабочей температуре.

Характеристики номинала конденсатора

Связанные

Как каждый раз выбирать правильные типы конденсаторов

«Какие типы конденсаторов мне следует выбрать?»

Это вопрос, который задают многие новички. Я дам вам простой ответ на этот вопрос, не вдаваясь во все детали. После прочтения я хочу, чтобы вы сразу же смогли найти нужный конденсатор.

Я также написал о том, как выбрать номиналы конденсаторов, которые я рекомендую вам проверить.

Поляризация

В первую очередь сводим его к двум типам конденсаторов:

  • Конденсатор поляризованный
  • Конденсатор неполяризованный

Разница между поляризованным конденсатором и неполяризованным конденсатором заключается в том, что поляризованный конденсатор имеет положительную и отрицательную стороны. Таким образом, он должен быть размещен с положительным контактом там, где находится наибольшее положительное напряжение.Вы можете разместить неполяризованный конденсатор как хотите.

Вам нужен поляризованный конденсатор? Или неполяризованный конденсатор? Чтобы понять это, взгляните на свою принципиальную схему. Какой символ конденсатора используется?

Это неполяризованные конденсаторы:

Это поляризованные конденсаторы:

Конденсаторы поляризованные

Если вам нужен поляризованный конденсатор, вам понадобится нечто, называемое «электролитическим» конденсатором.Электролитические конденсаторы бывают двух типов:

Алюминий

Наиболее распространены алюминиевые конденсаторы. Это также самый дешевый из двух. Алюминиевые колпачки обычно поставляются в виде компонентов со сквозным отверстием. Но вы также можете найти его версии для поверхностного монтажа. Если у вас нет особых требований, выбирайте алюминиевые колпачки.

Тантал

Если вам нужен конденсатор меньшего размера и более прочный, вы должны выбрать танталовый тип.

Танталовые колпачки доступны в небольших корпусах для поверхностного монтажа.Они могут работать в широком диапазоне температур. Обратите внимание, что некоторые танталовые крышки также бывают неполяризованными.

Конденсаторы неполяризованные

Если вам нужен неполяризованный конденсатор, ищите керамический или пленочный конденсатор.

Керамические колпачки маленькие и дешевые. Это наиболее распространенный выбор для неполяризованных конденсаторов. Их часто используют в качестве развязывающих конденсаторов.

Если у вас есть особые требования, такие как низкие допуски, высокая надежность или конденсатор, способный работать при высоких температурах, выберите пленочный конденсатор.Для этого намного лучше.

Пленочные заглушки могут быть из полистирола, поликарбоната или тефлона. У каждого из них есть свои свойства, но это выходит за рамки этой страницы.


Другие типы конденсаторов

Есть еще несколько типов конденсаторов, но перечисленные выше являются наиболее распространенными. Вы используете другие типы, только если у вас есть особые требования. Например, если вам нужен конденсатор с очень высокой емкостью, вам понадобится суперконденсатор.

Прочие компоненты

Возврат от типов конденсаторов к электронным компонентам онлайн

Емкость

— Как выбрать конденсатор для схемы выпрямителя

Номинальное напряжение сглаживающего конденсатора (которое, как мы предполагаем, вы спрашиваете) является критическим параметром и было рассмотрено в предыдущем ответе Игнасио. Однако вам также необходимо учитывать значение емкости. Это значение будет определять, сколько пульсаций останется на сглаженном выходе постоянного тока.Так сколько же достаточно? Ответ, как и многое другое в этом бизнесе, — «это зависит от обстоятельств» ….

В частности, уровень пульсаций зависит от емкости сглаживающего конденсатора, тока, потребляемого от источника питания, и частоты источника переменного тока.

В общем, вы можете принять, что меньшее значение конденсатора даст вам больше пульсаций для данного тока нагрузки, чем большее значение. В этом случае возникает соблазн подумать: «Ну, я просто остановлюсь здесь на очень большом значении и покончим с этим».Это не лучшая идея, и вот почему:

В момент включения напряжение на конденсаторе (при условии, что он разряжен — может и не быть) должно быть 0 В. Входное напряжение повысится более или менее сразу, но конденсатору нужно время для зарядки. Это приводит к большому пусковому току (большему по сравнению с рабочим током) и является одной из причин, по которой блоки питания оснащаются плавкими предохранителями с выдержкой времени или с задержкой срабатывания. Чем больше конденсатор, тем дольше сохраняется это состояние, поскольку большая емкость требует больше времени для зарядки в цепи, чем меньшие значения.На мой взгляд, большие пусковые токи — плохая новость, и их можно легко избежать, если тщательно спроектировать.

Во-первых, определите, какая пульсация вам приемлема. Это будет зависеть от приложения. Для цифровых систем вам, возможно, удастся больше пульсации, и вы, как правило, также будете регулировать свою подачу после исправления и сглаживания. Для аналоговых приложений вы можете минимизировать пульсации. Заметьте, я здесь не привожу никаких цифр, а только практические правила :).

Приняв решение о приемлемой пульсации для максимального необходимого тока нагрузки и используемой частоты, просто подставьте числа в формулу ниже, и вы получите минимальное значение емкости, необходимое в фарадах.Естественно, вы получите ценность, которую не сможете купить в магазинах, просто получите следующую ценность от этого.

C = (Iload * t) / dV

Где Iload = максимальный ток нагрузки, t = время между пиками напряжения выпрямленного напряжения, а dV — допустимое пульсирующее напряжение.

Надеюсь, это поможет.

PS Я должен добавить, что в приложениях, где используются очень большие сглаживающие конденсаторы, вы часто увидите какой-то механизм, используемый для ограничения пускового тока. Например, в аудиоусилителях это часто бывает в виде силовых резисторов, соединенных последовательно с конденсаторами.Они ограничивают пусковой ток при зарядке конденсаторов и замыкаются накоротко под управлением таймера или схемы, которая измеряет напряжение на конденсаторах. Таким образом можно получить преимущества использования больших крышек без большого выброса. Компромисс между временем, затрачиваемым на работу, и дополнительными затратами. Я когда-либо видел, как это используется в аудиоусилителях или блоках питания, где сглаживаемое напряжение>, скажем, 50 В постоянного тока, а выходные токи, как ожидается, будут значительными.

выбор типа конденсатора — Обмен электротехнического стека

Поскольку вы сказали, что это для аудио, ответ на самом деле более сложный, чем вы, вероятно, могли себе представить. С точки зрения электричества вам нужен неполяризованный конденсатор, что на практике означает не электролитический или танталовый.

Однако у различных типов конденсаторов есть другие компромиссы, которые имеют значение в аудиоприложениях. Многослойная керамика хороша тем, что имеет хорошую для размера емкость и не поляризована.Однако, в зависимости от материала диэлектрика, они могут быть весьма нелинейными и иметь другой эффект, часто называемый микрофоном .

Microphonics — это потому, что материал демонстрирует небольшой пьезоэффект. Вибрация вызовет небольшие изменения напряжения, а это значит, что конденсатор будет действовать как микрофон. Эффект более тонкий, чем у пьезомикрофонов, специально созданных для этой цели, но он все же может быть значительным, учитывая высокое соотношение сигнал / шум хорошего звука.

Нелинейность также зависит от материала диэлектрика. Идеальный конденсатор увеличит свое напряжение на ту же величину при добавлении фиксированного заряда, независимо от других условий. Эти нелинейные диэлектрики будут иметь разное изменение напряжения при одинаковом изменении заряда в зависимости от напряжения. Обычно это определяется как изменение емкости в зависимости от напряжения. Например, конденсатор «10 мкФ 10 В» может действовать как 10 мкФ в области ± 2 В, но действовать больше как конденсатор 5 мкФ для постепенного изменения в области 8–10 В.Этот нелинейный отклик в аудиосхемах может вызвать гармоники, которых не было в исходном сигнале, что означает добавление искажений.

Керамические диэлектрики, названия которых начинаются с «X» или «Y», демонстрируют оба этих эффекта больше, чем керамические, такие как «NP0». Во многих случаях любой эффект не имеет значения, и керамика X и Y полезна, потому что дает больше емкости на единицу объема. Для аудиоприложений это имеет значение, поэтому вы придерживаетесь других типов и понимаете, что вы не сможете использовать конденсаторы с, казалось бы, большими комбинациями емкости и напряжения на пути прохождения сигнала.Сильное снижение диапазона напряжения также помогает снизить диэлектрическую нелинейность. Например, вы можете получить конденсатор на 20 В, когда схема гарантирует, что напряжение на нем всегда будет в пределах ± 3 В.

Другие диэлектрики, такие как майлар, полистирол и т.п., оказывают меньшее нежелательное влияние на тракт аудиосигнала, но также будут иметь гораздо меньшую доступную емкость и будут физически более громоздкими и, вероятно, более дорогими.

Все — компромисс.

Интегральная схема

— Как выбрать конденсатор для ИС

Это все из-за индуктивности:

Допустим, ваш микроконтроллер потребляет ток питания, который возрастает с 1 мА до 11 мА за 5 нс, а затем возвращается до 1 мА каждый раз, когда он обрабатывает инструкцию.

di / dt = 10 мА / 5 нс = 2000000 А / с

Теперь, напряжение на катушке индуктивности равно v = L di / dt, и трасса от источника питания до микроконтроллера имеет, скажем, индуктивность 50 нГн …

v = L di / dt = падение напряжения 100 мВ.

Хорошо, он еще не ломается, потому что это медленный микроконтроллер, не использует много тока … но более быстрый микроконтроллер или другой чип, потребляющий более быстрые / более высокие всплески тока, должен получать питание от низкой индуктивности источник, чтобы избежать провалов напряжения, когда он потребляет импульсы тока, и конденсатор, расположенный близко, является хорошим способом добиться этого.

Не менее важен и тот факт, что конденсатор удерживает зашумленный ток, потребляемый вашим микроконтроллером, в небольшом локальном контуре.

Эффективность рамочной антенны пропорциональна площади, поэтому количество излучаемого шума будет намного меньше, когда конденсатор находится близко.

Также, если у вас есть другие компоненты, скажем, операционный усилитель на том же источнике питания, то конденсатор на микроконтроллере не позволит шуму микропроцессора испортить питание операционных усилителей, что, как правило, приводит к появлению мусора на выходе …

Вот и шапки:

  • целостность питания: колпачки обслуживают высокий ток питания di / dt локально
  • EMI: уменьшить площадь рамочной антенны
  • ЭМС: не допускайте попадания шума на другие чувствительные устройства

Теперь как выбрать значение:

  • Рулон 100x 25V 0805 X7R стоит 1,40 евро за 100 нФ и 5,40 евро за 1 мкФ. Итак, купите рулон 100 по 1 мкФ.
  • Каждый раз, когда вам нужно установить развязывающий конденсатор в свою схему, помните, что если вы потратите 10 минут на чтение таблицы данных и обнаружите, что 100 нФ будут работать, вы только что потеряли 10 минут и сэкономили 4 цента, если построите только один блок…
  • Я просто вставил 1 мкФ, каждый раз гарантированно сработает. Также он имеет меньше звона, лучше работает с электролитами с низким СОЭ и т. Д.
  • Также я использую конденсаторы на 25 В, поэтому мне нужно иметь только одно значение для 3,3–15 В …

Выбор конденсаторов для блоков питания

Что можно и чего нельзя делать при выборе правильной технологии


и набора функций для работы

BY SURESH CHANDRAN и SHRIKANT JOSHI
EPCOS, Iselin, NJ
http://www.epcos.com Конденсаторы являются одними из наиболее важных пассивных компонентов, которые помогают выполнять широкий диапазон комбинаций напряжения и тока в источниках питания.Хотя каждый тип конденсатора хранит электрическую энергию, диэлектрическая технология играет ключевую роль при выборе конденсатора для конкретного применения. Наиболее важными областями применения конденсаторов в источниках питания являются накопление энергии, демпфирование, подавление электромагнитных помех и схемы управления. Изучая каждую область, используйте прилагаемую диаграмму, чтобы увидеть, как каждая диэлектрическая технология конкурирует или дополняет друг друга в зависимости от области применения. Накопитель энергии Конденсаторы накопителя энергии собирают заряд через выпрямители и доставляют накопленную энергию через ветви инвертора на выход источника питания.Обычно используются алюминиево-электролитические конденсаторы, такие как EPCOS B43504 или B43505, с номинальным напряжением от 40 до 450 В постоянного тока и значениями емкости от 220 до 150 000 мкФ. Иногда устройства группируются в последовательные и / или параллельные комбинации, в зависимости от требований к мощности; конденсаторы с винтовой клеммой в виде банок часто используются для уровней мощности более 10 кВт. Для выбора правильного значения емкости необходимо учитывать номинальное постоянное напряжение, допустимую пульсацию напряжения и время цикла заряда / разряда.Однако при выборе электролитического конденсатора для этого применения следует учитывать следующие параметры. Ток пульсаций конденсатора в типичном источнике питания представляет собой комбинацию токов пульсаций на различных частотах. Действующее значение пульсирующего тока определяет нагрев конденсатора. Распространенной ошибкой является вычисление среднеквадратичного значения токовой нагрузки путем сложения квадратов пульсационных токов на различных частотах. Собственно, нужно учитывать, что ESR конденсатора падает с увеличением частоты пульсаций тока.Правильная процедура заключается в масштабировании тока пульсаций на более высокой частоте до 100 Гц с использованием частотной диаграммы коэффициента пульсаций. Используйте квадрат масштабированных токов, чтобы определить ток пульсации. Это фактическая текущая нагрузка. Поскольку температура окружающей среды определяет срок службы конденсатора в условиях нагрузки, известные производители обеспечивают четко определенную взаимосвязь между нагрузкой пульсаций тока, температурой окружающей среды и ожидаемым сроком службы. Используйте пульсирующую нагрузку (объясненную выше) и температуру окружающей среды, чтобы определить ожидаемый срок службы в реальных условиях работы, используя опубликованное значение ожидаемого срока службы в качестве абсолютного числа.

Snubbering Современные силовые полупроводники, которые переключаются на высоких частотах, подвержены потенциально опасным скачкам напряжения. Демпфирующие конденсаторы, такие как EPCOS B32620-J или B32651..56, при подключении к силовому полупроводнику ограничивают пиковое напряжение за счет поглощения импульсов напряжения и защиты полупроводника, что делает демпфирующий конденсатор критически важным компонентом в силовой батарее. Номинальные значения тока и напряжения полупроводника вместе с его частотой коммутации определяют выбор демпфирующего конденсатора.Поскольку эти конденсаторы имеют очень крутые значения dv / dt, пленочный конденсатор является правильным выбором для этого применения. Типичные характеристики конденсаторов находятся в диапазоне от 470 пФ до 47 нФ при номинальном напряжении до 2000 В постоянного тока. Для мощных полупроводников, таких как IGBT, значения могут достигать 2,2 мкФ при напряжении в диапазоне 1200 В постоянного тока. Не выбирайте конденсатор только на основе комбинации значение / напряжение. При выборе демпфирующих конденсаторов учитывайте требуемые значения du / dt. Коэффициент рассеяния определяет рассеиваемую мощность в конденсаторе.Поэтому выберите альтернативу с более низким коэффициентом потерь. Подавление EMI ​​/ RFI Эти конденсаторы подключаются к входной стороне источника питания для уменьшения электромагнитных и / или радиочастотных помех, создаваемых полупроводником. Подключение напрямую к основной входной линии подвергает их опасным перенапряжениям и переходным процессам. По этой причине существуют разные стандарты безопасности, введенные в разных регионах мира, в том числе EN 132 400 для Европы, UL 1414 и 1283 для США и CSA C22.2 № 0; 1 и 8 для Канады. Конденсаторы X- и / или Y-класса, такие как EPCOS B3292x / B81122, с пластиковой пленкой, представляют собой один из наименее дорогих методов подавления. Импеданс ограничивающего конденсатора уменьшается с увеличением частоты, и высокочастотный ток проходит через конденсатор. Конденсатор X обеспечивает «короткое замыкание» для этого тока между линиями, а конденсатор Y между линией и корпусом заземленного оборудования. Существуют подклассы для конденсаторов X и Y, которые определяют пиковое значение перенапряжения, которое он может видеть.Например, конденсатор X2 емкостью до 1 мкФ рассчитан на пиковое импульсное напряжение 2,5 кВ, тогда как номинальное значение для конденсатора X1 аналогичной емкости составляет 4 кВ. Выберите подходящий класс помехоподавляющего конденсатора в зависимости от пикового напряжения, возникающего при сбросе нагрузки. Схема управления и логика В схемах управления источника питания используется широкий спектр конденсаторов, включая танталовые, керамические, пленочные и алюминиевые. Если эти устройства не используются в суровых условиях, они являются компонентами общего назначения с низкими значениями напряжения и потерь.Для источников питания, используемых в суровых условиях окружающей среды, обычно выбираются высокотемпературные компоненты. Для промышленных или профессиональных источников питания хорошей практикой является выбор компонентов с низким ESR, таких как низкопрофильные полимерные серии EPCOS B45294, для повышения общей надежности. Чтобы воспользоваться преимуществами автоматической сборки, меньшего размера, более низкой стоимости сборки и, как следствие, более высокой производительности, большинство разработчиков стараются придерживаться технологии SMD для конденсаторов, используемых в схемах управления.Однако некоторые инженеры нередко выбирают смешанную технологию, чтобы воспользоваться преимуществами существенно более низкой стоимости некоторых компонентов с выводами, таких как пленочные конденсаторы, которые также обладают большей надежностью.

Как выбрать типы конденсаторов по разным приоритетам

Конденсатор играет жизненно важную роль в современном электронном мире. Каждое устройство требует конденсаторов. Выбор типа конденсатора также очень важен, поскольку он доступен в разных формах и с разными номиналами.Все будет подробно обсуждено, и все пункты изложены простыми словами, которые помогут легко понять. История конденсатора началась с 1745 года, и многие улучшения были внесены выдающимся ученым. Современные конденсаторы, которые мы используем сейчас, были разработаны в 1957 году ученым Х. Беккером. В процессе разработки каждый конденсатор сыграл значительную роль в мире электроники. Жизнь стала такой простой с конденсатором.


Что такое конденсатор?

Конденсатор относится к системе пассивных элементов.Он сохраняет электрический заряд временно и статически в виде статического электрического поля. Он состоит из двух параллельных проводящих пластин, разделенных никакими проводящими пластинами, то есть областью, которая называется диэлектриком. Это будет керамический, алюминиевый, воздушный, вакуумный и др.

Формула конденсатора представлена ​​

C = EA / день

  • Емкость (C) пропорциональна диэлектрической проницаемости ℰ диэлектрической среды и пропорциональна площади двух проводящих пластин (A).
  • Величина емкости зависит от расстояния между пластинами (d).
  • Чем больше площадь пластин, разделенных небольшим расстоянием, тем больше емкость и они расположены в материале с высокой диэлектрической проницаемостью.
  • Изменяя E, d или A, можно легко изменить значение C.
  • Блок конденсатора «Фарад». Но обычно его можно найти в микрофарадах, пикофарадах и нанофарадах.

Зарядка конденсатора

Диэлектрик играет ключевую роль в классификации конденсаторов. Следует учитывать следующие факторы:

  • Рабочее напряжение
  • Размер
  • Устойчивость к утечкам
  • Допуск, устойчивость
  • Цены

Если требуется более высокое значение емкости (C), чем увеличение площади поперечного сечения диэлектрика, или для уменьшения расстояния разделения, или для использования диэлектрического материала с более высокой диэлектрической проницаемостью.

Типы конденсаторов

Различные типы конденсаторов:

  • Бумажный конденсатор
  • Керамический конденсатор
  • Конденсатор электролитный
  • Конденсатор полиэфирный
  • Конденсаторы поликарбонатные
  • Конденсатор переменной емкости
Бумажный конденсатор

Это самая простая форма конденсаторов.Вощеную бумагу держат между двумя алюминиевыми фольгами, то есть зажатой. Накройте алюминиевую фольгу вощеной бумагой. Снова накройте эту вощеную бумагу другой фольгой. Теперь скатайте это как цилиндр. Наденьте две металлические заглушки на оба конца рулона. Вся эта сборка должна быть заключена в футляр. В процессе скручивания конденсатор с большой площадью поперечного сечения собирается в достаточно меньшем пространстве.

Бумажный конденсатор
Керамический конденсатор

Конструкция керамического конденсатора довольно проста.Между двумя металлическими дисками помещается один тонкий керамический диск, и эти выводы припаяны к металлическим дискам. Все покрыто изолированным защитным покрытием.

Керамический конденсатор
Электролитный конденсатор
Конденсатор с электролитом

используется для очень больших значений емкости, которые могут быть легко достигнуты с помощью этого типа конденсатора. Он не только страдает от высокого тока утечки, но и от низкого уровня рабочего напряжения этого электролитического конденсатора. Использование электролита в конденсаторе будет поляризованным, что является основным недостатком.


Электролитический конденсатор

Для изготовления электролитического конденсатора в качестве диэлектрика используется пленка оксида тантала или оксид алюминия толщиной несколько микрометров. Здесь емкость конденсатора будет очень высокой, поскольку диэлектрик будет таким тонким. Это потому что; толщина диэлектрика обратно пропорциональна емкости. Рабочее напряжение устройства снижено. Частным случаем электролитического конденсатора является тантал. Конденсаторы этого типа меньше по размеру, чем конденсаторы из алюминия при том же значении емкости.Вот почему при очень высоком значении емкости конденсаторы с электролитом алюминиевого типа не используются при высоком значении емкости. В таких случаях используются электролитические конденсаторы танталового типа.

S № Материал Диэлектрическая проницаемость Диэлектрическая прочность, вольт / 0,001 дюйма
1 Воздух 1 80
2 Слюда 4-8 1800
3 Фарфор 5 750
4 Бумага (промасленная) 3-4 1500
5 Стекло 4-8 200
6 Титанаты 100-200 100
Конденсатор полиэфирный

Полиэфирный конденсатор также называют майларовым ПЭТ.Это идеальное решение для большого количества конденсаторов. Между двумя обкладками конденсатора помещена полиэфирная пленка для диэлектрика. Его свойства уникальны. Полиэфирный диэлектрик на основе химических эфиров. Полиэфиры включают как синтетические материалы, так и встречающиеся в природе.

Конденсатор полиэфирный

Сводка свойств полиэфирного конденсатора Диэлектрик

S № Недвижимость Значение
1 Температурный коэффициент (ppm / oC) + 400_ + 200
2 Дрейф емкости 1.5
3 Диэлектрическая проницаемость (при 1 МГц) 3,2
4 Диэлектрическое поглощение (%) 0,2
5 Коэффициент рассеяния 0,5
6 Сопротивление изоляции (МОм x мкФ) 25000
7 Максимальная температура (oC) 125

Применения полиэфирных конденсаторов включают

  • Он обрабатывает высокие пиковые уровни тока
  • Применения развязки и развязки и блокировки постоянного тока.
  • Полиэфирный конденсатор фильтрует высокие уровни допуска там, где это не требуется.
  • Используется в аудиоприложениях
  • Питание подается на очень высокий уровень емкости электролитических конденсаторов, где в этом нет необходимости.
Конденсатор из поликарбоната

Его диэлектрический материал очень стабилен. Конденсатор из поликарбоната будет иметь высокий допуск. Может работать в диапазоне температур от -55 ° C до + 125 ° C. В дополнение к этому, хороший коэффициент рассеяния и сопротивление изоляции.Эти конденсаторы относятся к группе термопластичных полимеров.

Конденсатор из поликарбоната

Конденсатор из поликарбоната очень стабилен и позволяет использовать конденсаторы с высокими допусками, которые можно использовать в любом температурном диапазоне.

Свойства поликарбоната:

S № Параметр Значение
1 Удельное объемное сопротивление Ом · см
2 Водопоглощение 0.16%
3 Коэффициент диссипации 0,0007 при 50 Гц
4 Электрическая прочность 38 кв / мм
5 Диэлектрическая проницаемость 3,2

Диэлектрик изготавливается методом литья в раствор, который лучше всего работает как металлизированный. Металлизированные электроды используются только для соединений, конструктивных целей. Металлизированные электроды оснащены металлическими электродами, наплавленными из паровой фазы.Он устраняет любое короткое замыкание или неисправность путем испарения электрода в области короткого замыкания и восстанавливает срок службы конденсатора.

Применение конденсаторов из поликарбоната

  • Он используется в качестве фильтра, синхронизации и точности для приложения связи
  • Прецизионные конденсаторы там, где это необходимо (менее ± 5%).
  • Используется для приложений переменного тока.
Конденсатор переменной емкости

В переменном конденсаторе емкость может повторяться и намеренно изменяться электронным или механическим способом.Эти переменные конденсаторы используются в основном в LC-цепях, которые задают резонансную частоту. Конденсатор переменной емкости используется при настройке магнитолы. Его также называют настроечным конденсатором или настроечным конденсатором или переменным реактивным сопротивлением. Он также используется для согласования импеданса в антенных тюнерах.

Конденсатор переменной емкости

Перед выбором конденсатора следует учитывать следующие факторы:
  • Стабильность: Емкость конденсатора изменяется в зависимости от времени и температуры.
  • Стоимость: Надо экономно
  • Точность: +/- 20% не является обычным
  • Утечка: Диэлектрик будет иметь некоторое сопротивление и течь по постоянному току.
  • Целевой коэффициент мощности и текущий коэффициент мощности на объекте
  • Средняя и максимальная потребность в кВА или кВт на предполагаемом месте установки
  • Характер загрузки сайта.
  • Наличие места на месте установки, силовых кабелей и т. Д.

Температурный коэффициент емкости производится с учетом эталона 25 градусов по Цельсию.

Допуск конденсатора

Код

Допуск

B ± 0,1 пФ
С ± 0,25 пФ
D ± 0,5 пФ
Ф ± 1%
G ± 2%
Дж ± 5%
К ± 10%
M ± 20%
Z + 80%, –20%

Поляризация конденсатора будет иметь полярность, тогда как неполяризованный не будет иметь полярности.

Поляризация конденсатора
Общее применение конденсаторов
  • Используется для сглаживания в источниках питания, когда требуется преобразовать сигнал из переменного в постоянный.
  • Связь сигналов и развязка как конденсаторная связь.
  • Используется для коррекции коэффициента мощности.
  • В радиосистемах подключается LC-генератор для настройки на желаемую частоту.
  • Используется для фиксированного времени разряда и заряда конденсаторов.
    Для хранения энергии.
  • Он пропускает переменный ток и блокирует постоянный ток в цепях.
  • Частота любого сигнала, который вы пытаетесь объединить, или шума, который вы пытаетесь подавить
  • Требуемое минимальное / максимальное значение
  • Желаемое значение
  • Тип упаковки / свинца
  • Рабочее / максимальное напряжение
  • Допуск
  • Эквивалентное последовательное сопротивление
  • Поляризованные, ок? Или нужен неполяризованный
  • Рабочая температура
  • Допуск с учетом температурного коэффициента
  • Утечка
  • Требуемый размер
  • Целевая цена
  • Ценовой бюджет
  • Предрассудки клиентов
  • Наличие / время выполнения
  • Срок службы
  • Требования ROHS
  • Наличие образца
  • Лента и катушка
  • Репутация производителя

Таким образом, речь идет о конденсаторе, различных типах конденсаторов и о факторах, которые мы должны проверить перед выбором конденсатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *