Принцип работы стабилизатора напряжения 220в – Как работает стабилизатор напряжения

Содержание

как работает, зачем нужен, типы и применение

В статье расскажем что такое стабилизатор напряжения, применение, как работает и его различные типы с принципиальными схемами, а также мы поможем вам в выборе стабилизатора напряжения.

Применение стабилизаторов напряжения стало необходимостью для каждого дома. Различные типы стабилизаторов напряжения доступны в настоящее время с различными функциями и работами. Последние достижения в технологии, такие как микропроцессорные чипы и силовые электронные устройства, изменили стабилизаторы напряжения. Теперь они полностью автоматические, интеллектуальные и оснащены множеством дополнительных функций. Они также имеют сверхбыструю реакцию на колебания напряжения и позволяют своим пользователям дистанционно регулировать требования к напряжению, включая функцию пуска или выключения.

Что такое стабилизатор напряжения

Стабилизатор напряжения — это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.


Рис.1 — Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Мы можем увидеть различные типы стабилизаторов напряжения, доступных на рынке. Аналоговые и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и повышению осведомленности о безопасности устройств. Эти стабилизаторы напряжения могут быть однофазными (выход 220-230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа применения. Регулирование желаемой стабилизированной мощности осуществляется методом понижения и повышения напряжения в соответствии с его внутренней схемой. Трехфазные стабилизаторы напряжения доступны в двух разных моделях, то есть моделях с сбалансированной нагрузкой и моделях с несбалансированной нагрузкой.

Они доступны в различных рейтингах и диапазонах
КВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с усилением 20-35 вольт при питании от входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что широкий диапазон стабилизатора напряжения может обеспечить стабилизированное напряжение 190-240 вольт с повышающим сопротивлением 50-55 вольт при входном напряжении в диапазоне от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальный стабилизатор напряжения для небольших устройств, таких как телевизор, холодильник, микроволновые печи, для одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизаторы текущего напряжения оснащены многими полезными дополнительными функциями, такими как защита от перегрузки, переключение нулевого напряжения, защита от изменения частоты, отображение отключения напряжения, средство запуска и остановки выхода, ручной или автоматический запуск, отключение напряжения и так далее.

Стабилизаторы напряжения являются очень энергоэффективными устройствами (с эффективностью 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения и его важность

Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Рис. 2 — Проблемы из-за колебаний напряжения

Помните, нет ничего более важного для электронного устройства, чем отфильтрованный, защищенный и стабильный источник питания. Правильное и стабилизированное напряжение питания очень необходимо, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который обеспечивает то, что устройство получает желаемое и стабилизированное напряжение, независимо от того, насколько сильно колебание. Таким образом, стабилизатор напряжения является очень эффективным решением для тех, кто хочет получить оптимальную производительность и защитить свои устройства от непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и источник бесперебойного питания, стабилизаторы напряжения также являются активом для защиты электронного оборудования. Колебания напряжения очень распространены независимо от того, где вы живете. Могут быть различные причины колебаний напряжения, такие как электрические неисправности, неисправная проводка, молнии, короткие замыкания и так далее. Эти колебания могут быть в форме перенапряжения или пониженного напряжения.

Эффекты повторяющегося перенапряжения в бытовой технике

  • Необратимые повреждения подключенного устройства
  • Повреждения изоляции обмотки
  • Перебои в нагрузке
  • Перегрев кабеля или устройства
  • Ухудшится срок полезного использования устройства
  • Неисправность оборудования
  • Низкая эффективность устройства
  • Устройство в некоторых случаях может занять дополнительные часы, чтобы выполнить ту же функцию
  • Ухудшить производительность устройства
  • Устройство будет потреблять больше электричества, что может привести к перегреву

Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения. Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения. Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем.

В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает в себя сложение или вычитание напряжения из первичного источника питания. Для выполнения этой функции стабилизаторы напряжения используют трансформатор, который подключен к переключающим реле в различных требуемых конфигурациях. Немногие из стабилизаторов напряжения используют трансформатор, имеющий различные отводы на своей обмотке, для обеспечения различных коррекций напряжения, в то время как стабилизаторы напряжения (такие как Servo стабилизатор напряжения) содержат автоматический трансформатор для обеспечения желаемого диапазона коррекции.

Как работает функция понижения и повышения в стабилизаторе напряжения

Для лучшего понимания обеих концепций мы разделим его на отдельные функции.

Функция понижения в стабилизаторе напряжения

Рис. 4 — Принципиальная схема функции понижения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.

В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).

Функция повышения в стабилизаторе напряжения


Рис. 6 — Принципиальная схема функции повышения напряжения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток.

Как конфигурация повышения и понижения работает автоматически

Вот пример 02 Stage Voltage Stabilizer. Этот стабилизатор напряжения использует 02 реле (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки в условиях перенапряжения и понижения напряжения.

На принципиальной схеме 02-ступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения конфигурации понижения и повышения во время различных условий колебаний напряжения, то есть перенапряжения и пониженного напряжения. Например — предположим, что вход переменного тока 230 В переменного тока, а требуемый выход также постоянный 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижения & повышения стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное требуемое напряжение (230 В) в диапазоне от 205 В (пониженное напряжение) до 255 В (повышенное напряжение) входного источника переменного тока.

В стабилизаторах напряжения, в которых используются трансформаторы с отводом, точки ответвления выбираются на основе требуемого количества напряжения, которое должно быть подавлено или повышено. В этом случае у нас есть разные диапазоны напряжения для выбора. Принимая во внимание, что в стабилизаторах напряжения, в которых используются автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения, которое необходимо стабилизировать или повысить. Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились ручные / селекторные переключатели напряжения. В этих типах стабилизаторов используются электромеханические реле для подбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы и стабилизаторы напряжения стали автоматическими. Затем появился Servo стабилизатор напряжения, который способен стабилизировать напряжение непрерывно, без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно разделить на три типа:

  • Стабилизаторы напряжения типа реле
  • Servo стабилизаторы напряжения
  • Стабилизаторы статического напряжения

Стабилизаторы напряжения типа реле

В релейных стабилизаторах напряжения напряжение регулируется переключающими реле. Реле используются для подключения вторичного трансформатора в различных конфигурациях для достижения функции понижения и повышения.

Как работает релейный стабилизатор напряжения

Рисунок выше показывает, как стабилизатор напряжения типа реле выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, микроконтроллер и другие вспомогательные компоненты.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше эталонного значения, он переключает соответствующее реле для подключения требуемого постукивания для функции понижения и повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование и преимущества релейных стабилизаторов напряжения

Этот стабилизатор в основном используется для приборов / оборудования с низким номинальным энергопотреблением в жилых / коммерческих / промышленных целях.

