Калькулятор теплорасчет: Теплотехнический расчет онлайн — калькулятор точки росы в стенах, рассчитать теплопотери дома

Содержание

Калькулятор энергоэффективности окон. Энергокалькулятор окон.

Калькулятор энергоэффективности окон

Энергокалькулятор проверяет, подходит ли остекление к “теплым кредитам” и региональным программам поддержки энергоэффективности. Его используют для проверки продавцы оконных салонов и сотрудники государственных банков для “теплых” кредитов. Расходы на отопление и кондиционирование в течении года также показывает теплотехнический расчет окон и дополнительно предполагаемый срок службы (30 лет).


Преимущества энергоэффективных окон

  1. Через стандартные решения расходуется от 20%-25% энергии на отопление для индивидуальных домов, теплопотери квартиры достигают до 40% для многоквартирных домов. А при сплошном фасадном остеклении до 60%. Энергоэфективные решения могут в 2-3 раза сократить эти потери.
  2. Окупают свою стоимость многократно за время эксплуатации. Их теплотехнические характеристики лучше по сравнению со стандартными конструкциями, это напрямую влияет на стоимость. Ведь на пластиковые окна цена формируется в зависимости от класса комплектующих. Но эта инвестиция быстро окупается. Подсчет показывает экономию при эксплуатации.
  3. Создают комфортные условия проживания в квартире и доме.

Программы поддержки энергоэфективности

Государственная программа поддержки энергоэфективности, т. н. “теплые кредиты” позволяет сократить расходы на теплоизолирующие решения. В 2016 году 67% средств по программе “теплых кредитов” агентства госэнэргоэффективности направлено на кредитование оконных блоков. Есть также региональные программы поддержки энергоэффективности. Для того, чтобы соответствовать требованиям программ, светопрозрачные конструкции должны быть теплоизолирующими и соответствовать требованиям ДБН В.2.6-31:2006, а со середины 2017 года уже ДБН В.2.6-31:2016. Именно на основании этого ДБН и производится расчет энергоэффективности оконных блоков на соответствие программам.


Преимущества энергокалькулятора

  1. Просто и быстро. Минимум необходимых данных для теплотехнического вычисления в удобной форме и максимум необходимой информации в понятном виде в результатах для энергоаудита.
  2. Независимый расчет. Пользователь получает онлайн объективную информацию о характеристиках исходя из его комплектующих вне зависимости от конкретного производителя. Эти характеристики являются максимально возможными для достижения при условии качественного изготовления и монтажа конструкции.
  3. Наиболее полные данные. Мы собрали и проверили данные по более чем 250 профильным системам, которые используются или когда-либо использовались в Украине. Так что можно получить расчет теплоизоляции окон, которые были установлены даже 15 лет назад. База профильных систем и стеклопакетов постоянно пополняется и уточняется.
  4. Высокая точность. Калькулятор учитывает размеры и конфигурацию, составляющие изделия, месторасположение, ориентацию по сторонам света и даже виды энергоносителей и местные тарифы для наиболее точного отображения параметров энергоаудита.
  5. Соответствие нормам и стандартам. Вычисление энергоэффективности производятся на основании действующих норм и стандартов в Украине (ДБН В.2.6-31:2006 (с 2017 г. — ДБН В.2.6-31:2016), ДСТУ EN 673:2009).

Методика расчета

Вычисления тепловых характеристик оконных конструкций производятся на основании ДБН В.2.6-31:2006 с учетом краевых зон стеклопакета. Стеклопакет рассчитывается согласно ДСТУ EN 673:2009 “Скло будівельне. Методика визначення коефіцієнта теплопередавання багатошарових конструкцій” (EN 673:1997, IDT).

Исходные данные для профильных систем взяты из открытых данных производителей профилей с учетом армирования для тех систем, где оно должно присутствовать, после проверки вычислительными методами.
Энергокалькулятор НЕ использует упрощенный теплотехнический расчет по ДСТУ Б В.2.6-17-2000, поскольку метод по ДСТУ Б В.2.6-17-2000 дает менее точный результат (в сторону завышения). В нем не учитывается влияние краевой зоны стеклопакетов. Поэтому, калькулятор энергоэффективности окон использует более точные методы вычисления согласно ДБН В.2.6-31:2006, который аналогичен методике европейской нормы EN ISO 10077-1:2006 с учетом краевой зоны стеклопакетов, архитектуры и размеров конструкции.
Для расчета энергозатрат использован ДСТУ-Н Б В.1.1-27-2010 “Будівельна кліматологія”.

Для вычисления сокращения CO2 в калькуляторе взяты средние по стране показатели генерации CO2 при производстве электроэнергии и расчетные показатели генерации CO2 при сжигании бытового газа.


Энергопотери для старых окон

Для столярки в жилых домах 60-х, 70-х, 80-х и начала 90-х, что составляет около 89% жилого фонда Украины, вычисления показывают 101 кВтчас теплопотерь через 10 м2 остекления за отопительный сезон для Киева. Если учитывать теплопотери из-за излишних сквозняков, то это число в среднем удваивается до 200 кВтчас и больше. Но и те металлопластиковые конструкции, которые устанавливались еще 10 лет назад, обладают не лучшими теплоизоляционными свойствами, хотя и решают проблему сквозняков в помещении. И проверка в калькуляторе полезна для понимания какой же потенциал экономии на отоплении при замене стеклопакетов или конструкции в целом. После проверки энергоэффективности, можно узнать цены на пластиковые окна в оконных компаниях.


Комплексное утепление

Энергоэффективные решения проявляют свои качества и при частичном утеплении квартиры. Но в полной мере работают при комплексном утеплении, так чтобы оболочка утепления создавала замкнутый контур вокруг здания включая двери и оконные проемы. Кроме того, при одновременной замене светопрозрачных конструкций и наружном утеплении фасада, лучше прорабатываются узлы примыкания утепления фасада и оконных блоков.


Коммунальные платежи

Рост тарифов на энергоносители не означает рост расходов на коммунальные услуги и стоимости отопления. При грамотном выборе и использовании остекления и утеплении стены можно значительно (в некоторых случаях в 5-6 раз) сократить расходы на отопление квартиры и дома.

Обычные сроки окупаемости энергоэффективных изделий, при наличии счетчиков, составляют 5-15 лет. При учете компенсаций и поддержки государства формальные сроки сокращаются еще больше, до 2-5 лет. А исходя из реальных примеров с учетом сквозняков могут быть сокращены до одного отопительного сезона.


Используя Энергокалькулятор OKNA.ua вы принимаете все условия ограничений использования.
Исходные данные и результаты вычислений всех параметров являются справочными.
Вся ответственность за использование энергокалькулятора лежит на пользователе.

* Теплоизоляционные характеристики оконных конструкций могут соответствовать расчету, если изделия произведены и замонтированы качественно, или быть хуже расчетных, при некачественном производстве или монтаже. Энергокалькулятор не является какой-либо гарантией качества оконного блока. Вычисление энергопотерь не учитывает теплоинерционных характеристиках помещения и специфику потребления энергии, а дает составляющую энергопотерь зависящих от светопрозрачных конструкций.

онлайн калькулятор, как рассчитать, инструкция

Расчет отопления частного дома – одна из важных задач при его строительстве или капитальном ремонте. Делать это лучше на этапе планирования. Некоторую помощь в расчетах может оказать специальный онлайн-калькулятор. Существует немало калькуляторов для расчетов потребления топлива, мощности печи, системы вентиляции, сечения дымохода, производительности насосно-смесительного узла «теплого пола» и других. Однако следует учитывать, что все они показывают лишь приближенный результат, т.к. могут рассчитать только простейшие конфигурации. На самом деле при расчете отопления необходимо учитывать массу дополнительных нюансов. Это нужно сделать, чтобы правильно посчитать затраты на всю систему отопления и в будущем не страдать от холода в доме или наоборот его излишков, а следовательно и лишних затрат на топливо.

За помощью для произведения расчетов систем отопления мы обратились в Аквахит — компания, которая специализируется на монтаже систем отопления в частных домах.

Выбирая котел для отопления дома, надо учесть все параметры: и отопительного оборудования и жилого домаИсточник baraholka. com.ru

Расчет отопления в частном доме – что надо посчитать

Чтобы сделать расчет отопления частного дома, необходимо вычислить мощность отопительного котла, определиться с количеством и размещением радиаторов, учесть ряд факторов от погоды, до теплоизоляции и материала изготовления труб и котла.

Учитывайте, что от этого процесса будет зависеть комфортность проживания в доме, так как ваши расчеты будут непосредственно влиять на качество обогрева. Кроме того, эти расчеты – основа заложенного бюджета на монтаж и дальнейшую эксплуатацию всей системы отопления. Именно на этом этапе придется решать, сколько денег вы будете в дальнейшем тратить на отопление своего дома. Приступая к расчетам важно помнить о климатических условиях, в которых находится ваш регион и об условиях, в которых дом будет эксплуатироваться.

В нашем видео поговорим об отоплении в частном загородном доме. У нас в гостях автор и ведущий канала Тепло-Вода Владимир Сухоруков:

Система отопления – это не только печь и батареи. В нее входят:

  • Отопительный котел;
  • Насосная станция;
  • Трубы;
  • Радиаторы;
  • Контрольные приборы;
  • Иногда нужен расширительный бак.
Примерно так выглядит схема отопительной системы домаИсточник lucheeotoplenie.ru

Расчет мощности отопительных приборов

Перед тем как рассчитать мощность отопительного котла, следует определить, какой его тип будет использоваться. У отопительных котлов разный КПД и от этого выбора будет зависеть не только уровень теплоотдачи, но и финансовая составляющая последующей эксплуатации при выборе топлива:

  • Электрокотлы,
  • Газовые котлы,
  • Котлы на твердом топливе,
  • Котлы на жидком топливе,
  • Комбинированный котел электричество/твердое топливо.

Когда сделан выбор типа котла, необходимо определиться с его пропускной способностью. Именно от этого будет зависеть функционирование всей системы. Вычисление мощности водонагревательного котла производят, учитывая количество теплоэнергии, требующегося на м3. Калькулятор может помочь посчитать объем отапливаемых комнат:

  • спальня: 9 м2 3 м = 27 м3,
  • спальня: 12 м2 3 м = 36 м3,
  • спальня: 15 м2 3 м = 45 м3,
  • гостиная: 25 м2 3 м = 75 м3,
  • коридор: 6 м2 3 м = 18 м3,
  • кухня: 12 м2 3 м = 36 м3,
  • санузел: 8 м2 3 м = 24 м3.
При расчете учитываются все помещения дома, даже если в них не планируется ставить радиаторыИсточник stroikairemont.com

Далее суммируются результаты, и получается общий объем дома – 261 м3. При подсчетах обязательно учитываются комнаты и переходы, в которых не планируется ставить приборы обогрева, например, коридор, кладовая, или прихожая.

Это делается, чтобы тепла от установленных в доме радиаторов, хватило на отопление всего дома.

При расчетах системы отопления обязательно следует учитывать климатическую зону и температуру снаружи в зимний период.

Возьмем произвольный показатель для региона в 50 Вт/м3 и площадь дома 261 м3, которую планируется обогревать. Формула расчета мощности: 50 Вт 261 м3 = 13050 Вт. Результат умножается на коэффициент 1,2 и вычисляется мощность котла – 15,6 кВт. Коэффициент позволяет добавить 20% резервной мощности котлу. Она даст возможность котлу работать в сберегательном режиме, избегая особых перегрузок.

Дополнительные датчики температуры помогут контролировать процессИсточник dopebi.ru.net

Поправка коэффициента на климатические условия регионов меняется от 0,7 в южных регионах России, до 2,0 в северных регионах. Коэффициент 1,2 применяют в центральной части России.

Вот еще одна формула, которой пользуются онлайн-калькуляторы:

Чтобы получить предварительный результат требуемой мощности котла, можно площадь комнаты умножить на климатический коэффициент и, полученный результат, разделить на 10.

Пример формулы расчета мощности отопительного котла для дома площадью 120 м2 в северном регионе России:

Nk=120*2,0/10=24 кВт


Отопление частного дома – что надо знать для выбора подходящей системы и схемы

Какие трубы лучше для магистрали отопления

Мало знать, как рассчитать мощность котла, надо еще правильно выбрать трубы. Сейчас рынок предлагает несколько видов труб для отопления из разных материалов:

  • полиэтилен,
  • полипропилен (с армированием и без),
  • стальные,
  • медные,
  • нержавеющие.
Трубы для отопления в доме можно взять разные, но важно сдать особенности выбранного видаИсточник ms.decorexpro.com

У каждого из этих видов свои нюансы, которые стоит учитывать при разработке и расчете отопления частного дома:

  • Стальные трубы в использовании универсальны и выдерживают давление до 25 атмосфер, но обладают существенным недостатком – они ржавеют и имеют определенный срок эксплуатации. Кроме того, имеют сложности при монтаже.
  • Трубы из полипропилена, композитного металлопластика и сшитого полиэтилена легко монтируются и, благодаря весу, их можно использовать на тонких стенах. Преимущество таких труб в том, что они не подвержены ржавчине, гниению и не реагируют на бактерии. Важный показатель – они не расширяются от тепла и не деформируются на морозе. Выдерживают постоянную температуру до 90 градусов и кратковременное повышение до 110 градусов Цельсия.
  • Медные трубы отличает высокая цена и повышенная сложность при монтаже, но в прочности они конкурируют с пластиковыми трубами, не подвержены ржавчине и считаются лучшим вариантом. Кроме того, медь пластична, хорошо проводит тепло и держит температуру воды в трубах в пределах от –200 до 250 градусов Цельсия. Эта способность меди защитит систему от возможной разморозки, что очень важно в условиях Сибири и северных районов.
Если дом находится на севере страны, то медные трубы для системы отопления подойдут лучше всегоИсточник svizzeraenergia. ch
Электрическое отопление дома: какие нагревательные электроприборы эффективнее и экономичнее

Как рассчитать оптимальное количество и объемы теплообменников

При расчёте количества необходимых радиаторов, следует учитывать из какого материала они произведены. Рынок сейчас предлагает три вида металлических радиаторов:

  • Чугун,
  • Алюминий,
  • Биметаллический сплав,

Все они имеют свои особенности. Чугун и алюминий имеют одинаковый показатель теплоотдачи, но при этом алюминий быстро остывает, а чугун медленно нагревается, но долго сохраняет тепло. Биметаллические радиаторы быстро нагреваются, но остывают значительнее медленнее алюминиевых.

При расчете количества радиаторов также следует учитывать и другие нюансы:

  • теплоизоляция пола и стен помогает сохранить до 35% тепла,
  • угловая комната прохладнее других и требует большего количества радиаторов,
  • использование стеклопакетов на окнах сохраняет 15% теплоэнергии,
  • через крышу «уходит» до 25% теплоэнергии.
Количество радиаторов отопления и секций в них зависит от многих факторовИсточник amikta.ru

В соответствии с нормами СНиП, на обогрев 1 м³ требуется 100 Вт тепла. Следовательно, 50 м³ потребуют 5000 Вт. В среднем, одна секция биметаллического радиатора выделяет 150 Вт при температуре теплоносителя 50 °C, а прибор на 8 секций выделяет 150 * 8 = 1200 Вт. С помощью простого калькулятора считаем: 5000 : 1200 = 4,16. То есть, для обогрева этой площади нужно примерно 4-5 радиаторов.

Однако, в частном доме температура регулируется самостоятельно и обычно считается, что одна батарея выделяет 1500-1800 Вт тепла. Пересчитываем среднее значение и получаем 5000 : 1650 = 3,03. То есть, должно быть достаточно и трёх радиаторов. Разумеется, это общий принцип, а более точные расчёты делаются исходя из предполагаемой температуры теплоносителя и тепловыделения радиаторов, которые будут установлены.

Можно воспользоваться примерной формулой расчета секций радиатора:

N*= S/P *100

Значок (*) показывает, что дробная часть округляется по общим математическим правилам, N – количество секций, S – площадь комнаты в м2, а P – теплоотдача 1 секции в Вт.

Пример, как рассчитать отопление в частном доме при помощи онлайн-калькулятора в этом видео:


Схема отопления двухэтажного дома: требования, выбор и проектирование системы

Заключение

Монтаж и расчет отопительной системы в частном доме – это главная составляющая условий комфортного проживания в нем. Поэтому к расчету отопления в частном доме следует подойти с особой тщательностью, учитывая множество сопутствующих нюансов и факторов.

Калькулятор поможет если нужно быстро и усреднённо сравнить между собой различные технологии строительства. В других случаях лучше обратиться к специалисту, который грамотно проведет расчеты, правильно обработает результаты и учтет все погрешности.

С этой задачей не справится ни одна программа, потому что в нее заложены только общие формулы, а калькуляторы отопления частного дома и таблицы, предлагаемые в интернете, служат лишь для облегчения расчетов и не могут гарантировать точности. Для точных правильных расчетов стоит доверить эту работу специалистам, которые смогут учесть все пожелания, возможности и технические показатели выбранных материалов и приборов.

Дополнительно

Выставка домов «Малоэтажная страна» выражает искреннюю благодарность специалистам компании «АкваХит» за помощь в создании материала.

Компания «АкваХит» – специализируется на услугах по подбору, поставке, монтажу и обслуживанию оборудования для систем отопления, водоснабжения и учета тепла.

Если Вам нужна более подробная консультация, то можете воспользоваться следующими контактами:

сайт: www.akvahit.ru
email: [email protected]
тел.: +7 (495) 191-44-37

Точка росы в стене из газобетона, пример расчета

Точка росы в стене — температурная зона, в которой водяной пар конденсируется и превращается в воду.

Точка росы сильно зависит от влажности воздуха, и чем влажность больше, тем вероятность конденсата выше.

Также на точку росы влияет разность температур внутри и снаружи помещения.

В данном обзоре мы проводим тестирование по нахождению точки росы в стене из газобетона D500. Будут рассмотрены разные варианты стен из газобетона, к примеру толщиной в 200мм и 400мм, а также с использованием утеплителей.

Что такое точка росы в стене

Расчеты проводились в программе теплорасчет.рф 

Точку росы в газобетоне мы находили при следующих условиях:
Температура в помещении Температура на улице Влажность в помещении Влажность на улице
20 -20 40% 80%

Плотность газобетона 500 кг/м³ (D500).

Черная линия на графике показывает температуры внутри стены из газобетона. Начиная с 20 градусов Цельсия и заканчивая -20 град.

Синяя линия показывает температуру точки росы. Если линия температуры соприкасается с линией точки росы, то образуется зона конденсации.

Другими словами, если температура точки росы всегда ниже температуры в газобетоне, то конденсат образовываться не будет.

Газобетон марки D500 толщиной 200 мм  Газобетон марки D500 толщиной 400 мм
   

Как видно на графике, точка росы в обеих случаях находится внутри газобетона, ближе к наружной части, а количество конденсата почти равное.

Газобетон и минвата (снаружи)

А теперь рассмотрим, что происходит в газобетоне, если его утеплить минватой снаружи.

Газобетон D500 200мм + 50мм минваты  Газобетон D500 200мм + 100мм минваты 
   

Вариант утепления газобетона минеральной ватой (100мм) исключает конденсат. Причем конденсата не будет даже в том случае, если температура в доме будет +25, а на улице -40. Более того, 100мм минеральной ваты обеспечивают очень хорошую теплоизоляцию.

Газобетон и минвата (внутри)

50мм минваты + газобетон D500 200мм 100мм минваты + газобетон D500 200мм 

Как видно на графике, внутреннее утепление минеральной ватой приводит к существенному образованию конденсата по всей толще газобетонной стены.

Заметим интересную особенность — чем толще внутренний слой минваты, тем больше конденсата образовывается в газобетонной стене, что крайне нежелательно.

Важно! Влажный газобетон хуже удерживает тепло и быстрее разрушается.

Вывод

Точку росы в газобетонной стене лучше держать ближе к наружной части. А еще лучше, если точка росы будет в утеплителе, будь то минеральная вата или пенопласт. Отметим, что пенопласт не боится намокания, и не теряет своих теплоизоляционных качеств, а минеральная вата при намокании сильно теряет свои свойства как утеплитель. 

Сейчас очень часто фасад утепляют минеральной ватой и закрывают ее облицовочным кирпичом, оставляя вентиляционный зазор, который просушивает минеральную вату. Так же популярным способом является оштукатуренный пенопласт, который значительно дешевле.

Теплотехнический расчет наружных стен из газобетона 300 мм

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ

 

наружных стен из газобетона, утепленного мин. плитой,

 

с отделкой «тонкой» штукатуркой для эффективного дома.

(по данным СНиП 2.01.01 — 82, СНиП II — 3 — 79*)

                 

Регион:

С. — Петербург

Расчетная температура внутреннего воздуха, гр. С

tв =

20,0

 

Средняя температура, гр. С

   

tот.пер =

-1,8

 

Продолжительность периода со средней суточной

       

температурой воздуха ниже или равной 8 гр. С, сут.

zот.пер. =

220

 

Средняя температура наиболее холодной пятидневки

     

обеспеченностью 0,92, гр. С

   

tн =

-26

 

(по данным СНиП 2. 01.01 — 82, табл. «Температура наружного воздуха»)

     
                 
       

ГСОП = ( tв — tот. пер. ) zот.пер =

4796

 

Приведенное сопротивление теплопередаче R0тр., м2 С/Вт

(по данным СНиП II — 3 — 79*, табл. 1б)

                 

Здания и помещения

Градусо-сутки отопительного периода, град. С/сут.

Приведенное сопротивление теплопередаче ограждающих конструкций, R0тр, м2 град.С/Вт

стен

покрытий и перекрытий над проездами

перекрытий чердачных, над холодными подпольями и подвалами

окон и балконных дверей

фонарей

Жилые

4796

3,08

4,60

4,06

0,51

 

Общественные

2,64

3,52

2,98

0,44

 

Производственные

1,96

2,70

1,96

   
                 

Расчет толщины теплоизоляции выполняется по формуле:

R0тр = 1/aн + d1/l1 + . .. + dn/ln + 1/aв

где

d — толщина слоя, м.

           
 

l — коэффициент теплопроводности, Вт/м.С

       
 

aн и aв — коэффициенты теплоотдачи, Вт/м. С

     
 

(по данным СНиП II — 3 — 79*, табл. 4 и 6)

         

Тип конструкции:

Стены

Тип здания:

 

Жилое

(по данным СНиП II — 3 — 79*, приложение 3*)

                 
   

Слои

d, м.

l, Вт/м.С

Rслоя

Цена /м3

Цена/м2

aн =

23

 

 

 

0,04

   
   

Тонкая штукатурка

0,045

0,930

0,05

 

380,00

   

ФАСАД БАТТС

0,050

0,045

1,1111

6800,00

340,00

   

Газобетон

0,300

0,150

2,00

3150,00

945,00

   

воздух

0,050

0,170

0,29

 

0,00

   

ГКЛ

 

0,0125

0,210

0,06

 

875,00

aв =

8,7

     

0,11

ИТОГО

2540,00

           

SR10 слоев =

3,672

м2·оС/Вт

         

(см. табл. выше)

R0тр =

3,08

 
                 

Конструкция соответствует теплоизоляционным нормам.

                 
           

k=

0,2724

Вт/м2·оС

Расчет толщины утеплителя для кровли: методика, формула расчета, примеры

Пример расчета толщины утеплителя

Давайте проанализируем утепление крыши в городах с самыми высокими и самыми низкими требованиями к сопротивлению теплопередачи покрытия. В нашей таблице это Новосибирск (5,59) и Грозный (3,73).

Возьмем для примера минеральную вату со средним коэффициентом теплопроводности 0,035 Вт/(м · °С). Подставив это значение в формулу, получим толщину утеплителя 0,190 м для Новосибирска и 0,125 м для Грозного. Если для сравнения подсчитать требуемую толщину самого эффективного утеплителя на строительном рынке – полиизоцианурата (PIR), чей коэффициент теплопроводности составляет всего 0,022 Вт/(м · °С), то для Новосибирска мы получим значение 0,119 м, а для Грозного – всего 0,079 м.

Более тонкий расчет

Справочное значение сопротивления теплопередаче, в строгом смысле, относится не к слою утеплителя, а к конструкции целиком. Свой вклад в сопротивление утечке тепла вносят все слои кровельного «пирога». Некоторыми из них можно пренебречь, а некоторыми – не стоит.

Так, финишное покрытие кровли можно не принимать в расчет, так как оно отделено от остальной конструкции вентзазором. А вот к отделочному материалу потолка нужно присмотреться повнимательней. Потолок часто зашивают древесными или древесно-стружечными материалами, которые имеют неплохие теплоизоляционные свойства. Их можно тоже включить в расчеты.

αут = αмат.1 + αмат.2

Рассмотрим случай, когда потолок мансарды подшит древесно-стружечной плитой толщиной 15 мм. Коэффициент теплопроводности этого материала, согласно справочным данным равен 0,15 Вт/(м · °С).

Подставим эти данные в формулу и найдем значение R. Так мы найдем вклад этого слоя в общее сопротивление теплопотерям.

0,015 = (R – 0,16) · 0,15
R = 0,26 м2 · °С/Вт

Теперь повторим наши расчеты для Новосибирска и Грозного, но с учетом теплоизолирующих свойств обшивки.

αут = (5,59 – 0,26 – 0,16) · 0,035 = 0,181 м (Новосибирск)
αут = (3,73 – 0,26 – 0,16) · 0,035 = 0,116 м (Грозный).

Результаты показывают, что обшивка потолка мансарды древесно-стружечной плитой уменьшила расчетную толщину утеплителя меньше чем на 1 сантиметр. В большинстве случаев этой величиной можно пренебречь.

В один слой или в несколько?

Допустим, необходимая толщина слоя минеральной ваты по расчетам составила 20 см. В продаже есть плиты толщиной 20 см и толщиной 10 см. Как лучше поступить? Утеплить крышу в один слой, или в два — более тонким материалом?

Многослойное утепление должно быть более эффективным за счет того, что вышележащие плиты перекрывают стыки нижележащих и препятствуют появлению «мостиков холода». В кровельной конструкции должно быть как минимум два слоя теплоизоляции, чтобы перекрыть поперечный стык плит.

Однако специалисты НИИМосстрой утверждают, что уменьшение количества слоёв утеплителя не так уж сильно влияет на показатели теплоизоляции зданий, как может показаться.

Гораздо сильнее на качество теплоизоляции влияет аккуратность монтажа. В экспериментах, проведенных специалистами НИИМосстрой, наличие зазоров толщиной от 2 до 5 мм между плитами утеплителя существенно ухудшает теплоизоляционные свойства материала — как при однослойном, так и при многослойном монтаже.

Чтобы не запутаться в коэффициентах, нормативах, климатических зонах и прочих премудростях, лучше доверить расчеты профессионалам. Равно как и монтаж. Крыши не прощают ошибок и заставляют расплачиваться за легкомыслие нервами, деньгами и хорошим настроением.

Теплорасчет стены программа


Temper-3D Теплотехнические Расчеты

Это официальный сайт программы «Temper-3D», которая предназначена для расчета температурных полей и приведенного сопротивления ограждающих конструкций зданий и сооружений.С помощью Temper-3D можно производить теплотехнические расчеты.

Вышла новая версия программы “Temper-3d” 6.14

Внимание, вышла новая версия программ (6.14.01) которая производит автоматическую дискретизацию на конечные элементы (КЭ). Достаточно произвести сколь-угодно грубую дискретизацию, отправить данные на сервер, который произведет автоматическое измельчение КЭ сети, причем измельчение произойдет только в местах, где это необходимо, т. е. результат расчета всегда будет корректен.
Данная версия идет под операционными системами Microsoft Windows, таких, как Windows 7, Windows 8.

Расчетная область до отправки на сервер. Всего 203 КЭ.

Результат полученный с сервера. Всего 40368 КЭ.

СКАЧАТЬ “Temper-3d” 6.14
Скачать видео инструкцию к Temper-3D 6

Теплотехнические Расчеты в Temper-3D позволяют узнать:
  • Сколько и какого утеплителя надо положить, чтобы стена не промерзла
  • Будет ли образовываться конденсат на поверхности окна, стены…
  • Температуру на любом участке конструкции
  • Какое R0 будет у всей конструкции. R0 необходимо для расчета теплопотерь через ограждающие конструкции, по этому значению рассчитывают мощность отопительных приборов
Вы хотите построить себе коттедж или дом, а как вы собираетесь его утеплять?

Скорее всего, вы доверитесь специалистам, которые проектировали ваш дом.
Дело в том, что ни вручную, ни по опыту,  ни на калькуляторе невозможно выполнить трехмерный теплотехнический расчет.
Такой расчет можно выполнить только на компьютере, с помощью специализированных, имеющих сертификацию программ.

Поэтому обязательно задайте следующие вопросы:

  • Как и кем были произведены теплотехнические расчеты
  • Попросите результаты теплотехнического расчета
  • Какое R0 у каждой из стен
  • Какая минимальная температура и на каком участке

Можно положить больше утеплителя, но где получить гарантию, что его хватит?
Обычно промерзание происходит в углах и на стыках, куда не так легко положить утеплитель.
Если температура на поверхности будет ниже точки росы, то будет образовываться конденсат.
Конденсат вызывает плесень, обои отклеиваются, стена или потолок чернеет, может даже образоваться лед. А мокрая стена может потом треснуть.

Программа «TEMPER-3D» позволит Вам быстро и удобно решить проблемы теплотехнического расчета распределения температур в любом сечении ограждающей конструкции здания, определить ее приведенное сопротивление теплопередаче, составить документацию по результатам расчета.

окно с балконной дверью, с учетом нижнего этажа

Пример теплотехнического расчета трехслойной ограждающей конструкции

Результаты теплотехнических расчетов могут быть представлены в виде цветных температурных полей (изотерм), полученных по любому сечению ограждающей конструкции

Пример просмотра в Temper 3d 5 результатов теплотехнического расчета.

Программа может использоваться как для проектирования конструкций, так и для теплотехнического расчета теплопотерь в готовых конструкциях и сооружениях, что позволяет выработать наиболее приемлемые варианты реконструкций в целях повышения их теплозащитных свойств. Создан удобный графический редактор, используемый для разбиения области на конечные элементы и допускающий возможность использования косоугольных элементов. Он позволяет описывать ограждающие конструкции с включениями практически любой формы и тем самым общее время на проведение расчета существенно сокращается (для проведения одного расчета средней сложности требуется от 20 до 40 минут). Удобный интерфейс не требует особых
навыков для работы с комплексом.

В России не существует программ, кроме «Temper-3D», производящие расчеты МКЭ  трехмерных  температурных полей, в том числе нелинейных и нестационарных с фазовыми переходами. Программы МКЭ,  разработанные в России, рассматривают только плоские и стационарные концепции, а эти задачи можно легко решить с помощью демо-версии программы «Temper-3D», которая бесплатна.

Достоинством программы является возможность быстрого изменения коэффициентов теплопроводности материала на отдельных участках рассчитываемой конструкции (проведение повторного расчета с другими материалами требует не более 3-5 минут).

Программа внедрена и успешно используется в ряде проектных организаций России и странах СНГ (Беларусь, Казахстан, Украина)

www.temper3d.ru

Теплонадзор » Расчет стен – теплозащита, утепление, температура и точка росы

Эта публикация не совсем про тепловидение в строительстве, скорее, совсем не про тепловидение. Сегодня я хочу рассказать о расчете теплового и влажностного режима наружных ограждающих конструкций. Задача такая часто возникает при тепловизионном обследовании зданий, оценке проектного уровня теплозащиты, разработке мероприятий по утеплению конструкций.

Тепловизор показывает нам только температуры поверхностей. Что происходит внутри, как распределяется температура по толщине конструкции неразрушающим методом не определить. Кроме температуры важным показателем является положение плоскости возможной конденсации влаги в конструкции, иными словами, положение точки росы. Будет конструкция сухой или с конденсатом зависит от положения точки росы. Это зависит от множества факторов, среди которых толщина и материалы всех слоев, температура и влажность в помещении, температура и влажность снаружи.

В своде правил СП 23-101-2004 «Проектирование тепловой защиты зданий» глава 9 «Методика проектирования тепловой защиты зданий» посвящена тепловому расчету и определению проектного значения сопротивления теплопередаче конструкции, глава 13 «Расчет сопротивления паропроницанию ограждающих конструкций» посвящена влажностному расчету. Исходные данные для расчета приведены в приложении Д «Расчетные теплотехнические показатели строительных материалов и изделий». Данные для расчета также можно взять из актуализированной версии СП 50.13330.2012. Внимание! Во многих программах использованы климатические данные СНиП 23-01-99, который заменен на СП 131.13330.2012.

СП 23-101-2004 СП 50.13330.2012

Существует ряд программ, которые позволяют автоматизировать расчет теплового и влажностного режимов ограждающих конструкций. Ниже я даю ссылки на бесплатные инструменты расчета.

ТЕПЛОРАСЧЕТ ссылка: http://теплорасчет.рф, или немецкий: http://www.u-wert.net

ATLAS SALTA ссылка: http://www. atlasrus.spb.ru

Теплотехнический калькулятор ссылка: http://www.smartcalc.ru/thermocalc

Огромная просьба, пожелания и вопросы о работе программ отправлять на сайты указанных программ. Там есть поддержка, форум, вам ответят. Внимание! Teplonadzor.ru никакого отношения к программам не имеет, ответственности за использование программ и их результатов не несет.

teplonadzor.ru

Программы расчета — ТЕХНОНИКОЛЬ

Калькуляторы онлайн

ТЕПЛОТЕХНИЧЕСКИЙ КАЛЬКУЛЯТОР С УЧЁТОМ НЕОДНОРОДНОСТЕЙ

С помощью данного онлайн калькулятора Вы сможете рассчитать необходимую толщину теплоизоляционного слоя, исходя из требуемого приведенного сопротивления теплопередаче для конкретного региона (города) и типа строительной системы с учетом термических неоднородностей конструкций.

ТЕХНИЧЕСКАЯ ИЗОЛЯЦИЯ
Данный расчет решает проблему выбора оптимальной толщины изоляции для энергосбережения. При расчете по нормам теплового потока толщина теплоизоляции определяется по ограничению плотности теплового потока через стенку трубопровода/резервуара.

КАЛЬКУЛЯТОР КЛИНОВИДНОЙ ТЕПЛОИЗОЛЯЦИИ
С помощью данного калькулятора Вы сможете рассчитать необходимое количество теплоизоляции для формирования основного и контруклона на плоской кровле.

КАЛЬКУЛЯТОР СКАТНОЙ КРОВЛИ PROF
Расчёт расхода кровельных материалов для скатной крыши.

ЗВУКОИЗОЛЯЦИОННЫЙ КАЛЬКУЛЯТОР
С помощью данного онлайн калькулятора Вы сможете подобрать систему звукоизоляции и рассчитать необходимую толщину звукоизоляционного слоя, исходя из требуемых индексов изоляции воздушного и ударного шума для конкретного региона (страны), типа здания и изолируемой конструкции, а также вида строительной системы.

КАЛЬКУЛЯТОР РАСХОДА ТЕПЛОВОЙ ЭНЕРГИИ
Расчет базового значения удельного расхода энергии на отопление согласно Приказу Министерства строительства и жилищно-коммунального хозяйства Российской Федерации №1550/пр от 17.11.2017

КАЛЬКУЛЯТОР РАСХОДА МАТЕРИАЛОВ КРОВЛИ ТЕХНОНИКОЛЬ. ВЕРСИЯ LITE
С помощью данного онлайн калькулятора Вы можете рассчитать необходимое количество материалов для устройства плоской кровли исходя из размеров кровли, ее уклона, района и требуемого сопротивления теплопередаче.

КАЛЬКУЛЯТОР СКАТНОЙ КРОВЛИ LITE
С помощью данного онлайн калькулятора Вы можете рассчитать необходимое количество материалов для устройства скатной кровли исходя из размеров кровли и ее уклона.

КАЛЬКУЛЯТОР РАСЧЁТА ВОДОСТОКА
С помощью данного онлайн калькулятора Вы можете рассчитать необходимое количество комплектации для устройства водосточной системы.

Библиотеки и надстройки

ALLPLAN


База Ассистентов (плоские кровли) Allplan  
Файл ассистентов содержат 26 строительных систем плоских кровель компании ТехноНИКОЛЬ. Файл ассистентов разработан в 2012 версии Allplan.

Подробнее

Скачать

Спецификация материалов (плоские кровли) Allplan
Спецификации позволяют выполнить подсчет количества материалов плоских кровель ТехноНИКОЛЬ, по моделям из «Базы Ассистентов (плоские кровли) Allplan». Разработаны в 2012 версии Allplan. 
Экспликации созданы в 2-х вариантах по ГОСТ, Форма 7.

Подробнее

Скачать

ARCHICAD


Библиотека реквизитов ArchiCAD
Файл реквизитов с расширением *.aat представляет собой библиотеку Многослойных конструкций, строительных материалов компании ТехноНИКОЛЬ и связанных с ними типов линий штриховок и пр.

Подробнее

Скачать

Каталог систем ArchiCAD
Файл каталога содержит строительные системы компании ТехноНИКОЛЬ: кровли, полы, фундаменты, тех. изоляцию и пр. Каталог выполнен в виде файла архивного проекта ArchiCAD (pla).

Подробнее

Скачать

AUTOCAD

Альбомы узлов AutoCAD
Перейти к подбору строительной системы ТехноНИКОЛЬ. Скачать узлы примыканий в формате DWG.

Подробнее

Динамические блоки AutoCAD
В дополнение к готовым альбомам узлов для разных типов систем (кровли, фасады, фундаменты и др. ) была разработана библиотека динамических блоков элементов узлов, которые используются в разработке данных альбомов.

Подробнее

Скачать

«Клин 2.0». Приложение для формирования уклонов на плоской кровле с помощью клиновидной изоляции
Программа КЛИН 2.0 разработана с целью ускорить проектирование систем клиновидной теплоизоляции с использованием систем КВ, XPS и ПИР производства ТехноНИКОЛЬ в среде AutoCAD.

Подробнее

Скачать

Приложение для расчета материалов скатных крыш
Основной функцией приложения является расчет количества материалов при устройстве скатных крыш с применением систем изоляции ТехноНИКОЛЬ с гибкой черепицей ТехноНИКОЛЬ SHINGLAS: ТН-ШИНГЛАС Классик и ТН-ШИНГЛАС Мансарда.

Подробнее

Скачать

RENGA

Каталог систем Renga
Файл каталога содержит строительные системы компании ТехноНИКОЛЬ: кровли, полы, фундаменты, тех. изоляцию и пр. Каталог выполнен в виде файла архитектурного проекта Renga Architecture.

Подробнее

Скачать

REVIT


Библиотека материалов Revit
Библиотека насчитывает 147 строительных материалов, которые используются в создания многослойных конструкций (систем) ТехноНИКОЛЬ.

Расширение файла библиотеки «*adsklib».

Подробнее

Скачать

Каталог систем Revit
Представленный файл каталога содержит строительные системы ТехноНИКОЛЬ крыш, полов, фундаментов, фасадов и технической изоляции в виде семейств, соответствующих категорий.

Каталог создан на стандартном шаблоне, поставляемым с установкой Revit. Версия файла — Revit 2016.

Подробнее

Скачать


Альбомы узлов Revit
Альбом узлов ТехноНИКОЛЬ включает 200 узлов примыканий для 39 строительных систем. Альбом создан в стандартном шаблоне Revit. Версии файлов – 2016/ 2017/ 2018/ 2019. Узлы созданы при помощи семейств элементов узлов.

Подробнее

Скачать

Комплектующие для плоской кровли Revit
Библиотека комплектующих включает в себя модели водоприемных воронок внутреннего водостока, парапетных воронок, аэраторов, пешеходных дорожек и прочих элементов.

Подробнее

Скачать

Клин ТехноНИКОЛЬ
Клин ТехноНИКОЛЬ — это программная надстройка для Revit, предназначенная для создания уклонов на плоской кровле с помощью клиновидной теплоизоляции. 
Так же приложение содержит каталог плоских кровель, выноску многослойных конструкций по ГОСТ и дополнительные инструменты для работы с конструкциями кровель.

Подробнее

Скачать

SKETCHUP

Каталог систем SketchUp
Файл каталога содержит строительные системы компании ТехноНИКОЛЬ: кровли, полы, фундаменты, фасады и узлы примыканий. Каталог выполнен в виде файла архивного проекта LayOut for SketchUp 2018 (layout).

Подробнее

Скачать

www.tn.ru

14 полезных онлайн-калькуляторов для инженера

В настоящее время в сети имеется немало бесплатных онлайн калькулятор и сервисов, позволяющих выполнить достаточно точные расчеты строительных конструкций.

В данном обзоре  вы найдете подборку расчетных программ,  используя которые вы сможете быстро выполнить расчеты по теплоизоляции, огнезащиты, звукоизоляции, технической изоляции, кровли, каменным конструкциям и сэндвич-панелям.

Содержание:

1.  Калькуляторы для расчета теплоизоляции, звукоизоляции, огнезащиты

2.  Калькуляторы для расчета технической изоляции

3.  Калькулятор для расчета материалов кровли

4.  Калькулятор для расчета сэндвич-панелей

5.  Калькулятор для расчета каменных конструкций

1.  Калькуляторы для расчета теплоизоляции, звукоизоляции, огнезащиты

Расчет толщины теплоизоляции является одним из важнейших факторов, необходимым при проектировании строительных объектов. Одним  из главных параметров здесь считают теплосопротивление, которое высчитывается, исходя из климатической зоны того или иного региона,  а так же вида ограждающих конструкций.  Также необходимо учесть и другие важные детали, сделать это вам поможет специальная программа расчета теплоизоляции.

1.1.  Онлайн-калькулятор теплоизоляции   http://tutteplo.ru/138/ рассчитывает толщину слоя утеплителя для зданий и сооружений согласно требованиям СНИП 23-02-2003. Тепловая защита зданий.  В создании калькулятора для расчета толщины теплоизоляции принимали участие сотрудники ОАО Институт «УралНИИАС». В качестве исходных данных требуется указать тип здания (жилое, общественное или производственное), район строительства, выбрать ограждающие конструкции, подлежащие термоизоляции, их характеристики. В качестве применяемого утеплителя доступен широкий выбор популярных марок, таких как Rockwool, Paroc, Isover, Термоплекс и множество других.

На основании теплотехнического расчета программа определяет толщину изоляции. При необходимости администрация сайта предоставляет бесплатные онлайн-консультации для проектировщиков и специалистов, а также на e-mail по запросу могут быть высланы детальные расчетные материалы.

 

1.2. Теплотехнический калькулятор  http://www.smartcalc.ru/

Детальный теплотехнический расчет ограждающих конструкций онлайн можно выполнить в этой программе. Для начала работы сервис просит ввести данные о типе конструкций, районе строительства и температурном режиме помещения. Далее, калькулятор обрабатывает информацию и выдает решение о соответствии ограждающих конструкций требованиям нормативной документации.

В возможности программы входит построение схем тепловой защиты, влагонакопления и теплопотерь. Для удобства в меню есть примеры готовых решений, ознакомившись с которыми, выполнить расчет самостоятельно не составит труда.

1.3Онлайн-сервис Rockwool от известного производителя теплоизоляционных материалов доступен по адресу http://calc. rockwool.ru/. Он обладает широкими возможностями и удобной пошаговой системой выбора параметров. Калькулятор расчета теплоизоляции поможет определить оптимальную толщину материалов, подобрать их марку и прикинуть количество. 

Сервисыпозволяет выполнить следующие расчеты:

  • энергоэффективность конструкций;
  • толщина утеплителя;
  • система огнезащиты;
  • техническая изоляция.

В качестве примера определим тип и технические характеристики изоляции для трубопроводов. Для этого нужно перейти по ссылке  http://tech.rockwool.ru/ и начать ввод исходных данных. Сначала необходимо выбрать метод расчета. В нашем случае он будет простейший, служащий для предотвращения замерзания жидкости в трубе.

Дальше программа просит ввести диаметр трубопровода, его материал, толщину стенки, а также параметры теплоносителя. Для примера зададим характеристики воды с температурой +20 градусов, движущейся в стальном трубопроводе длиной 25 м при температуре наружного воздуха -25 градусов. Затем следует выбрать тип изоляции Rockwool и нажать на кнопку расчета.

В результате программа определит толщину технического утеплителя, его объем с 5% запасом, площадь защитного кожуха, а также количество всех необходимых монтажных и крепежных деталей. Отчет можно распечатать или сохранить в файле формата PDF.

Так же доступен расчет звукоизоляции онлайн  http://sound.rockwool.ru/ . Здесь можно выбрать дополнительные параметры для стен или пола, в виде материала, плотности, толщины, наличия/отсутствия дополнительной изоляции. Используя эти сервисы, вы получите эффективный расчет звукоизоляции ограждающих конструкцийабсолютно бесплатно.

1.4 Калькуляторы Технониколь

С помощью онлайн сервиса Технониколь   http://www.tn.ru/about/o_tehnonikol/servisy/programmy_rascheta/  можно рассчитать:

  • толщину звукоизоляции;
  • расход материалов для огнезащиты металлоконструкций;
  • тип и количество материалов для плоской кровли;
  • техническую изоляцию трубопроводов.

Для примера рассмотрим калькулятор, который позволит выполнить расчет плоской кровли  http://www.tn.ru/calc/flat/ . В начале расчета предлагается выбрать тип покрытия Технониколь (Классик, Смарт, Соло и т.д.)  С подробным описанием всех видов можно ознакомиться на этом же сайте в соответствующем разделе.

Следующим этапом вводятся параметры кровельного пирога, географическое местоположение объекта и геометрические размеры конструкций крыши. Результаты расчета плоской кровли онлайн программа предоставляет в формате Adobe Acrobat или Microsoft Excel. Отчетный документ оформляется на фирменном бланке компании и содержит два вида показателей: по укрупненной и детализированной формам. Полученные спецификации могут использоваться непосредственно для закупки материала.

Еще Технониколь предлагает воспользоваться калькулятором расчета звукоизоляции  http://www.tn.ru/calc/noise_insulation/ , в котором доступно два режима — для застройщика и проектировщика. Программа расчета звукоизоляциидает возможность выбора конструкции (стена, перекрытие), типа помещения, источника шума и других параметров. Далее, пользователь может выбрать одну из нескольких изоляционных систем, подходящих под его вводные данные.

Расчет огнезащиты металлоконструкцийтакже можно осуществить при помощи интернет-программы http://www.tn.ru/calc/fire_protection/. Он позволяет выбрать геометрию конструкции (двутавр, швеллер, уголок, прямоугольная или круглая труба), ее параметры по ГОСТу или размеры для сварной конструкции, а потом указать способ обогрева и степень огнестойкости. После этого, система выполнит расчет толщины огнезащиты и предоставит результаты — необходимую толщину и объем плит, а также расходных материалов.

1.5 Теплотехнический калькулятор Paroc

Известный финский производитель теплоизоляционных материалов Paroc на своем российском сайте предлагает выполнить расчет всех видов утеплителей http://calculator. paroc.ru/  в соответствии с требованиями СП 50.13330.2015 «Тепловая защита зданий».

Для этого необходимо указать конструкцию стены, покрытия или перекрытия здания, уточнить температурные режимы и географию расположения объекта. В результате программа выполнит расчет сопротивления строительных конструкций теплопередаче и определит минимально допустимую толщину утеплителя. Отчет о проделанной работе можно распечатать или сохранить в файле формата PDF.

1.6. Теплоизоляция Baswool

Отечественная компания ООО «Агидель», выпускающая популярные теплоизоляционные материалы Baswool предлагает для своей продукции бесплатный калькулятор http://www.baswool.ru/calc.html . Интерфейс ресурса очень простой, а расчет предлагается выполнить в несколько шагов, поэтапно указав город строительства, категорию здания, утепляемую конструкцию. В результате программа предоставит на выбор несколько вариантов систем утепления Baswool с указанием толщины материала.

1.7. Расчетные программы Основит

Один из лидеров отечественных производителей отделочных материалов ТМ «Основит» предлагает на своем сайте бесплатно рассчитать объемы работ и стоимость их выполнения. С помощью калькулятора Основит http://osnovit.ru/system-calc/calc.php можно определить параметры фасадной теплоизоляции. Введя стандартный набор исходных данных, пользователь получает итоговую спецификацию предлагаемого набора материалов для устройства теплого фасада.

Дополнительно сервис Основит позволяет определить расход любого материала из своей производственной линейки. Преимуществом такого расчета является то, что результаты выдаются с привязкой к фасовочным единицам товара. Например, выбрав в меню категорий продукции «Смеси для пола» стяжку Стартлайн FC41 Н, указав толщину ее нанесения и общую площадь поверхности, пользователь узнает, сколько мешков сухой смеси ему потребуется.

 

 

2. Расчет технической изоляции

2.1. Калькулятор расчета технической изоляции от Isotec

Isotec–торговая марка известной международной компании«Сен Гобен», под которой выпускается линейка технической изоляции. Эти материалы применяются для противопожарной обработки строительных конструкций, термической изоляции трубопроводов отопления и кондиционирования, а также промышленных емкостных сооружений.

Сайт компании предлагает выполнить расчет тепловых характеристик системы при помощи бесплатной онлайн-программы http://calculator.isotecti.ru/.  Калькулятор работает в соответствии с регламентом СП 61.13330.2012 (тепловая изоляция для оборудования и трубопроводов). Расчет выполняется на основании заданных критериев: температура поверхности трубопровода, транспортируемого потока, разница температурных характеристик по длине и так далее. Требуемые условия задаются пользователем в меню сайта.

После этого необходимо выбрать один из предлагаемых вариантов устройства теплоизоляции Isotec (например, цилиндры для трубопроводов). Программа автоматически определит толщину материала.

2. 2. Таким же образом можно произвести и расчет теплоизоляции трубопроводов с помощью уже знакомого сервиса Paroc  http://calculator.paroc.ru/new/ . Все расчеты выполняются в соответствии с СП 61.13330.2012 Тепловая изоляция оборудования и трубопроводов (актуализированная редакция СНиП 41-03-2003).  С его помощью можно подобрать оптимальные характеристики и тип технической изоляции. Система включает в себя различные методы расчета — по плотности теплового потока, его температуре, для предотвращения замерзания жидкости и т. д. Чтобы произвести расчет толщины теплоизоляции трубопроводов, нужно выбрать метод, ввести необходимые данные (диаметр, материал, толщина трубопровода и т.д.), после чего программа сразу же выдаст готовый результат. При этом, учитываются различные важные факторы — температура содержимого трубопровода, окружающей среды, величина механической нагрузки на трубопровод и другие. В результате, калькулятор расчета теплоизоляции трубопроводов определит толщину и объем утеплителя.

 

3. Расчет кровли

Расчет материалов кровли онлайн можно выполнить на специализированном ресурсе металлочерепицы  http://www.metalloprof.ru/calc/ . Для этого необходимо выбрать форму крыши, указать ее основные размеры и определить тип кровельного материала. Программа выдаст расход металлочерепицы, количество коньков, карнизов и крепежных элементов. В результате будет высчитана стоимость материала в соответствии с актуальным прайс-листом поставщика.

 

4. Калькулятор для расчета сэндвич- панелей

Если вам необходимо рассчитать сэндвич панели, требуемые для строительства определенного здания, то сделать это также можно онлайн, при помощи бесплатных калькуляторов. Вполне удобным и эффективным считается сервис Теплант, который предлагает пользователю функцию онлайн-калькулятора для примерного расчета размеров сэндвич панелей http://teplant. ru/calculate/ и других параметров (количество панелей и прочих элементов, расходных материалов). Это универсальный сервис, при помощи которого вы легко сможете рассчитать как стеновые сэндвич панели, так и кровельные сэндвич панели.  Для расчета необходимо указать тип кровли здания, его габариты, выбрать цвет панелей и их вид (стеновые, кровельные).

Программа определит количество материала, крепежных и фасонных элементов, а также рассчитает их стоимость.

 

5.  Калькулятор расчета каменных конструкций

5.1. Расчет газобетона

Что же касается такого популярного направления, как расчет газобетона онлайн, то для этой операции вы найдете немало подходящих сервисов в сети Интернет. К примеру, это онлайн-калькулятор газобетона http://stroy-calc.ru/raschet-gazoblokov , при помощи которого можно легко рассчитать количество газобетонных или газосиликатных блоков, необходимых для строительства объекта. При этом, учитываются все необходимые параметры — длина, ширина, плотность, высота и т. д, позволяя быстро вычислить расчет газобетона на дом. Аналогичный сервис можно найти и на многих других сайтах производителей стройматериалов. Например, калькулятор расчета газобетона от компании Bonolit http://www.bonolit.ru/raschet-gazobetona/ предоставит вам целый перечень результатов — количество блоков в единицах и м3 и даже количество мешков клея.

­­­

Компания Bonolit, специализирующаяся на производстве автоклавного аэрированного бетона (газобетон) для удобства клиентов предоставляет бесплатный сервис по определению объема работ при кладке стен дома. Расчетная программа доступна по адресу :  http://www.bonolit.ru/raschet-gazobetona/

В качестве исходных данных калькулятор запрашивает габариты дома, длину внутренних несущих стен, этажность, тип перекрытий, размеры и количество проемов. Результат вычислений предоставляется в виде спецификации материалов и их сметной стоимости. При этом имеется возможность тут же отправить заказ на закупку газобетона.

5.2. Расчет для стен из кирпича

Онлайн-сервис Stroy Calc  http://stroy-calc.ru/raschet-kirpicha/ осуществляет расчет стройматериалов для кладки стен дома. Параметры могут определяться для стен из кирпича, строительных блоков, бруса и бревен. Например, при возведении кирпичной постройки в качестве исходных данных необходимо задать периметр, высоту и толщину стен, количество и размеры проемов, а также стоимость единицы материала. Программа определит расход кирпича в штуках и кубах, его стоимость, а также необходимый объем раствора. При этом будет указан вес стен для расчета фундамента. Сервис также позволяет подобрать тип и количество утеплителя. Для этого при определении параметров стен необходимо установить галочку в соответствующем месте.

5.3 Калькулятор теплых блоков Wienerberger

Всемирно известный бренд Wienerberger, лидер по производству теплой керамики, предлагает на своем сайте определить расход строительных блоков Porotherm  http://www. wienerberger.ru/инструментарий/расчёт-расхода-блоков . Для расчета необходимо ввести размеры стен дома, указать габариты проемов, их количество.

Программа подберет возможные варианты кладки и выдаст расходы блоков различных параметров. Результат такого расчетабудет носить ориентировочный характер, но для составления предварительной сметы строительства этих данных будет вполне достаточно. Для уточнения объемов работ ресурс предлагает связаться со специалистом компании.

 

Итак, в данной статье мы рассмотрели наиболее удобные и популярные онлайн-сервисы, предназначенные для расчета строительных материалов. Стоит отметить, что каждый из них является бесплатным, а также имеет удобный современный интерфейс. Все эти ресурсы разработаны в виде подробных калькуляторов, размещенных прямо на страницах сайтов. Таким образом, вы сможете легко и быстро произвести требуемые вам вычисления.

Вернуться к содержанию

Если считаете обзор полезным поделитесь с коллегами и друзьями в соц. сетях!

maistro.ru

Калькулятор удельной теплоемкости — Найдите теплоемкость веществ

Онлайн-калькулятор удельной теплоемкости позволяет найти удельную теплоемкость, тепловую энергию, массу вещества, начальную температуру и конечную температуру любого вещества. Когда дело доходит до анализа удельной теплоемкости воды или любого другого вещества, он сообщает нам формулу удельной теплоемкости вместе с полным раствором для соответствующего вещества.

Попробуйте этот калькулятор удельной теплоемкости, чтобы определить теплоемкость нагретого или охлажденного образца.

Итак, прочитайте данный контекст, чтобы понять, как рассчитать удельную теплоемкость (шаг за шагом) и с помощью калькулятора уравнения q=mc∆t. Но давайте начнем с основ!

Что такое удельная теплоемкость?

Количество теплоты, необходимое для изменения температуры единицы массы любого вещества всего на один градус. Чтобы найти удельную теплоемкость, мы можем сказать, что это мера общей энергии, которая необходима для нагревания 1 кг любого материала до 1° Цельсия или 1 Кельвина. Эти явления должны происходить в диапазоне температур, при котором вещество не меняет своего состояния, т.е. в случае воды она не должна кипеть.

Для удобства используйте этот бесплатный, но лучший калькулятор закона Ома для расчета напряжения (В) и сопротивления (R). Ток (I) и мощность (P).

Формула удельной теплоемкости:

Формула теплоемкости:

$$ C = \frac {Q}{m\times\Delta T} $$

Тогда как:

  • \(C\) представляет удельную теплоемкость
  • \(Q\) представляет индуцированную тепловую энергию
  • \(m\) представляет массу
  • \(\Delta T\) разница температур
  • \(Дж\) равно
  • джоулей
  • \(°C\) — это градусы по Цельсию или
  • по Цельсию.
  • \(К\) это кельвин

Пример:

Если у вас есть \(15 г\) кусок любого металла, который поглощает \(134 Дж\) тепла при увеличении от \(24.0°С\) до \(62,7°С\). Как рассчитать его удельную теплоемкость?

  • Приведенное тепло \(q = 134 Дж\)
  • Данная масса \(m = 15,0 г\)
  • Изменение температуры: \(\Delta T = 62,7 – 24,0 = 38,7\)

Чтобы найти удельную теплоемкость, подставьте значения в приведенное выше уравнение удельной теплоемкости: \(\frac {q}{m \times \Delta T} = \frac {134}{15 \times 38,7} = 0,231\). Тем не менее, специальный калькулятор тепла может помочь вам найти значения без каких-либо ручных вычислений.

Однако плотность имеет решающее значение для определения чистоты веществ, поэтому попробуйте онлайн-калькулятор плотности, чтобы найти соотношение между плотностью, массой и весом объекта.

Удельная теплоемкость Единица измерения:

Определение удельной теплоемкости показало, что это количество тепла, необходимое для повышения температуры 1 кг любого вещества на 1 кельвин. Следовательно, его производная единица \(СИ\) равна \(Дж кг-1 К-1\). Калькулятор удельной теплоемкости функционирует для получения результатов вместе со стандартизированными единицами измерения.

Удельная теплоемкость воды?

удельная теплоемкость воды имеет одно из максимальных значений удельной теплоемкости среди обычных веществ.Это примерно \(4182 Дж/(К кг) при 20°С\). В случае льда это всего лишь \(2093 Дж/(К кг)\).

Как рассчитать удельную теплоемкость (шаг за шагом)?

Благодаря формуле удельной теплоемкости расчет удельной теплоемкости является простым процессом. Посмотрите ниже и выполните несколько простых шагов:

Шаг 1:

Прежде всего, вы должны определить, хотите ли вы подогреть вещество или охладить его. Теперь задайте количество подведенной энергии как положительное значение.При охлаждении образца вы должны указать вычитаемую энергию как отрицательное значение. Например, предположим, что мы хотим уменьшить тепловую энергию дегустатора на \(63 000 Дж\). Тогда \(Q\) будет \(-63000 Дж\).

Шаг 2:

Теперь определите разницу между начальным и конечным состоянием образца. Предположим, что разница равна \(ΔT = -3 K\), а m равно 5 кг.

Шаг 3:

Просто подставьте значения в уравнение удельной теплоемкости как \( c = Q / (m x ΔT)\).В данном примере она будет равна c = \(-63 000 Дж / (5 кг * -3 К) = 4 200 Дж/(кг•К)\).

Это типичная теплоемкость воды, которую можно рассчитать также за один раз с помощью калькулятора удельной теплоемкости.

Удельная теплоемкость некоторых обычных веществ:

Нет необходимости использовать калориметрический калькулятор, чтобы найти удельную теплоемкость обычных веществ, поскольку мы перечислили их ниже:

Таблица:

Как пользоваться калькулятором удельной теплоемкости?

Онлайн-калькулятор удельной теплоемкости поможет вам найти теплоемкость различных веществ.Просто выполните следующие действия, чтобы получить точные результаты для веществ:

Ввод:

  • Прежде всего, выберите вариант, если вы хотите найти тепловую энергию, удельную теплоемкость, массу, начальную температуру, конечную температуру любого вещества
  • Далее выберите вариант, в котором необходимо выполнить расчеты по изменению температуры \(ΔT)\) или начальной и конечной температуры
  • Теперь вы можете добавить значения в назначенные поля для выбранных опций
  • Затем выберите вещество (вода, почва, алюминий, асфальт и т. д.), для которого необходимо найти удельную теплоемкость (это поле не является обязательным)
  • Нажмите кнопку «Рассчитать»

Вывод:

Калькулятор удельной теплоемкости рассчитывает:

  • Любая тепловая энергия, удельная теплоемкость, масса, начальная температура или конечная температура вещества
  • Удельная теплоемкость данного вещества
  • Формула для выбранной опции
  • Пошаговое решение с использованием формулы в соответствии с выбранной опцией

Примечание: Калькулятор удельной теплоемкости поддерживает различные единицы измерения, что позволяет получить точные результаты для веществ.

Сколько энергии требуется для повышения температуры одного грамма воды на 1 с?

Калории определяются как количество тепла, которое требуется при давлении 1 для повышения температуры 1 грамма воды на \(1°\) Цельсия. Кроме того, калории были определены в джоулях, и одна калория приблизительно равна \(4,2 джоуля\). Следовательно, можно сказать, что для повышения температуры 1 грамма воды требуется \(4,2 Дж\) энергии. Тем не менее, калькулятор теплоемкости — лучший способ получить безошибочный ответ.

Часто задаваемые вопросы:

Почему теплоемкость воды такая высокая?

Высокая теплоемкость воды обусловлена ​​наличием водородных связей между ее молекулами. При поглощении теплоты водой водородные связи разрываются, и молекулы воды начинают свободно двигаться. При понижении температуры воды водородные связи выделяют значительное количество энергии.

Сколько тепла потребуется, чтобы растопить 200 г льда?

Обычно \(250×332 джоулей\) энергии требуется, чтобы растопить \(200нг\) льда.

Сколько энергии нужно, чтобы растопить лед?

Если вы хотите растопить, требуется 1 г льда при \(0°C\) общей энергии \(334 Дж\). Ее также называют скрытой теплотой плавления. Калькулятор удельной теплоемкости может рассчитать джоули энергии для нескольких граммов любого вещества за несколько секунд.

Самовывоз:

Мы все немного знаем, что такое удельная теплоемкость, поскольку мы изучали физику в наших академических кругах. Это количество теплоты, которое необходимо для повышения температуры определенного материала на определенную величину, и количество теплоты будет различным для разнородных веществ.Конкретный калькулятор — лучший способ найти количество теплоты, необходимое для повышения температуры \(1 (г)\) вещества \(1 (°C)\).

Каталожные номера:

Из информационного источника Википедия: Удельная теплоёмкость

Из источника викторины: тепловая энергия (практические задачи)

От источника искры (iop): полное обсуждение теплоемкости

 

 

 

 

Калькулятор удельной теплоемкости — [100% бесплатно]

Мы все немного знаем, что такое удельная теплоемкость, в конце концов, мы изучали физику в старшей школе.Это количество тепла, необходимое для повышения температуры определенного вещества на определенную величину. Количество теплоты зависит от свойств вещества. Это означает, что количество теплоты будет различным для разных веществ. Удельная теплоемкость — это мера того, насколько термически нечувствительным является вещество, когда оно подвергается дополнительной энергии. Этот калькулятор удельной теплоемкости представляет собой инструмент, который поможет вам рассчитать удельную теплоемкость различных веществ.

Как пользоваться калькулятором удельной теплоемкости?

 

Этот калькулятор теплоемкости является особенно полезным инструментом, если вам нужно рассчитать удельную теплоемкость вещества без использования уравнения удельной теплоемкости.Это простой онлайн-инструмент для вас. Чтобы получить удельную теплоемкость вещества, выполните следующие действия:

  • Сначала введите значение энергии, затем выберите единицу измерения из раскрывающегося меню. Возможные варианты включают джоули, килоджоули, мегаджоули, ватт-часы, киловатт-часы, килокалории или фут-фунты.
  • Затем введите значение для изменения температуры, затем выберите единицу измерения в раскрывающемся меню. Возможные варианты: ˚C, ˚F или K.
  • Наконец, введите значение массы, затем выберите единицу измерения из раскрывающегося меню.Возможные варианты: г, кг, фунты или унции.
  • После ввода всех значений калькулятор удельной теплоемкости автоматически сгенерирует значение удельной теплоемкости.

 

Как рассчитать удельную теплоемкость?

 


Этот калькулятор теплоты или калориметрический калькулятор может помочь нам определить теплоемкость образца при нагревании или охлаждении. Если мы используем метрическую систему, удельная теплоемкость — это количество тепла, которое необходимо для того, чтобы образец весом 1 кг поднял свою температуру на 1 К.Вот этапы использования формулы удельной теплоемкости:

  • Сначала решите, будете ли вы нагревать или охлаждать образец.
  • Запишите значение подведенной энергии, используя положительное значение. И наоборот, если вы охлаждаете образец, запишите значение энергии, используя отрицательное значение. Например, если вы хотите понизить тепловую энергию образца на 60000 Дж, то:

Q = -60000 Дж. начальное состояние образца и конечное состояние.Запишите эту информацию. Если вы охладите образец, эта разница будет иметь отрицательное значение. И наоборот, если вы прогреете образец, он будет иметь положительное значение. Например, если вы охлаждаете образец на 3 градуса, то:

ΔT = – 3K

  • Запишите массу образца:

м. м.

  • Теперь вы можете рассчитать удельную теплоемкость по этой формуле:

c = Q / (m * ΔT)

  • c = -60000 Дж / (5 кг * -3 К) = 4200 Дж / кг * К, что является нормальной теплоемкостью воды    

значение удельной теплоты, которую вы приобретаете, вы можете использовать этот калькулятор удельной теплоты или калькулятор тепловой энергии.

 

Что такое удельная теплоемкость?

 

Вы можете увидеть практический пример применения удельного тепла в вашей автоматической посудомоечной машине. Вы кладете в посудомоечную машину различные предметы, такие как керамические тарелки, посуду, пластиковые контейнеры, металлические миски и другие. Вы заметите кое-что интересное, когда откроете прибор сразу после завершения цикла стирки.

Примерно через 20 минут керамические изделия высохнут. То же самое с любыми предметами из тяжелого металла.Чаши из тонкого металла могут частично высохнуть, но в них может оставаться некоторое количество влаги. Однако предметы из пластика будут почти влажными.

Причина этого в том, что пластмассы не обладают достаточной удельной теплоемкостью, чтобы позволить каплям воды испаряться на их поверхности. Вместо этого испарение воды охлаждало бы материал. С другой стороны, керамические предметы могут сохранять тепло в течение более длительного времени, и они содержат достаточно внутреннего тепла, чтобы позволить воде испаряться. Изделия из металла занимают промежуточное положение между керамикой и пластиком, но испарение будет зависеть от того, сколько в них массы металла по отношению к массе капель воды на их поверхности.

 

Как рассчитать теплоемкость?

Теплоемкостью называется количество энергии, необходимое для повышения температуры определенного вещества на 1 градус. Это также отражает свойство вещества сохранять тепло. Согласно определению, теплоемкость имеет ограниченное применение, поскольку это обширное свойство, то есть оно будет зависеть от массы вещества.В физике обычно используется удельная теплоемкость. Это теплоемкость, нормальная к единице массы.

Теплоемкость, которую также называют «тепловой массой» объекта, также известна как энергия и обычно выражается в джоулях. Вы можете использовать калькулятор тепловой энергии, чтобы получить это значение или эту формулу:

 

Q относится к теплоемкости

м относится к массе

c относится к удельной теплоемкости

ΔT относится к изменению температуры

 температура одного грамма воды 1 с?

Обычная вода имеет очень высокий показатель теплоемкости, а это означает, что она должна поглотить много тепла, прежде чем начнёт нагреваться. Это одна из важных причин, почему это ценный предмет в отрасли. Этот же показатель также помогает регулировать скорость изменения температуры воздуха, и по этой причине изменения температуры между сезонами происходят постепенно, а не резко. Вы можете рассчитать энергию, необходимую для повышения температуры воды или любого заданного вещества, используя эту формулу:

Q = m * c * ΔT

где

Q относится к теплу

m относится к массе материала

c относится к удельной теплоемкости материала

ΔT относится к происходящему изменению температуры

Energy Release Calculator — Calculator Academy

Введите массу, удельную теплоемкость и изменение температуры в калькулятор, чтобы определить общую выделившуюся энергию.

Формула высвобождения энергии

Следующая формула используется для расчета выделения энергии в процессе или химической реакции.

Q = m*Cp*T

  • Где Q – выделение энергии (Дж)
  • m – масса (кг)
  • Cp – удельная теплоемкость (Дж/кг*C)
  • T – изменение температуры (C)

Энергия Определение выпуска

Высвобождение энергии — это мера общего количества энергии, покидающей систему за определенный период времени.Это выделение энергии обычно используется для обозначения химических реакций.

Пример высвобождения энергии

Как рассчитать энерговыделение?

  1. Сначала определите массу.

    Измерьте общую массу в кг.

  2. Далее определите удельную теплоемкость.

    Рассчитайте или определите удельную теплоемкость.

  3. Далее определите изменение температуры.

    Рассчитайте изменение температуры, происходящее во время процесса.

  4. Наконец, рассчитайте выделение энергии.

    Рассчитайте выделение энергии по приведенной выше формуле.

Когда выделяется энергия?

Энергия высвобождается в любом химическом или физическом процессе, который создает чистое положительное изменение температуры в окружающей области этого процесса. Например, процесс горения нагревает воздух вокруг места горения и повышает его температуру.

Может ли энергия высвобождаться при изменении материи?

Энергия может высвобождаться при изменении материи в тех случаях, когда чистое количество материи уменьшается в результате процесса.Например, в радиоактивных материалах вещество превращается в энергию при радиоактивном распаде.

Как при делении выделяется энергия?

Процесс деления высвобождает энергию за счет преобразования массы в энергию. Во время деления атом распадается на два меньших ядра, которые имеют меньшую общую массу, чем исходный атом. Потерянная масса была преобразована непосредственно в энергию.

Может ли выделяемая энергия быть отрицательной?

Да, высвобождаемая энергия может быть отрицательной для процессов, требующих дополнительной энергии. Например, чтобы преобразовать воду в пар, к воде должна быть добавлена ​​энергия, поэтому для этого процесса энергия, выделяемая в окружающую среду, является отрицательной.

Часто задаваемые вопросы

Что такое выделение энергии?

Высвобождение энергии — это мера общего количества энергии, которое система или решение теряет в процессе.


Калькулятор радиатора — инструменты для электротехники и электроники

Как работает калькулятор радиатора?

Этот инструмент предназначен для расчета температуры перехода электронного устройства (обычно силовых устройств) с учетом четырех параметров: максимальной температуры окружающей среды, теплового сопротивления перехода устройства к корпусу, теплового сопротивления радиатора и подаваемой мощности.Он также может рассчитать максимальную мощность, которую может выдержать устройство, учитывая температуру его перехода, максимальную температуру окружающей среды, тепловое сопротивление переход-корпус и тепловое сопротивление радиатора.

Уравнения

$$T_{J}= P(R_{case}+R_{1}+R_{2})+T_{a}$$

Где:

$$T_{J}$$ = температура перехода

$$P$$ = рассеиваемая мощность

$$R_{case}$$ = тепловое сопротивление соединения устройства с корпусом

$$R_{1}$$ = тепловое сопротивление соединения устройства с воздухом (если нет радиатора) или тепловое сопротивление радиатора

$$R_{2}$$ = тепловое сопротивление соединения устройства с воздухом

 

Применение калькулятора радиатора

Самая высокая рабочая температура, которую может выдержать полупроводник в электронном устройстве, называется температурой перехода.Эта температура, как правило, выше, чем температура снаружи устройства и его корпуса. Теплота, передаваемая от спая к корпусу, умноженная на тепловое сопротивление спай-корпус, равна разнице между температурой спая и внешней температуры плюс температура корпуса.

Максимальная температура перехода устройства всегда указана в его техническом паспорте. Это может быть очень полезно, когда необходимо рассчитать требуемое тепловое сопротивление корпуса и окружающей среды с учетом количества рассеиваемой мощности.Затем значение максимальной температуры перехода используется для выбора правильного радиатора.

Микропроцессоры

часто измеряют температуру его ядра с помощью датчика. Когда ядро ​​достигает максимальной температуры перехода, срабатывает механизм охлаждения. Кроме того, если температура выходит за пределы максимальной температуры перехода, срабатывает аварийный сигнал, предупреждающий оператора компьютера о прекращении процесса, вызывающего перегрев ядра процессора.

Примечания

Типовые значения теплового сопротивления для различных электронных блоков
Упаковка Переход к корпусу (°C/Ватт) Соединение с воздухом (°C/Ватт)
ТО-3 5 60
ТО-39 12 140
ТО-220 3 62. 5
ТО-220ФБ 3 50
ТО-223 30,6 53
ТО-252   5 92
ТО-263 23,5 50
Д2ПАК 4 35
Термическое сопротивление для медных печатных плат
Радиатор Термическое сопротивление (°C/Ватт)
1 кв. дюйм 1 унции меди PCB 43
.5 кв. дюймов печатной платы плотностью 1 унция меди  50
0,3 кв. дюйма 1 унции меди PCB 56
Aavid Thermalloy, радиатор поверхностного монтажа:  PN:573400D00010 14

Дополнительное чтение

Учебное пособие по физике

На предыдущей странице мы узнали, что тепло делает с объектом, когда оно получено или выпущено. Притоки или потери тепла приводят к изменениям температуры, изменениям состояния или производительности труда.Тепло – это передача энергии. Когда объект получает или теряет, в этом объекте будут происходить соответствующие энергетические изменения. Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта. Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект. И когда работа выполнена, происходит общая передача энергии объекту, над которым выполняется работа. В этой части урока 2 мы исследуем вопрос . Как можно измерить количество тепла, полученного или отданного объектом?

Удельная теплоемкость

Предположим, что несколько предметов, состоящих из разных материалов, нагреваются одинаковым образом. Будут ли объекты нагреваться с одинаковой скоростью? Ответ: скорее всего нет. Различные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость. Под удельной теплоемкостью понимается количество теплоты, необходимое для того, чтобы заставить единицу массы (скажем, грамм или килограмм) изменить свою температуру на 1°C. Удельная теплоемкость различных материалов часто приводится в учебниках. Стандартными метрическими единицами являются Джоули/килограмм/Кельвин (Дж/кг/К). Чаще используются единицы измерения Дж/г/°C.Используйте виджет ниже для просмотра удельной теплоемкости различных материалов. Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. д.) и нажмите кнопку «Отправить»; результаты будут отображаться в отдельном окне.

 


Удельная теплоемкость твердого алюминия (0,904 Дж/г/°C) отличается от удельной теплоемкости твердого железа (0,449 Дж/г/°C). Это означает, что для повышения температуры данной массы алюминия на 1°С потребуется больше тепла, чем для повышения температуры той же массы железа на 1°С. Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно в два раза больше тепла, чем для того же изменения температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти в два раза выше, чем у железа.

Теплоемкость указана на основе за грамм или за килограмм . Иногда значение указывается из расчета 90 599 на моль на основе 90 600, и в этом случае оно называется молярной теплоемкостью. Тот факт, что они перечислены на основе 90 599 на сумму 90 600, указывает на то, что количество тепла, необходимое для повышения температуры вещества, зависит от того, сколько вещества имеется.Всякий человек, который кипятил на плите кастрюлю с водой, несомненно, знает эту истину. Вода кипит при 100°С на уровне моря и при несколько более низких температурах на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее температуру нужно сначала поднять до 100°C. Это изменение температуры достигается за счет поглощения тепла от горелки печи. Нетрудно заметить, что для доведения до кипения полной кастрюли воды требуется значительно больше времени, чем для доведения до кипения половины воды. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы привести к такому же изменению температуры.На самом деле, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в удвоенной массе воды.

Удельная теплоемкость также указана на основе на K или на °C . Тот факт, что удельная теплоемкость указана в пересчете на 90 599 на градус 90 600, указывает на то, что количество теплоты, необходимое для нагревания данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20°С до 100°С (изменение на 80°С) требуется больше тепла, чем для повышения температуры того же количества воды с 60°С до 100°С (изменение на 40°С). °С). Фактически, для изменения температуры данной массы воды на 80°С требуется в два раза больше тепла, чем для изменения на 40°С. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды, а не с холодной.

Это обсуждение удельной теплоемкости заслуживает одного последнего комментария. Термин «удельная теплоемкость» является чем-то вроде неправильного употребления . Термин подразумевает, что вещества могут иметь способность содержать 90 599 вещь, 90 600 называемую теплом. Как обсуждалось ранее, тепло не является чем-то, что содержится в объекте. Тепло — это то, что передается объекту или от него. Объекты содержат энергию в различных формах. Когда эта энергия передается другим объектам с другой температурой, мы называем переданную энергию теплом или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергетическая емкость.


Связь количества тепла с изменением температуры

Удельная теплоемкость обеспечивает средство математической связи количества тепловой энергии, полученной (или потерянной) образцом любого вещества, с массой образца и его результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.

Q = м•C•ΔT

, где Q — количество тепла, переданного объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех ситуациях в науке, значение 90 599 дельта 90 600 (∆) для любой величины рассчитывается путем вычитания начального значения величины из конечного значения величины. В этом случае ΔT равно T конечный — T начальный .При использовании приведенного выше уравнения значение Q может оказаться как положительным, так и отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает на то, что объект получил тепловую энергию из своего окружения; это будет соответствовать повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает на то, что объект выделяет тепловую энергию в окружающую среду; это будет соответствовать снижению температуры и отрицательному значению ΔT.

Знание любых трех из этих четырех величин позволяет вычислить четвертую величину. Распространенной задачей на многих уроках физики является решение задач, связанных с соотношениями между этими четырьмя величинами. В качестве примеров рассмотрим две задачи ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.

Пример задачи 1
Какое количество теплоты потребуется, чтобы нагреть 450 г воды с 15°С до 85°С? Удельная теплоемкость воды равна 4.18 Дж/г/°С.

Как и любая задача в физике, решение начинается с определения известных величин и связывания их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:

м = 450 г
С = 4,18 Дж/г/°С
T исходная = 15°C
Т окончательная = 85°С

Мы хотим определить значение Q — количество теплоты. Для этого воспользуемся уравнением Q = m•C•ΔT. m и C известны; ΔT можно определить по начальной и конечной температурам.

T = T окончательная — T начальная = 85°C — 15°C = 70°C

Зная три из четырех величин соответствующего уравнения, мы можем подставить и решить Q.

Q = м•C•ΔT = (450 г)•(4,18 Дж/г/°C)•(70°C)
Q = 131670 Дж
Q = 1.3×10 5 Дж = 130 кДж (округлено до двух значащих цифр)

 

Пример задачи 2
Образец неизвестного металла весом 12,9 г при температуре 26,5°C помещают в чашку из пенопласта, содержащую 50,0 г воды при температуре 88,6°C. Вода охлаждается, а металл нагревается до достижения теплового равновесия при 87,1°С. Предполагая, что все тепло, отдаваемое водой, передается металлу и что чаша идеально изолирована, определите удельную теплоемкость неизвестного металла. Удельная теплоемкость воды составляет 4,18 Дж/г/°С.


По сравнению с предыдущей задачей, это гораздо более сложная задача. На самом деле эта проблема как две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, теряемое водой (Q вода ), равно количеству тепла, полученному металлом (Q металл ). Поскольку значения m, C и ΔT воды известны, можно рассчитать Q воды .Это значение Q воды равно значению Q металла . Как только значение Q металла станет известно, его можно использовать вместе со значением m и ΔT металла для расчета Q металла . Использование этой стратегии приводит к следующему решению:

Часть 1. Определение потерь тепла с водой

Дано:

м = 50,0 г
С = 4,18 Дж/г/°С
Т исходная = 88,6°С
Т окончательный = 87. 1°С
ΔT = -1,5°C (T окончательная — T исходная )

Решить для воды Q :

Q вода = m•C•ΔT = (50,0 г)•(4,18 Дж/г/°C)•(-1,5°C)
Q вода = -313,5 Дж (не округлено)
(Знак — означает, что вода теряет тепло)

Часть 2: Определение стоимости металла C

Дано:

Q металл = 313.5 Дж (используйте знак +, так как металл нагревается)
м = 12,9 г
T исходная = 26,5°C
Т окончательная = 87,1°С
ΔT = (T окончательный — T начальный )

Решить для металла C :

Переставить Q металл = m металл •C металл •ΔT металл для получения C металл = Q металл / (m металл •ΔT 0 3) 0 металл 0 3)

C металл = Q металл / (m металл • ΔT металл ) = (313. 5 Дж)/[(12,9 г)•(60,6°C)]
C металл = 0,40103 Дж/г/°C
C металл = 0,40 Дж/г/°C (округлено до двух значащих цифр)

 


Нагрев и изменения состояния

Приведенное выше обсуждение и сопровождающее его уравнение (Q = m•C•∆T) связывают тепло, полученное или потерянное объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло приобретается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количеством теплоты.

Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца материи. В приведенной ниже таблице перечислены несколько изменений состояния и указаны имена, обычно связанные с каждым процессом.

Процесс

Изменение состояния

Плавление

Твердое вещество в жидкое

Замораживание

Из жидкого в твердое

Испарение

Жидкость в газ

Конденсат

Газ в жидкость

Сублимация

Твердое тело в газ

Депонирование

Из газа в твердое тело


В случае плавления, кипения и сублимации к образцу вещества необходимо добавить энергию, чтобы вызвать изменение состояния. Такие изменения состояния называются эндотермическими. Замерзание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; лед получает энергию, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Существует ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Наверняка есть.

Количество энергии, необходимое для изменения состояния образца материи, зависит от трех факторов. Это зависит от того, что представляет собой вещество, от того, насколько вещество претерпевает изменение состояния и от того, какое изменение состояния происходит. Например, для плавления льда (твердой воды) требуется разное количество энергии по сравнению с плавлением железа. И для таяния льда (твердой воды) требуется разное количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется разное количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — это три переменные, влияющие на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердого и жидкого состояния.)


Значения удельной теплоты плавления и удельной теплоты парообразования приведены на основе на количество .Например, удельная теплота плавления воды равна 333 Дж/г. Чтобы растопить 1 г льда, требуется 333 Дж энергии. Чтобы растопить 10,0 г льда, требуется в 10 раз больше энергии — 3330 Дж. Рассуждения таким образом приводят к следующим формулам, связывающим количество теплоты с массой вещества и теплотой плавления и парообразования.

Для плавления и замораживания: Q = m•ΔH сплавление
Для испарения и конденсации: Q = m•ΔH испарение

, где Q представляет собой количество энергии, полученной или высвобожденной в ходе процесса, m представляет собой массу образца, ΔH плавления представляет собой удельную теплоту плавления (в расчете на грамм), а ΔH парообразования представляет собой удельную теплоту плавления. испарения (в пересчете на грамм).Подобно обсуждению Q = m•C•ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и парообразования; это согласуется с тем фактом, что образец вещества должен получить энергию, чтобы расплавиться или испариться. Значения Q отрицательны для процессов замерзания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или сконденсироваться.

В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.

Пример задачи 3
Элиза кладет в свой напиток 48,2 грамма льда. Какое количество энергии будет поглощено льдом (и выделено напитком) в процессе таяния? Теплота плавления воды 333 Дж/г.

Уравнение, связывающее массу (48,2 г), теплоту плавления (333 Дж/г) и количество энергии (Q), имеет вид Q = m•ΔH плавление . Подстановка известных значений в уравнение приводит к ответу.

Q = м•ΔH плавление = (48,2 г)•(333 Дж/г)
Q = 16050,6 Дж
Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)

Пример Задача 3 включает в себя довольно простой расчет типа «подключи и пыхни». Теперь мы попробуем решить примерную проблему 4, которая потребует значительно более глубокого анализа.

Пример задачи 4
Каково минимальное количество жидкой воды на 26.5 градусов, которые потребуются, чтобы полностью растопить 50,0 граммов льда? Удельная теплоемкость жидкой воды 4,18 Дж/г/°С, удельная теплота плавления льда 333 Дж/г.

В этой задаче лед тает, а жидкая вода остывает. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, необходимо передать 333 Дж энергии на каждый грамм льда. Эта передача энергии от жидкой воды льду охлаждает жидкость.Но жидкость может охлаждаться только до 0°C — точки замерзания воды. При этой температуре жидкость начнет застывать (замерзать) и лед полностью не растает.

Мы знаем о льду и жидкой воде следующее:

Данная информация о льду:

м = 50,0 г
ΔH сплав = 333 Дж/г

Информация о жидкой воде:

С = 4.18 Дж/г/°С
T исходная = 26,5°C
Т окончательная = 0,0°С
ΔT = -26,5°C (T окончательная — T исходная )

Энергия, полученная льдом, равна энергии, потерянной водой.

Q лед = -Q жидкая вода

Знак — указывает на то, что один объект получает энергию, а другой объект теряет энергию. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:

Q лёд = m•ΔH плавление = (50. 0 г)•(333 Дж/г)
Q лед = 16650 Дж

Теперь мы можем положить правую часть уравнения равной m•C•ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:

16650 J = -Q жидкая вода
16650 Дж = -m жидкая вода •C жидкая вода •ΔT жидкая вода
16650 Дж = -м жидкая вода •(4.18 Дж/г/°С)•(-26,5°С)
16650 Дж = -м жидкая вода •(-110,77 Дж/°C)
m жидкая вода = -(16650 Дж)/(-110,77 Дж/°C)
м жидкая вода = 150,311 г
м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)


Новый взгляд на кривые нагрева и охлаждения

На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагревания показывала, как температура воды повышалась с течением времени при нагревании образца воды в твердом состоянии (т. е. льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает переход воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает переход воды из жидкого состояния в газообразное.Эти изменения состояния происходили без каких-либо изменений температуры. Однако добавление тепла к образцу воды, которая не находится при температуре фазового перехода, приведет к изменению температуры.

Теперь мы можем подойти к теме кривых отопления на более количественной основе. На приведенной ниже диаграмме представлена ​​кривая нагрева воды. На линиях графика имеется пять помеченных участков.


Три диагональных участка представляют изменения температуры образца воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Два горизонтальных участка отображают изменения состояния воды. В секции 2 происходит таяние пробы воды; твердое тело переходит в жидкое. В секции 4 образец воды подвергается кипячению; жидкость переходит в газ. Количество теплоты, переданное воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m•C•ΔT. А количество теплоты, переданной воде на участках 2 и 4, связано с массой образца и теплотой плавления и парообразования формулами Q = m•ΔH плавления (участок 2) и Q = m•ΔH парообразование (раздел 4).Итак, теперь мы попытаемся рассчитать количество теплоты, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0°С в газообразное состояние при 120,0°С. Для расчета потребуется пять шагов — по одному шагу на каждый участок приведенного выше графика. Поскольку удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения удельной теплоемкости:

Твердая вода: C=2,00 Дж/г/°C
Жидкая вода: C = 4,18 Дж/г/°C
Газообразная вода: C = 2. 01 Дж/г/°С

Наконец, мы будем использовать ранее опубликованные значения ΔH плавления (333 Дж/г) и ΔH испарения (2,23 кДж/г).

Секция 1 : Изменение температуры твердой воды (льда) с -20,0°C до 0,0°C.

Используйте Q 1 = m•C•ΔT

, где m = 50,0 г, C = 2,00 Дж/г/°C, T начальная = -200°C и T конечная = 0,0°C

Q 1 = m•C•ΔT = (50.0 г)•(2,00 Дж/г/°C)•(0,0°C — -20,0°C)
Q 1 = 2,00 x 10 3 Дж = 2,00 кДж

 

Секция 2 : Плавление льда при 0,0°C.

Использование Q 2 = m•ΔH сплавление

, где m = 50,0 г и ΔH сплава = 333 Дж/г

Q 2 = m•ΔH сплав = (50,0 г)•(333 Дж/г)
Q 2 = 1,665 x 10 4 Дж = 16. 65 кДж
Q 2 = 16,7 кДж (округлено до 3 значащих цифр)

Раздел 3 : Изменение температуры жидкой воды с 0,0°C до 100,0°C.

Используйте Q 3 = m•C•ΔT

, где m = 50,0 г, C = 4,18 Дж/г/°C, T начальная = 0,0°C и T конечная = 100,0°C

Q 3 = m•C•ΔT = (50,0 г)•(4,18 Дж/г/°C)•(100,0°C — 0,0°C)
Q 3 = 2.09 x 10 4 Дж = 20,9 кДж

Раздел 4 : Кипячение воды при 100,0°C.

Использование Q 4 = m•ΔH испарение

где m = 50,0 г и ΔH испарения = 2,23 кДж/г

Q 4 = м•ΔH испарение = (50,0 г)•(2,23 кДж/г)
Q 4 = 111,5 кДж
Q 4 = 112 кДж (округлено до 3 значащих цифр)

3

Секция 5 : Изменение температуры жидкой воды от 100. от 0°С до 120,0°С.

Используйте Q 5 = m•C•ΔT

, где m = 50,0 г, C = 2,01 Дж/г/°C, T начальная = 100,0°C и T конечная = 120,0°C

Q 5 = m•C•ΔT = (50,0 г)•(2,01 Дж/г/°C)•(120,0°C — 100,0°C)
Q 5 = 2,01 x 10 3 Дж = 2,01 кДж

 

Общее количество тепла, необходимое для превращения твердой воды (льда) при температуре -20°C в газообразную воду при 120°C, представляет собой сумму значений Q для каждого участка графика.То есть

Q всего = Q 1 + Q 2 + Q 3 + Q 4 + Q 5

Суммирование этих пяти значений Q и округление до нужного количества значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.


В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:

  • Во-первых: длинная задача была разделена на части, каждая из которых представляла одну из пяти частей графика. Поскольку вычислялось пять значений Q, они были помечены как Q 1 , Q 2 и т. д. Такой уровень организации требуется в такой многошаговой задаче, как эта.
  • Секунда: внимание было обращено на знак +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как конечное значение величины минус начальное значение этой величины.
  • Третье: Внимание уделялось юнитам на протяжении всей проблемы.Единицы Q будут либо в джоулях, либо в килоджоулях, в зависимости от того, какие величины умножаются. Пренебрежение вниманием к единицам измерения является распространенной причиной сбоев в подобных задачах.
  • Четвертое: внимание уделялось значащим цифрам на протяжении всей задачи. Хотя это никогда не должно становиться основным акцентом любой проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.

 

Здесь, на этой странице, мы узнали, как рассчитать количество тепла, задействованного в любом процессе нагрева/охлаждения и в любом процессе изменения состояния. Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице урока 2 по теме калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.

 

 

 

Проверьте свое понимание

1. Вода обладает необычно высокой удельной теплоёмкостью. Какое из следующих утверждений логически следует из этого факта?

а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что она хорошо проводит тепло.
б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
в. По сравнению с другими веществами, пробе воды требуется значительное количество тепла, чтобы изменить ее температуру на небольшое количество.

2. Объясните, почему большие водоемы, такие как озеро Мичиган, могут быть довольно холодными в начале июля, несмотря на то, что температура наружного воздуха около или выше 90°F (32°C).

3. В таблице ниже описывается термический процесс для различных объектов (обозначены красным жирным шрифтом). Для каждого описания укажите, получает или теряет тепло объект, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.

  Процесс

Получение или потеря тепла?

Эндо- или экзотермический?

В: + или -?

а.

Кубик льда кладут в стакан с лимонадом комнатной температуры, чтобы охладить напиток.      

б.

Стакан холодного лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32°F.      

в.

Горелки на электроплите выключаются и постепенно остывают до комнатной температуры.      

д.

Учитель достает из термоса большой кусок сухого льда и кладет его в воду. Сухой лед возгоняется, образуя газообразный углекислый газ.      

эл.

Водяной пар в увлажненном воздухе попадает на окно и превращается в каплю росы (капли жидкой воды).      

4. Образец металлического цинка весом 11,98 г помещают в баню с горячей водой и нагревают до 78,4°C. Затем его удаляют и помещают в чашку из пенопласта, содержащую 50,0 мл воды комнатной температуры (T=27,0°C, плотность = 1,00 г/мл). Вода прогревается до температуры 28.1°С. Определить удельную теплоемкость цинка.

5. Джейк берет из шкафа банку газировки и наливает ее в чашку со льдом. Определить количество теплоты, потерянное газированной водой комнатной температуры при плавлении 61,9 г льда (ΔH сплав = 333 Дж/г).

6. Теплота возгонки (ΔH сублимация ) сухого льда (твердая двуокись углерода) составляет 570 Дж/г. Определите количество теплоты, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)

7. Определите количество теплоты, необходимое для повышения температуры образца твердого пара-дихлорбензола массой 3,82 грамма с 24°C до его жидкого состояния при 75°C. Пара-дихлорбензол имеет температуру плавления 54°С, теплоту плавления 124 Дж/г и удельную теплоемкость 1,01 Дж/г/°С (твердое состояние) и 1,19 Дж/г/°С (жидкое состояние).

Калькулятор удельной теплоемкости + формула (уравнение C = Q /(m ⨉ ΔT))

Удельная теплоемкость — это, по сути, мера того, насколько трудно нагреть различных материалов. Чтобы рассчитать удельную теплоемкость (C) любого вещества, вам понадобится формула удельной теплоемкости (уравнение, если хотите).

Далее вы также найдете калькулятор удельной теплоемкости . динамически рассчитать удельную теплоемкость для вас. Вот как выглядит калькулятор удельной теплоемкости (скриншот):

Пример калькулятора: 30.000 Дж теплоты нагреет 5 кг вещества на 10К. Какая удельная теплоемкость? 600 Дж/кг×К. Вы можете найти этот калькулятор далее; он будет динамически и автоматически рассчитывать удельную теплоемкость.

Сначала рассмотрим формулу удельной теплоемкости. Это довольно простая формула, которую может использовать каждый. В конце приведем также удельные теплоемкости воздуха, воды и некоторых других веществ. Мы также решим несколько простых примеров расчета удельной теплоемкости.Давайте посмотрим на пример, чтобы проиллюстрировать, что на самом деле говорит нам удельная теплоемкость:

Пример: Воздух при комнатной температуре имеет удельную теплоемкость 1012 Дж/кг×К. Вода при комнатной температуре имеет удельную теплоемкость 4181 Дж/кг×К. Это означает, что нам нужно примерно в 4 раза больше тепла, чтобы нагреть килограмм воды, чем килограмм воздуха.

Удельная теплоемкость определяется как количество теплоты, необходимое для повышения температуры 1 кг вещества на 1К.Чаще всего для этого мы используем единицы СИ (Дж = Джоули, кг = килограммы, К = градусы Кельвина).

Мы можем аккуратно подставить все эти числа в следующую формулу:

Формула удельной теплоемкости

Удельная теплоемкость обозначается C (C для емкости). Вот уравнение для расчета удельной теплоемкости C:

C = Q ÷ (м×ΔT)

Довольно просто, правда?

  • Q — это количество тепла, которое мы подводим к веществу. Может быть 1 Дж, 40 Дж или даже 50.000 Дж, идет любое количество Джоулей.
  • м — это масса вещества, которое мы нагреваем. Вы можете нагреть 1 кг вещества, 20 кг или даже 10 г вещества, подходит любой вес.
  • ΔT — это разница температур между начальной и конечной температурами, и она всегда измеряется не в градусах Фаренгейта (°F), не в градусах Цельсия (°C), а в кельвинах (K). Пример: если мы нагреем воду с 68°F или 20°C (это 293K) до 158°F или 70°C (это 343K), разница температур составит 343K – 293K = 50K.

Вот простой пример: допустим, нам нужно 6000 Дж тепла, чтобы нагреть 3 кг вещества на 10К. Вот как мы рассчитываем удельную теплоемкость, используя приведенное выше уравнение;

C = 6000 Дж ÷ (3 кг × 10 К) = 200 Дж/кг × К

Формула удельной теплоемкости говорит нам, что удельная теплоемкость (С) этого вещества составляет 200 Дж/кг×К.

Чтобы еще больше упростить задачу, вы можете использовать этот калькулятор

Калькулятор удельной теплоемкости

По сути, вы просто вводите Q, m и ΔT, и калькулятор динамически рассчитает для вас удельную теплоемкость.Конечно, вы также можете немного поиграть с цифрами.

С помощью этого калькулятора можно просто определить, какова удельная теплоемкость вещества без необходимости все вычислять самостоятельно.

Давайте посмотрим на удельные теплоемкости некоторых распространенных газов, жидкостей и твердых тел:

Таблица удельной теплоемкости

Вещество: Фаза (газ, жидкость, твердое тело): Удельная теплоемкость (Дж/кг×К)
Воздух при комнатной температуре Газ 1012 Дж/кг×К
Аргон (Ar) Газ 520.3 Дж/кг×К
Двуокись углерода (CO2) Газ 839 Дж/кг×К
Гелий (Не) Газ 5193,2 Дж/кг×К
Водород (h3) Газ 14 300 Дж/кг×К
Сероводород (h3S) Газ 1015 Дж/кг×К
Метан при 275K (Ch5) Газ 2191/кг×K
Азот (N2) Газ 1040 Дж/кг×К
Неон (Ne) Газ 1030. 1 Дж/кг×К
Кислород (O2) Газ 918 Дж/кг×К
Аммиак (Nh4) Жидкость 4700 Дж/кг×К
Этанол (Ch4Ch3OH) Жидкость 2440 Дж/кг×К
Бензин Жидкость 2220 Дж/кг×К
Меркурий Жидкость 139,5 Дж/кг×К
Метанол (Ch4OH) Жидкость 2140 Дж/кг×К
Вода при 25 °C Жидкость 4181.3 Дж/кг×К
Алюминий (Al) Твердый 897 Дж/кг×К
Сурьма Твердый 207 Дж/кг×К
Мышьяк Твердый 328 Дж/кг×К
Бериллий Твердый 1820 Дж/кг×К
Кадмий Твердый 231 Дж/кг×К
Хром Твердый 449 Дж/кг×К
Медь Твердый 385 Дж/кг×К
Алмаз Твердый 509. 1 Дж/кг×К
Стекло Твердый 840 Дж/кг×К
Золото Твердый 129 Дж/кг×К
Гранит Твердый 790 Дж/кг×К
Графит Твердый 710 Дж/кг×К
Железо Твердый 412 Дж/кг×К
Свинец Твердый 129 Дж/кг×К
Литий Твердый 3580 Дж/кг×К
Магний Твердый 1020 Дж/кг×К
Полиэтилен Твердый 2302.7 Дж/кг×К
Силикагель Твердый 703 Дж/кг×К
Серебро Твердый 233 Дж/кг×К
Натрий Твердый 1230 Дж/кг×К
Сталь Твердый 466 Дж/кг×К
Олово Твердый 227 Дж/кг×К
Титан Твердый 528 Дж/кг×К
Уран Твердый 116 Дж/кг×К
Асфальт Твердый 920 Дж/кг×К
Кирпич Твердый 840 Дж/кг×К
Бетон Твердый 880 Дж/кг×К
Гипс Газ 1090 Дж/кг×К
Песок Газ 835 Дж/кг×К
Почва Газ 800 Дж/кг×К

Если у вас есть какие-либо вопросы об удельной теплоемкости, вы можете использовать комментарии ниже, и мы постараемся помочь вам, чем сможем.

Уравнения охлаждения и нагрева

Явная теплота

Явная теплота в процессе нагревания или охлаждения воздуха (нагревательная или охлаждающая способность) может быть рассчитана в единицах СИ как dt (1)

, где

H S = разумное тепло (кВт)

C P = Удельная тепловая температура воздуха (1.006 KJ / KG O C)

ρ = Плотность воздуха (1.202 кг / м 3 )

q = воздушный объемный поток (м 3 / с)

DT = разница температур ( O C)

или в имперских единицах как

H S = 1.08 Q DT (1b)

где

H S = разумное тепло (BTU / HR)

q q = поток объема воздуха (CFM, кубические ножки в минуту)

dt = разница температур ( o f)

Пример Воздух для обогрева, явная теплота

Метрические единицы

Воздушный поток 1 м 3 нагревается от 0 до 20 o C . Используя (1) Разумное тепло, добавленное к воздуху, можно рассчитать как

H S = = = (1.006 KJ / KG O C) (1.202 кг / м 3 ) ( 1 м 3 / с ) ((20 o c) — (0 o c) — (0 o c))

= 24.2 (кВт)

Императорские единицы

расход 1 м3/мин нагревается от 32 до 52 o F .Используя (1b) , физическое тепло, добавленное к воздуху, может быть рассчитано как

ч с = 1,08 (1 куб.

    = 21,6 (БТЕ/ч)

Таблица явной тепловой нагрузки и требуемого объема воздуха

Явная тепловая нагрузка и требуемый объем воздуха для поддержания постоянной температуры при различных перепадах температур между подпиточным воздухом и комнатным воздухом:

Латентное тепло

Латентное тепло из-за влаги в воздухе можно рассчитать в Si-единицах как:

H L = ρ H мы Q DW кг (2)

где

ч л = скрытая теплота (кВт)

ρ = плотность воздуха (1. 202 кг/м 3 )

q = объемный расход воздуха (м 3 /с)

ч we = скрытая теплота испарения в 6 кг атмосферного воздуха кДж при атм. давление и 20 o C)

dw кг = разница коэффициента влажности (кг воды/кг сухого воздуха)

Скрытая теплота испарения воды может быть рассчитана как 2.2 T (2A)

, где

T = температура испарения ( o C) 00

или для имперских единиц:

H L = 0.68 q dw gr (2b)

h l = 4840 q dw lb (2c) 3 (2c)

, где

H L = скрытая теплота (БТЕ/ч)

q = объемный расход воздуха (куб. футов в минуту, куб. футов в минуту)

DW 9062 DW LB = Разница соотношения влажности (водная вода / фу / фунт сухой воздух)

.

/с охлаждается с 30 до 10 o C .Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из диаграммы Молье мы оцениваем содержание воды в горячем воздухе как 0,0187 кг воды/кг сухого воздуха, и содержание воды в холодном воздухе как 0,0075 кг воды/кг сухого воздуха .

Используя (2) , можно рассчитать скрытую теплоту, отводимую от воздуха, как

ч л = (1.202 кг/м 3 ( 2454 кДж/кг ) ( 1 м 3 ) (( 0,0187 кг воды/кг сухого воздуха) 0 Сухим воздухом ))

= 34,302 = 34,302 = 34,30242

Императорские единицы

Воздушный поток 1 CFM охлаждается от 52 до 32 o F . Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из психрометрической диаграммы мы оцениваем содержание воды в горячем воздухе как 45 гран воды/фунт сухого воздуха , , а содержание воды в холодном воздухе как 27 гран воды/фунт сухого воздуха .

Используя (2b) , можно рассчитать скрытую теплоту, отводимую от воздуха, как ( 27 гран воды/фунт сухого воздуха ))      

    = 12.2 (БТЕ/ч)

Таблица скрытой тепловой нагрузки и требуемого объема воздуха

Скрытая тепловая нагрузка – увлажнение и осушение – и требуемый объем воздуха для поддержания постоянной температуры при различных перепадах температур между поступающим воздухом и воздухом в помещении указаны в Диаграмма ниже:

Общее тепло — скрытое и разумное тепло

Общее тепло из-за температуры и влаги может быть выражена в единицах Si, как:

H T = ρ Q DH (3)

где

ч t = общее количество тепла (кВт)

q = объемный расход воздуха (м 3 /с)

= плотность воздуха (1. 202 кг / м 3 ) )

DH = Enthalpy Разница (KJ / KG)

или — в Имперских единицах:

H T = 4,5 Q DH (3B)

Куда

h t = Total Heat (BTU / HR)

q = поток объема воздуха (CFM, кубические ножки в минуту)

DH = Enthalpy Разница (BTU / lb сухой воздух)

Общее тепло может быть выражено как:

H T = H S + H L

= 1.08 q dt + 0,68 q dw gr (4) (4) (4)

Пример — охлаждение или отопление воздуха, общий объем тепла

Метрические единицы

воздушный поток 1 м 3 / S охлаждается от 30 до 10 или C . Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из диаграммы Молье мы оцениваем энтальпию воды в горячем воздухе как 77 кДж/кг сухого воздуха, и энтальпию в холодном воздухе как 28 кДж/кг сухого воздуха .

Использование (3) (3) Общая разумная и скрытая тепла, удаленная от воздуха, может быть рассчитана как

H T = (1,202 кг / м 3 ) ( 1 м 3 / S ) (( 77 кДж / кг сухой воздух ) — (28 KJ / KG сухой воздух ))

= 58,9 (кВт)

Императорские единицы

воздушный поток 1 cfm охлаждается от 52 до 32 o F .Относительная влажность воздуха составляет 70% в начале и 100% в конце процесса охлаждения.

Из психрометрической диаграммы мы оцениваем энтальпию воды в горячем воздухе как 19 БТЕ /фунт сухого воздуха , , а энтальпию в холодном воздухе как 13,5 БТЕ /фунт сухого воздуха .

Добавить комментарий

Ваш адрес email не будет опубликован.