  • Они стоят дешевле
  • Они компактны по размеру

Недостатки релейных стабилизаторов напряжения

  • Их реакция на колебания напряжения немного медленнее по сравнению с другими типами стабилизаторов напряжения
  • Они недолговечны
  • Они менее надежны
  • Они не способны выдерживать скачки напряжения, так как их предел допуска на колебания меньше
  • При стабилизации напряжения переход тракта электропитания может обеспечить незначительное прерывание электропитания

Серво стабилизаторы напряжения

В servo стабилизаторах напряжения регулирование напряжения осуществляется с помощью серводвигателя. Они также известны как сервостабилизаторы. Это замкнутые системы.

Как работает серво стабилизатор напряжения?

В системе замкнутого контура отрицательная обратная связь (также известная как ошибка подачи) гарантируется от выхода, чтобы система могла гарантировать, что был достигнут желаемый результат. Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход превышает / ниже требуемого значения, то регулятором источника входного сигнала будет получен сигнал ошибки (Выходное значение — Входное значение). Затем этот регулятор снова генерирует сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подает его на исполнительные механизмы, чтобы привести выходное значение к точному значению.

Благодаря свойству замкнутого контура стабилизаторы напряжения на основе сервоприводов используются для приборов / оборудования, которые очень чувствительны и нуждаются в точном входном питании (± 01%) для выполнения намеченных функций.

Рис. 10 — Внутренний вид серво стабилизатора напряжения

Рисунок выше показывает, как серво стабилизатор напряжения выглядит изнутри. Он имеет серводвигатель, автотрансформатор, трансформатор понижения и повышения, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки трансформатора понижения и повышения (отвод) подключен к фиксированному ответвлению автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом, который контролируется серводвигателем. Один конец вторичной катушки трансформатора
понижения и повышения подключен к входному источнику питания, а другой конец подключен к выходу стабилизатора напряжения.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше контрольного значения, он начинает работать с двигателем, который еще больше перемещает рычаг на автотрансформаторе.

При перемещении рычага на автотрансформаторе входное напряжение на первичной обмотке трансформатора понижения и повышения изменится на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться, пока разность между значением опорного напряжения и выход стабилизатора становится равным нулю. Этот полный процесс происходит за миллисекунды. Современные серво стабилизаторы напряжения поставляются с микроконтроллерной / микропроцессорной схемой управления для обеспечения интеллектуального управления пользователями.

Различные типы серво стабилизаторов напряжения

Различные типы серво стабилизаторов напряжения:

Однофазные серво стабилизаторы напряжения

В однофазных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к переменному трансформатору.

Трехфазные сбалансированные серво стабилизаторы напряжения

В трехфазных стабилизированных стабилизаторах напряжения с сервоуправлением стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам, и общей цепи управления. Выходные данные автотрансформаторов варьируются для достижения стабилизации.

Трехфазные несбалансированные серво стабилизаторы напряжения

В трехфазных несимметричных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной на каждый автотрансформатор).

Использование и преимущества серво стабилизатора напряжения

  • Они быстро реагируют на колебания напряжения
  • Они имеют высокую точность стабилизации напряжения
  • Они очень надежные
  • Они могут выдерживать скачки напряжения

Недостатки серво стабилизатора напряжения

  • Они нуждаются в периодическом обслуживании
  • Чтобы обнулить ошибку, серводвигатель должен быть выровнен. Выравнивание сервомотора требует умелых рук.

Стабилизаторы статического напряжения


Рис. 13 — Статические стабилизаторы напряжения

Статический выпрямитель напряжения не имеет движущихся частей, как в случае серво стабилизаторов напряжения. Для стабилизации напряжения используется силовая электронная схема преобразователя. Эти статические стабилизаторы напряжения имеют очень высокую точность, а стабилизация напряжения находится в пределах ± 1%.

Стабилизатор статического напряжения содержит трансформатор понижения и повышения, силовой преобразователь с изолированным затвором (IGBT), микроконтроллер, микропроцессор и другие необходимые компоненты.

Как работает статический стабилизатор напряжения

Микроконтроллер / микропроцессор управляет IGBT-преобразователем питания для генерации требуемого уровня напряжения с использованием метода «широтно-импульсной модуляции». В методе «Импульсная широтно-импульсная модуляция» преобразователи питания в режиме переключения используют силовой полупроводниковый переключатель (например, MOSFET) для управления трансформатором для получения требуемого выходного напряжения. Это сгенерированное напряжение затем подается на первичную обмотку трансформатора понижения & повышения. Преобразователь мощности IGBT также контролирует фазу напряжения. Он может генерировать напряжение, которое может быть в фазе или на 180 градусов не в фазе по отношению к входному источнику питания, что, в свою очередь, позволяет ему контролировать, нужно ли добавлять или вычитать напряжение в зависимости от повышения или понижения уровня входного питания.

Рис. 15 — Принципиальная схема статического стабилизатора напряжения

Как только микропроцессор обнаруживает падение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT, соответственно, генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Это генерируемое напряжение находится в фазе с входным источником питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, будет добавлено к входному источнику питания. И поэтому стабилизированное повышенное напряжение будет затем подаваться на нагрузку.

Аналогично, как только микропроцессор обнаруживает повышение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Соответственно, IGBT-преобразователь мощности генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Но на этот раз генерируемое напряжение будет на 180 градусов не в фазе по отношению к входному источнику питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, которое было наведено во вторичной катушке, теперь будет вычитаться из входного источника питания. И поэтому стабилизированное пониженное напряжение будет подаваться на нагрузку.

Использование / Преимущества статических стабилизаторов напряжения

  • Они очень компактны по размеру.
  • Они очень быстро реагируют на колебания напряжения.
  • Они имеют очень высокую точность стабилизации напряжения.
  • Поскольку нет движущейся части, она почти не требует технического обслуживания.
  • Они очень надежные.
  • Их эффективность очень высока.

Недостатки статического стабилизатора напряжения

Они дорогостоящие по сравнению со своими аналогами.

В чем разница между стабилизатором напряжения и регулятором напряжения?

Оба звучат одинаково. Они оба выполняют одинаковую функцию стабилизации напряжения. Однако то, как они это делают, приносит разницу. Основное функциональное отличие стабилизатора напряжения от регулятора напряжения:

Стабилизатор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений входного напряжения. В то время как,

Регулятор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений тока нагрузки.

Как выбрать лучший стабилизатор напряжения для вашего дома? Руководство по покупке

При покупке стабилизатора напряжения необходимо учитывать различные факторы. В противном случае вы можете столкнуться со стабилизатором напряжения, который может работать хуже или лучше. Чрезмерное выполнение не повредит, но это будет стоить вам лишних долларов. Так почему бы не выбрать такой стабилизатор напряжения, который может удовлетворить ваши требования и сохранить ваш карман тоже.

Различные факторы, которые играют важную роль в выборе стабилизатора напряжения

Различные факторы, которые играют жизненно важную роль и требуют рассмотрения перед выбором стабилизатора напряжения:

  • Требуемая мощность прибора (или группы приборов)
  • Тип прибора
  • Уровень колебаний напряжения в вашем районе
  • Тип стабилизатора напряжения
  • Рабочий диапазон стабилизатора напряжения, который вам нужен
  • Перегрузка по повышению / пониженному напряжению
  • Тип схемы стабилизации / управления
  • Тип монтажа для вашего стабилизатора напряжения

Пошаговое руководство по выбору и покупке стабилизатора напряжения для вашего дома

Вот основные шаги, которые вы должны выполнить, чтобы выбрать лучший выпрямитель напряжения для вашего дома:

  • Проверьте номинальную мощность устройства, для которой вам нужен стабилизатор напряжения. Номинальная мощность указана на задней панели устройства в виде наклейки или фирменной таблички. Это будет в киловаттах (KW). Обычно номинальная мощность стабилизатора напряжения указывается в кВА. Переведите его в киловатт (кВт).

(КВт = кВА * коэффициент мощности)

  • Подумайте о том, чтобы сохранить дополнительную маржу в 25-30% от номинальной мощности стабилизатора. Это даст вам дополнительную возможность добавить любое устройство в будущем.
  • Проверьте предел допуска колебаний напряжения. Если это соответствует вашим потребностям, вы готовы идти вперед.
  • Проверьте требования к монтажу и размер, который вам нужен.
  • Вы можете спросить и сравнить дополнительные функции в одном и том же ценовом диапазоне разных марок и моделей.

Практический пример для лучшего понимания

Предположим, вам нужен стабилизатор напряжения для вашего телевизора. Давайте предположим, что ваш телевизор имеет номинальную мощность 1 кВА. Допустимая надбавка 30% на 1 кВА составляет 300 Вт. Добавляя оба варианта, вы можете приобрести стабилизатор напряжения мощностью 1,3 кВт (1300 Вт) для вашего телевизора.

Видео совет при выборе стабилизатор напряжения

Самый важный совет при покупке стабилизатора напряжения

meanders.ru

Как работает стабилизатор напряжения - принцип действия

Стабилизатором напряжения называется устройство, к которому подключается напряжение на его вход, с неустойчивыми и нестабильными свойствами для нормальной работы потребителей. На выходе прибора напряжение имеет необходимые качества и свойства, способствующие нормальному функционированию нагрузки потребителей.

Стабилизаторы постоянного тока

Питание сети постоянного тока требует выравнивания при входном напряжении ниже или выше допустимого предела. При протекании тока по стабилизатору, оно выравнивается до необходимой величины. Также схему стабилизатора можно выполнить со сменой полярности питания.

Линейные

Такой прибор является делителем, на который поступает нестабильное напряжение, а на его выходе напряжение выравнивается и имеет необходимые свойства. Его принцип действия состоит в постоянном изменении значения сопротивления для создания выровненного питания на выходе.

Достоинства:

  • При эксплуатации отсутствуют помехи.
  • Простое устройство с малым числом деталей.

Недостатки:

  • При значительной разнице выходящего и входящего питания линейный стабилизатор показывает малый КПД, так как значительная часть производимой мощности переходит в тепло и расходится на сопротивлении.

Параметрический

Такое исполнение прибора с контрольным элементом, подключенным параллельно нагрузке, выполнено на полупроводниковых и газоразрядных стабилитронах.

По стабилитрону проходит ток, который выше в десять раз тока на резисторе. Поэтому такая схема подходит для стабилизации питания только в маломощных устройствах. Чаще всего его применяют в качестве составного компонента преобразователей тока со сложной конструкцией.

Последовательный

Работа прибора видна на изображенной схеме.

Эта схема соединяет два компонента:

  1. Биполярный транзистор, повышающий ток. Он является эмиттерным повторителем.
  2. Параметрический стабилизатор, рассмотренный выше.

Выходное напряжение не зависит от проходящего по стабилитрону тока. Однако оно зависит от вида вещества полупроводника. По причине сравнительной независимости этих величин выходное напряжение получается устойчивым.

При протекании по транзистору напряжение на выходе прибора повышается. При применении одного транзистора напряжение может не удовлетворить потребителя. В этом случае выполняют прибор из нескольких транзисторов, чтобы повысить ток до необходимой величины.

Компенсационный последовательный

Компенсационный последовательный стабилизатор имеет обратную связь. В нем выходное напряжение сравнивается с эталоном. Разница между ними нужна для создания сигнала устройству, контролирующему напряжение.

С сопротивления снимается некоторое количество выходного напряжения, сравнивающееся с основным значением стабилитрона. Эта разница поступает на усилитель и подается на транзистор.

Устойчивое функционирование создается при сдвиге фаз. Так как часть напряжения на выходе поступает на усилитель, то оно сдвигает фазу на угол 180 градусов. Транзистор, подключенный по типу усилителя, фазы не сдвигает, и петлевой сдвиг равен 180 градусов.

Импульсные

Электрический ток, обладающий неустойчивыми свойствами, с помощью коротких импульсов поступает на устройство накопления стабилизатора, которым является конденсатор или катушка.

Накопленная энергия далее выходит на потребитель с другими свойствами. Есть два способа стабилизации:

  1. Управление длиной импульсов.
  2. Сравнение выходного напряжения с наименьшим значением.

Импульсный стабилизатор может изменять напряжение с разными результатами. Их делят на виды:

  • Инвертирующий.
  • Повышающе-понижающий.
  • Повышающий.
  • Понижающий.

Достоинства:

  • Малая потеря энергии.

Недостатки:

  • Помехи в виде импульсов на выходе.

Стабилизаторы переменного напряжения

Такие приборы предназначены для выравнивания переменного напряжения независимо от его параметров входа. Выходное напряжение должно быть в виде идеальной синусоиды, независимо от входных дефектов питания. Различают несколько видов стабилизаторов

Накопители

Это стабилизаторы, накапливающие энергию от входного источника, а далее энергия создается снова, однако уже с постоянными параметрами.

Двигатель-генератор

Принцип работы стабилизатора напряжения такого типа состоит в изменении электроэнергии в кинетический вид, применяя электродвигатель. Далее генератор снова производит обратное изменение, уже с постоянными параметрами.

Основным компонентом системы является маховик, накапливающий энергию и выравнивающий напряжение. Он соединен с подвижными элементами генератора и двигателя, имеет большую массу, инерцию, которая сохраняет быстродействие. Так как скорость маховика постоянная, то напряжение также будет постоянным, даже при малых перепадах напряжения на входе.

Феррорезонансный

Прибор состоит:

  • Конденсатор.
  • Катушка с ненасыщенным сердечником.
  • Катушка индуктивности с насыщенным сердечником.

К катушке с сердечником насыщенным приложено постоянное напряжение, и не зависит от тока, поэтому можно подобрать данные второй катушки и емкости для стабилизации питания в необходимых пределах.

Работа такого устройства сравнивается с качелями. Их трудно сразу остановить, или сделать скорость качания выше. Качели также не нужно постоянно подталкивать, так как инерция делает свое дело. Поэтому могут быть значительные падения и обрыв питания.

Инверторный

Схема такого прибора состоит:

  • Преобразователь напряжения.
  • Микроконтроллер.
  • Емкость.
  • Выпрямитель с регулятором мощности.
  • Фильтры входа.

Принцип работы инверторного стабилизатора заключается в протекании 2-х процессов:

  1. Вначале входное переменное напряжение изменяется в постоянное при прохождении по выпрямителю и корректору. При этом электроэнергия накапливается в емкостях.
  2. Далее постоянное напряжение изменяется в переменное на выходе. Из емкости ток течет к инвертору, трансформирующему ток в переменный с постоянными данными.

Корректирующие

  • Электромагнитный, который имеет отличие от феррорезонансного отсутствием емкости, и пониженной мощностью.
  • Электромеханический и электродинамический.
  • Релейный.

ostabilizatore.ru

Стабилизатор напряжения 220в для дома своими руками схема

Бытовые устройства чувствительны к скачкам напряжения, быстрее подлежат износу, и появляются неисправности. В электрической сети напряжение часто изменяется, снижается, либо возрастает. Это взаимосвязано с отдаленностью источника энергии и некачественной линии питания.

Чтобы подключать приборы к устойчивому питанию, в жилых помещениях применяют стабилизаторы напряжения. На его выходе напряжение обладает стабильными свойствами. Стабилизатор можно приобрести в торговой сети, однако такой прибор можно изготовить своими руками.

Имеются допуски на изменение напряжения не более 10% от номинального значения (220 В). Это отклонение должно быть соблюдено как в большую сторону, так и в меньшую. Но идеальной электрической сети не бывает, и величина напряжения в сети часто меняется, усугубляя тем самым работу подключенных к ней устройств.

Электрические приборы отрицательно реагируют на такие капризы сети и могут быстро выйти из строя, потеряв при этом свои заложенные функции. Чтобы избежать таких последствий, люди применяют самодельные приборы под названием стабилизаторы напряжения. Эффективным стабилизатором стал прибор, выполненный на симисторах. Как сделать стабилизатор напряжения своими руками мы и рассмотрим.

Характеристика стабилизатора

Это устройство стабилизации не будет иметь повышенную чувствительность к изменениям напряжения, подающегося по общей линии. Сглаживание напряжения будет производиться в том случае, если на входе напряжение будет находиться в пределах от 130 до 270 вольт.

Включенные в сеть устройства будут питаться напряжением, имеющим величину от 205 до 230 вольт. От такого прибора можно будет питать электрические устройства, суммарная мощность которых до 6 кВт. Стабилизатор будет производить переключение нагрузки потребителя за 10 мс.

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками.

После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый. VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов.

Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться.

Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка.

Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход.

Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23. Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Стабилизатор напряжения и его особенности

Когда напряжение входа становится меньше 130 вольт, то на выходах компараторов появляется логический уровень малого размера. В этот момент транзистор VТ4 находится в открытом виде, первый светодиод мигает. Эта индикация сообщает о наличии низкого напряжения, что означает невозможность выполнения регулируемым стабилизатором своих функций.

Все симисторы закрытии и нагрузка отключена. Когда напряжение находится в пределах 130-150 вольт, то сигналы 1 и А имеют свойства высокого значения логического уровня. Такой уровень имеет низкое значение. В таком случае транзистор VТ5 открывается, и начинает сигнализировать второй светодиод.

Оптосимистор U1.2 открывается, так же, как и симистор VS2. Через симистор будет протекать нагрузочный ток. Затем нагрузка зайдет в верхний вывод катушки автотрансформатора Т2.

Если напряжение входа 150 – 170 В, то сигналы 2, 1 и В имеют повышенное значение логического уровня. Другие сигналы имеют низкий уровень. При таком напряжении входа транзистор VТ6 открывается, 3-й светодиод включается. В этот момент 2-й симистор открывается и ток поступает на второй вывод катушки Т2, являющийся 2-м сверху.

Собранный самостоятельно стабилизатор напряжения на 220 вольт будет соединять обмотки 2-го трансформатора, если уровень напряжения входа достигнет соответственно: 190, 210, 230, 250 вольт. Чтобы сделать такой стабилизатор, необходима печатная плата 115 х 90 мм, изготовленная из фольгированного стеклотекстолита.

Изображение платы можно отпечатать на принтере. Затем с помощью утюга переносят это изображение на плату.

Изготовление трансформаторов

Изготовить трансформаторы Т1 и Т2 можно самостоятельно. Для Т1, мощность которого 3 кВт, необходимо применить магнитопровод с поперечным сечением 1,87 см2, и 3 провода ПЭВ – 2. 1-й провод диаметром 0,064 мм. Им наматывают первую катушку, с количеством витков 8669. Другие 2 провода применяются для образования остальных обмоток. Провода на них должны быть одного диаметра 0,185 мм, с числом витков 522.

Чтобы не изготавливать самому такие трансформаторы, можно применить готовые варианты ТПК – 2 – 2 х 12 В, соединенные последовательно.

Чтобы изготовить трансформатор Т2 на 6 кВт, применяют магнитопровод тороидальной формы. Обмотку наматывают проводом ПЭВ – 2 с числом витков 455. На трансформаторе необходимо вывести 7 отводов. Первые 3 из них наматываются проводом 3 мм. Остальные 4 отвода наматываются шинами сечением 18 мм2. С таким сечением провода трансформатор не нагреется.

Отводы выполняют на таких витках: 203, 232, 266, 305, 348 и 398. Витки считают с нижнего отвода. В этом случае электрический ток сети должен поступать по отводу 266 витка.

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Достоинства и недостатки, отличия от заводских моделей

Если перечислять достоинства стабилизаторов, изготовленных самостоятельно, то основным достоинством является низкая стоимость. Производители приборов часто завышают цены, а своя сборка в любом случае обойдется меньшей стоимостью.

Другим преимуществом можно определить такой фактор, как возможность простого ремонта своими руками устройства, Ведь кто, если не вы знаете лучше устройство, собранное своими руками.

В случае поломки хозяин прибора сразу найдет неисправный элемент и заменит его на новый. Простая замена деталей создается таким фактором, что все детали приобретались в магазине, поэтому их можно будет легко снова купить в любом магазине.

Недостатком самостоятельно собранного стабилизатора напряжения необходимо выделить его сложную настройку.

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

ostabilizatore.ru

Стабилизатор напряжения. Виды и работа. Применение и как выбрать

В жизни современного человека есть много электроприборов, которыми он постоянно пользуется как в быту, так и на работе. Есть такие потребители, которые требуют поддержания напряжения в строгих пределах и чтобы этого добиться, необходимо использовать стабилизатор напряжения.

Виды

В зависимости от технического решения, стабилизаторы могут быть нескольких видов:

  • Релейные. Они обеспечивают ступенчатую регулировку и состоят из автотрансформатора и силового реле. Такие приборы не могут с высокой точностью регулировать выходное напряжение. Для улучшения качества стабилизации, усложняют конструкцию автотрансформатора, но это приводит к увеличению стоимости оборудования. Такие стабилизаторы используются с маломощными приборами.

  • Симисторные. Это электронные приборы, которые работают по принципу релейных, но обмотки в них переключаются симисторами (электронные ключи). Так как нет механического реле, то скорость переключения увеличивается, они более надежные, тише работают, но также не могут обеспечить высокую точность выходного напряжения.

  • Электромеханические или сервоприводные. Они работают по принципу реостата (электропривод передвигает контакты по обмотке автотрансформатора), поэтому могут плавно изменять выходное напряжение. Такое оборудование может использоваться в сетях, где нет резких скачков напряжения.

  • Феррорезонансные. Данное оборудование непрерывно регулирует выходное напряжение в заданном диапазоне. Такой вариант имеет ряд нерешенных проблем, поэтому его применение ограничено.

  • Инверторные. Это самые современные стабилизаторы, которые работают по принципу двойного преобразования напряжения: сначала оно преобразуется из переменного в постоянное, а потом снова из постоянного в переменное. В этом случае нет громоздкого трансформатора, поэтому такие приборы имеют небольшие размеры и вес. Данное оборудование имеет высокую точность, она в переделах 1%. Независимо от напряжения на входе, на выходе мы получаем практически идеальные 220 В.
Как устроен стабилизатор

Стабилизатор напряжения состоит из нескольких основных частей, которые есть в таком оборудовании, независимо от его вида:

  • Автотрансформатор. Он может иметь алюминиевую обмотку, используется в дешевых моделях, и медную – применяется в качественных приборах.
  • Электронная схема управления. У разных торговых марок она будет отличаться, поэтому стабилизатор напряжения одного вида, но разных изготовителей будет выполнять свои функции неодинаково. Отличие состоит в алгоритме замыкания ключей, поэтому идентичные по типу приборы имеют значительные отличия в работе.
  • Замыкающие ключи. Эти элементы стабилизатора определяют тип его коммуникации: электронные или электромеханические. Более предпочтительные электронные стабилизаторы, так как у них скорость срабатывания в пределах 10-20 мс, а у электромеханических она будет 40-50 мс.
  • Элементы защиты. К основным относится тепловой и магнитный расцепители, а к дополнительным — защита от молнии.
  • Байпас – устройство, которое обеспечивает непрерывность питания.
Принцип действия

Принцип работы оборудования основан на отслеживании входящего напряжения и корректировки его на выходе, в зависимости от происходящих изменений.

Когда на входе происходит изменение напряжения, стабилизатор тратит некоторое время на проведение замера. В электронных моделях на это требуется до 20 мс, а у электромеханических до 50 мс. На следующем этапе работы происходит соответствующая реакция на возникшую ситуацию. Все изменения напряжения выравниваются до 220 В.

Когда на входе показатели снижаются, стабилизатор напряжения поднимает его показатели на входе, насколько хватает возможностей автотрансформатора. Когда значения на входе превышают заданный диапазон, то прибор автоматически отключает подачу напряжения. Стабилизатор напряжения не пропускает на подключенное оборудование импульсные скачки.

Напряжение регулируется за счет подключения добавочных обмоток трансформатора при помощи ключей, которые могут быть электронными или релейными. Процесс коммутации контролируется процессором, который не позволяет одновременного включения более одного ключа.

Область применения

Стабилизаторы напряжения нашли широкое применение как в промышленности, так и в быту. Нестабильное напряжение в сети делает использование такого оборудования очень актуальным.

У каждого в доме есть такое дорогостоящее оборудование как компьютер, стиральная машина, холодильник и другая аппаратура, для которого очень важно качественное электропитание. Оптимальным и недорогим решением, позволяющим надежно защищать бытовые приборы и различное промышленное оборудование, является стабилизатор напряжения.

Привести к выходу из строя или к нестабильной работе различной бытовой техники может пониженное или повышенное напряжение, а также его пиковые скачки. Наличие стабилизатора позволяет выравнивать возникающие перепады напряжения, на выходе он выдает номинальное напряжение, которое необходимо для корректной работы подключенного электрооборудования.

Как выбрать стабилизатор напряжения

Для совершения правильного выбора, специалисты рекомендуют обращать внимание на такие особенности:

  • Способ монтажа, стабилизатор может устанавливаться рядом с обслуживаемым устройством, стационарные устройства монтируются на стену в горизонтальном или вертикальном положении.
  • Если используется прибор на 220 В, то точность его работы должна составлять 1-3%.
  • Мощность, надо приобретать прибор, мощность которого будет на 30% больше мощности подключаемого оборудования.
  • Могут быть одно и трехфазные стабилизаторы.
  • Быстродействие прибора, измеряется этот показатель в миллисекундах.
  • Наличие защиты, эта функция защитит прибор от короткого замыкания, резких скачков напряжения и других негативных моментов.
  • Имеют значения и размеры оборудования, а также уровень шума, который он издает во время работы.
  • Стоимость, качественный прибор не может стоить дешево, лучше приобрести более дорогое, но качественное оборудование.
  • Гарантийный срок службы, у качественного стабилизатора он будет несколько лет, тогда как у дешевых моделей вообще может не быть никаких гарантий.

Если подключается оборудование с мощным электродвигателем, то надо учитывать реактивную составляющую мощности, так как при запуске мотора, ток сильно повышается и если такой параметр не учесть, то стабилизатор не справится с нагрузкой, возникающей при запуске электродвигателя.

Достоинства и недостатки

Преимущества и недостатки таких приборов будут зависеть от их вида:

  • Релейные. Главное достоинство релейного стабилизатора – высокая скорость регулирования напряжения. Недостатки таких приборов в том, что изменение напряжения происходит ступенчато, точность стабилизации низкая и искажается синусоида.
  • Симисторные. Достоинства в том, что во время работы они имеют низкий уровень шума, процесс коммутации быстрый, а изменение напряжения происходит плавно. Главный их недостаток в низкой точности регулирования напряжения.
  • Сервоприводные. Такие модели плавно регулируют выходные параметры, не искажают синусоиду и обеспечивают высокую точность регулирования. Недостатки такого оборудования в невысокой скорости реакции и низкой скорости регулирования, а наличие механически передвигаемых деталей, снижает надежность таких приборов.
  • Феррорезонансные. Данное оборудование обеспечивает высокое быстродействие и точность стабилизации. Оно имеет большой срок службы и высокую надежность. Недостаток таких стабилизаторов в том, что происходит искажение синусоиды, они имеют небольшой диапазон регулировки, у них большой вес и КПД всего 70-80%. Кроме этого, не допускается работа такого оборудования при больших перегрузках и в режиме холостого хода.
  • Инверторные. Они обеспечивают высокую точность и скорость регулировки, могут работать как с очень низким, так и с высоким входным напряжением. Такие приборы могут работать без нагрузки, подавляют импульсы и помехи, создают правильную синусоиду. Основные их недостатки и в низком КПД, сложности ремонта и высокой стоимости.

Срок службы электроприборов и качество их работы будут зависеть от параметров подаваемой электроэнергии. Чтобы защитить технику от изменения напряжения в сети и обеспечить ее надежную и долгую работу, достаточно установить современный стабилизатор напряжения.

Похожие темы:

tehpribory.ru

схема, устройство и принцип действия

В любой сети напряжение не является стабильным и постоянно меняется. Зависит это в первую очередь от потребления электроэнергии. Таким образом, подключая приборы в розетку, можно значительно уменьшить напряжение в сети. В среднем отклонение составляет 10 %. Многие устройства, которые работают от электричества, рассчитаны на незначительные изменения. Однако большие колебания приводят к перегрузкам трансформаторов.

Как устроен стабилизатор?

Основным элементом стабилизатора принято считать трансформатор. Через переменную цепь он соединяется с диодами. В некоторых системах их имеется более пяти единиц. В результате они образуют мост в стабилизаторе. За диодами располагается транзистор, за которым устанавливается регулятор. Дополнительно в стабилизаторах имеются конденсаторы. Выключение автоматики осуществляется при помощи механизма замыкания.

Устранение помех

Принцип работы стабилизаторов построен на методе обратной связи. На первом этапе напряжение подается на трансформатор. Если его предельное значение превышает норму, то в работу вступает диод. Соединен он напрямую с транзистором по цепи. Если рассматривать систему переменного тока, то напряжение дополнительно фильтруется. В данном случае конденсатор исполняет роль преобразователя.

После того как ток пройдет резистор, он вновь возвращается на трансформатор. В результате номинальная величина нагрузки изменяется. Для устойчивости процесса в сети имеется автоматика. Благодаря ей конденсаторы не перегреваются в коллекторной цепи. На выходе сетевой ток проходит по обмотке через другой фильтр. В конечном счете напряжение становится выпрямленным.

Особенности сетевых стабилизаторов

Принципиальная схема стабилизатора напряжения данного типа представляет собой набор транзисторов, а также диодов. В свою очередь механизм замыкания в ней отсутствует. Регуляторы при этом имеются обычного типа. В некоторых моделях дополнительно устанавливается система индикации.

Она способна показать мощность скачков в сети. По чувствительности модели довольно сильно отличаются. Конденсаторы, как правило, в цепи имеются компенсационного типа. Система защиты у них отсутствует.

Устройства моделей с регулятором

Для холодильного оборудования востребованным является регулируемый стабилизатор напряжения. Схема его подразумевает возможность настройки прибора перед началом использования. В данном случае это помогает в устранении высокочастотных помех. В свою очередь электромагнитное поле проблем для резисторов не представляет.

Конденсаторы также включаются в регулируемый стабилизатор напряжения. Схема его не обходится без транзисторных мостов, которые соединяются между собой по коллекторной цепочке. Непосредственно регуляторы могут устанавливаться различных модификаций. Многое в данном случае зависит от предельного напряжения. Дополнительно учитывается тип трансформатора, который имеется в стабилизаторе.

Стабилизаторы "Ресанта"

Схема стабилизатора напряжения "Ресанта" представляет собой набор транзисторов, которые взаимодействуют между собой по коллектору. Для охлаждения системы имеется вентилятор. С высокочастотными перегрузками в системе справляется конденсатор компенсационного типа.

Также схема стабилизатора напряжения "Ресанта" включает в себя диодные мосты. Регуляторы во многих моделях устанавливаются обычные. Ограничения по нагрузке у стабилизаторов "Ресанта" есть. В целом помехи ими воспринимаются все. К недостаткам следует отнести высокую шумность трансформаторов.

Схема моделей с напряжением 220 В

Схема стабилизатора напряжения 220 В отличается от прочих устройств тем, что в ней имеется блок управления. Данный элемент соединяется напрямую с регулятором. Сразу за системой фильтрации имеется диодный мост. Для стабилизации колебаний дополнительно предусмотрена цепь из транзисторов. На выходе после обмотки располагается конденсатор.

С перегрузками в системе справляется трансформатор. Преобразование тока осуществляется им же. В целом диапазон мощности у данных устройств довольно высокий. Работать эти стабилизаторы способны и при минусовой температуре. По шумности они не отличаются от моделей других типов. Параметр чувствительности сильно зависит от производителя. Также на нее влияет тип установленного регулятора.

Принцип работы импульсных стабилизаторов

Схема электрическая стабилизатора напряжения данного типа схожа с моделью релейного аналога. Однако отличия в системе все же есть. Главным элементом в цепи принято считать модулятор. Занимается данное устройство тем, что считывает показатели напряжения. Далее сигнал переносится на один из трансформаторов. Там проходит полная обработка информации.

Для изменения силы тока имеется два преобразователя. Однако в некоторых моделях он установлен один. Чтобы справиться с электромагнитным полем, задействуется выпрямительный делитель. При повышении напряжения он снижает предельную частоту. Чтобы ток поступил на обмотку, диоды передают сигнал на транзисторы. На выходе стабилизированное напряжение проходит по вторичной обмотке.

Высокочастотные модели стабилизаторов

По сравнению с релейными моделями, высокочастотный стабилизатор напряжения (схема показана ниже) является более сложным, и диодов в нем задействуется больше двух. Отличительной особенность приборов данного типа принято считать высокую мощность.

Трансформаторы в цепи рассчитаны на большие помехи. В результате данные приборы способны защитить любую бытовую технику в доме. Система фильтрации в них настроена на различные скачки. За счет контроля напряжения величина тока может изменяться. Показатель предельной частоты при этом будет увеличиваться на входе, и уменьшаться на выходе. Преобразование тока в этой цепи осуществляется в два этапа.

Первоначально задействуется транзистор с фильтром на входе. На втором этапе включается диодный мост. Для того чтобы процесс преобразования тока завершился, системе требуется усилитель. Устанавливается он, как правило, между резисторами. Таким образом, температура в устройстве поддерживается на должном уровне. Дополнительно в системе учитывается источник питания. Использование блока защиты зависит от его работы.

Стабилизаторы на 15 В

Для устройств с напряжением 15 В используется сетевой стабилизатор напряжения, схема которого по своей структуре является довольно простой. Порог чувствительности у приборов находится на малом уровне. Модели с системой индикации встретить очень сложно. В фильтрах они не нуждаются, поскольку колебания в цепи незначительные.

Резисторы во многих моделях есть только на выходе. За счет этого процесс преобразования происходит довольно быстро. Входные усилители устанавливаются самые простые. Многое в данном случае зависит от производителя. Используются стабилизатор напряжения (схема показана ниже) этого типа чаще всего в лабораторных исследованиях.

Особенности моделей на 5 В

Для устройств с напряжением 5 В используют специальный сетевой стабилизатор напряжения. Схема их состоит из резисторов, как правило, не более двух. Применяют такие стабилизаторы исключительно для нормального функционирования измерительных приборов. В целом они являются довольно компактными, а работают тихо.

Модели серии SVK

Модели данной серии относятся к стабилизаторам латерного типа. Чаще всего их используют на производстве для уменьшения скачков от сети. Схема подключения стабилизатора напряжения этой модели предусматривает наличие четырех транзисторов, которые расположены попарно. За счет этого ток преодолевает меньшее сопротивление в цепи. На выходе у системы имеется обмотка для обратного эффекта. Фильтров в схеме предусмотрено два.

За счет отсутствия конденсатора процесс преобразования также происходит быстрее. К недостаткам следует отнести большую чувствительность. На электромагнитное поле прибор реагирует очень остро. Схема подключения стабилизатора напряжения серии SVK регулятор предусматривает, как и систему индикации. Напряжение максимум устройством воспринимается до 240 В, а отклонение при этом не может превышать 10 %.

Автоматические стабилизаторы "Лигао 220 В"

Для систем сигнализации является востребованным от компании "Лигао" стабилизатор напряжения 220В. Схема его построена на работе тиристоров. Использоваться данные элементы способны исключительно в полупроводниковых цепях. На сегодняшний день типов тиристоров существует довольно много. По степени защищенности они делятся на статические, а также динамические. Первый вид используется с источниками электричества различной мощности. В свою очередь динамические тиристоры имеют свой предел.

Если говорить про компании "Лигао" стабилизатор напряжения (схема показана ниже), то в нем имеется активный элемент. В большей степени он предназначен для нормального функционирования регулятора. Представляет он собой набор контактов, которые способны соединяться. Необходимо это для того чтобы увеличивать или уменьшать предельную частоту в системе. В других моделях тиристоров может иметься несколько. Устанавливаются они между собой при помощи катодов. В результате коэффициент полезного действия устройства можно значительно повысить.

Низкочастотные устройства

Для обслуживания устройств с частотой менее 30 Гц существует такой стабилизатор напряжения 220В. Схема его схожа со схемами релейных моделей за исключением транзисторов. В данном случае они имеются с эмиттером. Иногда дополнительно устанавливается специальный контроллер. Многое зависит от производителя, а также модели. Контроллер в стабилизаторе необходим для передачи сигнала на блок управления.

Для того чтобы связь была качественной, производители используют усилитель. Устанавливается он, как правило, на входе. На выходе в системе имеется обычно обмотка. Если говорить про предел напряжения в 220 В, конденсаторов можно найти два. Коэффициент передачи тока у таких устройств довольно низкий. Причиною этого принято считать малую предельную частоту, которая является следствием работы контроллера. Однако коэффициент насыщения находится на высокой отметке. Во многом это связано именно с транзисторами, которые устанавливаются с эмиттерами.

Зачем нужны феррорезонансные модели?

Феррорезонансные стабилизаторы напряжения (схема показана ниже) используются на различных промышленных объектах. Порог чувствительности у них довольно высокий за счет мощных блоков питания. Транзисторы в основном устанавливаются попарно. Количество конденсаторов зависит от производителя. В данном случае это будет влиять на конечный порог чувствительности. Для стабилизации напряжения тиристоры не используются.

В данной ситуации с этой задачей способен справиться коллектор. Коэффициент усиления у них очень высокий благодаря прямой передаче сигнала. Если говорить про вольтамперные характеристики, то сопротивление в цепи поддерживается на уровне 5 МПа. В данном случае это оказывает положительное действие на предельную частоту стабилизатора. На выходе дифференциальное сопротивление не превышает 3 МПа. От повышенного напряжения в системе спасают транзисторы. Таким образом, перегрузок по току удается избежать в большинстве случаев.

Стабилизаторы латерного типа

Схема у стабилизаторов латерного типа отличается повышенным коэффициентом полезного действия. Входное напряжение при этом составляет в среднем 4 МПа. В данном случае пульсация выдерживается большой амплитуды. В свою очередь, выходное напряжение стабилизатора равняется 4 МПа. Резисторы во многих моделях устанавливаются серии "МР".

Регулирование тока в цепи происходит постоянно и за счет этого предельную частоту удается понизить до отметки 40 Гц. Делители в усилителях данного типа работают сообща с резисторами. В итоге все функциональные узлы связаны между собой. Усилитель постоянного тока обычно устанавливается после конденсатора перед обмоткой.

fb.ru

Стабилизатор напряжения — типы и принцип работы, характеристики и устройство.

Феррорезонансные стабилизаторы напряжения. Были разработаны в середине 60 годов прошлого века, их принцип работы основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей. Применялись такие устройства для регулировки напряжения питания бытовой техники (телевизор, радиоприёмник, холодильник и т.п.).

Феррорезонансный стабилизатор напряжения

Их преимущество заключается в высокой точности 1-3% и быстрой (для того времени) скорость регулирования. Недостаток — повышенный уровень шума и зависимость качества стабилизации от величины нагрузки. Современные устройства лишены этих недостатков, но стоимость их равна или выше стоимости ИБП (Источника Бесперебойного Питания) на такую же мощность, вследствие чего они широкого распространения в качестве бытовых не получили.

Электромеханические стабилизаторы напряжения. В 60-80-е годы прошлого века для регулирования напряжения применялись автотрансформаторы с ручной корректировкой (ЛАТР), вследствие чего приходилось постоянно следить за вольтметром (стрелочный или светящаяся линейка) и, при необходимости, вручную крутить ползунок с токосъёмными щётками. В настоящее время принцип работы автоматизирован с помощью электродвигателя с редуктором (сервопривода).

Электромеханический стабилизатор напряжения

Единственные достоинства электромеханических стабилизаторов напряжения — низкая цена и хорошая точность регулировки 2-3%. Недостатков много — низкая скорость регулирования из-за инерционности двигателя и повышенный уровень шума: шумит электродвигатель и редуктор, и практически постоянно, т.к. отслеживаются изменения с шагом 2-4 вольта. Плюс к этому, добавляется повышенный износ механический частей и недолгий общий ресурс работы устройства в целом, что подтверждается сроком гарантии всего в 1 год. Также при резком увеличении значений сети часто кратковременно отключается нагрузка, т.к. стабилизатор не успевает погасить этот скачок, и напряжение на ней превышает максимально допустимое значение.

Вследствие всего вышесказанного получили распространение как дешёвые стабилизаторы для питания недорогой домашней электротехники.

Электронные стабилизаторы напряжения. Наиболее широкий класс устройств ступенчатого регулирования, обеспечивающих исключительное постоянство электропитания нагрузки с заданной точностью в широких пределах изменения входной сети. Принцип работы основан на автоматическом переключении секций автотрансформатора с помощью силовых ключей (реле, тиристоры, симисторы).

Электронный стабилизатор напряжения

К их достоинствам можно отнести: высокое быстродействие, очень широкий входной диапазон, отсутствие искажения формы напряжения, высокий КПД, низкий уровень шума (только от вентиляторов охлаждения). Точность стабилизации определяется количеством ступеней регулирования и, в зависимости от модели, может составлять от 5 до 0.5%, а некоторые модели даже имеют возможность коррекции в пределах 210-230 вольт для лучшей адаптации к импортному оборудованию. Необходимо особо отметить высокую надёжность 3-х фазных конфигураций, где каждую фазу в отдельности регулирует независимый однофазный блок.

Несмотря на высокую стоимость, электронные стабилизаторы напряжения — это оптимальное соотношение цена/качество, и они заслуженно нашли наибольшее распространение на рынке высококачественных электроприборов.

Инверторные стабилизаторы напряжения. Самый молодой тип регуляторов, начал выпускаться во второй половине 10-х годов нашего столетия. Как и ИБП (источник бесперебойного питания), принцип работы основан на двойном преобразовании сетевого напряжения: сначала оно выпрямляется а затем заново преобразуется в переменное. Их достоинства, в общем, такие же, как и у электронных стабилизаторов, но есть два существенных положительных отличия. Во-первых, они не содержат трансформаторов и поэтому имеют небольшой вес и габариты, а во-вторых, они ещё стабилизируют и частоту тока! К недостаткам можно отнести то, что в трёхфазных моделях при неполадках в любом контуре регулирования фазы два остальных тоже отключаются.

Инверторный стабилизатор напряжения

В общем, у инверторных стабилизаторов напряжения есть определённое будущее и существенный сектор применения

www.td-m.ru

Принцип работы стабилизатора напряжения - Москва, СПБ

Принцип работы стабилизатора напряжения.

В нашем интернет-магазине представлены различные по типу автоматической регулировки стабилизирующие устройства, выпускаемые под брендовыми марками Энергия и Voltron у каждого из которых свои особенности и принцип функционирования. На сегодня мы успешно занимаемся продажей релейных (ступенчатых), электромеханических, электронных (тиристорных) и гибридных моделей российского производства для сети 220В и 380В. Главной задачей сетевых отечественных электроприборов рекомендуемых к заказу в наших каталогах является: постоянное обеспечение защиты техники от низкого и повышенного электроснабжения в бытовой электросети переменного тока и напряжения, высокоскоростная защита от короткого замыкания и кратковременных перегрузок, а также негативно сказывающихся на домашних и офисных высокочувствительных потребителях электромеханических помех. Вы можете купить у нас как простые, так и универсальные российские устройства для сети 220, 380 Вольт высокого качества и надёжности в Москве, СПБ и регионах России. Так как у нас часто спрашивают, как работает наше электрооборудование, мы решили подробно описать всё в данной статье.

 

Принцип работы релейного стабилизатора напряжения.

Функционирование данного оборудования для сети 220В осуществляется благодаря автоматической регулировке нестабильного электроснабжения при помощи силовых ключей - реле. Сглаживание повышенного или пониженного входного напряжения происходит по ступеням путём включения и выключения специальных обмоток трансформатора. Чем больше количество ступеней переключения у релейного стабилизатора, тем выше будет его точность стабилизации. Погрешность таких аппаратов обычно зафиксирована на уровне ±5, ±6, а чаще всего ±8, ±10 процентов. В отличие от электромеханических линеек располагают более расширенным диапазоном (от 100В до 280В) и более высокой скоростью реагирования (до 20 мс). Не рекомендуются для высокоточной электротехники. Безотказно справляются со сбоями в бытовой сети, даже при эксплуатации в различных помещениях с минусовой температурой до -30 градусов Цельсия. Недостатки: во время резкого падения электроэнергии возможно мерцание света. Являются самыми распространенными устройствами, которые пользуются большим спросом для дачи, дома.

 

Принцип работы электромеханического стабилизатора напряжения.

Данные устройства представляют собой усиленный достаточно эффективный и очень надёжный вольтодобавочный трансформатор. В подобных схожих по типу стабилизации аппаратах качественное напряжение на выходе преобразуется благодаря высокоточному перемещению щёточного узла по трансформаторной медной обмотке. За счёт этого регулировка ненормированного электропитания до оптимального значения (220В или 380В) происходит максимально точно и плавно. Поскольку это подвижные элементы конструкции электромеханических стабилизаторов в моменты выравнивания электроэнергии возникает небольшое жужжание. Когда необходимости в стабилизации нет, данное оборудование функционирует практически бесшумно. Помимо высокой точности такие модели формируют на выходе идеальную синусоидальную форму сигнала. Погрешность всего ±3%. Применяется для непрерывной защиты дома, квартиры, медицинских и помыленных помещений с дорогостоящими высокоточными приборами. Располагают хорошей помехоустойчивостью и широким диапазоном. В процессе работы лампочки не мерцают. Недостаток: не приспособлены для эксплуатации в условиях отрицательной температуры.

Принцип работы электронного стабилизатора напряжения.

Самые новые и лучшие по типу регулировки электроприборы, поэтому их стоимость намного выше электромеханических и релейных моделей. Принцип сглаживания скачков и просадок однофазных (220В) электронных стабилизаторов очень похож на релейный. Основное их отличие заключается в том, что в качестве электронных ключей используются современные стойкие к сильным кратковременным перегрузкам до (180%) - тиристоры или симисторы. Сглаживание ненормированного напряжения выполняется также при помощи специальных ключей переключения, только если в релейных сетевых приборах их не более 5-7, то в электронных марках (тиристорных или симисторных) их от 12 до 16 штук. Соответственно благодаря большому количеству ступеней автоматического переключения стабилизация некачественного электропитания осуществляется в максимально плавном режиме, формируется стабильное поддержание чистой формы синусоидального сигнала, и скорость реагирования повышается в несколько раз. Полное отсутствие механических деталей позволяет им надёжно работать не менее 10 лет. Электронные марки располагают самыми высокими техническими характеристиками. Расширенная сфера применения: частные дома, коттеджи, квартиры, дачи, офисы, промышленные или медицинские объекты и другие жилые, а также рабочие помещения. Имеют бесшумный режим выполнения всех функций.

 

Принцип работы гибридного стабилизатора напряжения.

Универсальное по своей конструкции электрооборудование российского производителя «ЭТК Энергия» для переменной сети, не имеющее пока никаких аналогов. Данные серии качественно работают с простой и высокочувствительной электротехникой. Представляет собой усовершенствованный сетевой аппарат, в который обеспечивает выравнивание электроэнергии в двух различных режимах - электромеханическом + релейном. Если напряжение на входе не опускается ниже 144 Вольт или повышается до 256 Вольт, используется электромеханическая система сглаживания скачков и просадок. Если же оно опускается ниже 144В или поднимается более 256В, тогда незамедлительно срабатывает система управления и включается релейный высокоскоростной режим стабилизации. Максимальный диапазон от 105В до 280В. Сфера круглосуточного применения: дачи, офисы, коттеджи, дачи, магазины, медицинские и промышленные помещения. Недостаток: как и электромеханические серии, совершенно не приспособлены для низких климатических условий непрерывной эксплуатации.

Принцип работы стабилизатора напряжения - Москва, СПБ.

stabilizatory.msk.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *