Устройство счетчика электроэнергии: Счетчик электроэнергии: принцип работы, устройство, назначение

Содержание

Счетчик электроэнергии: принцип работы, устройство, назначение

Все мы знаем, зачем нужен счетчик электроэнергии – для правильного учета расхода электричества. На основании показаний электросчетчика осуществляется оплата «за свет». В этой статье мы хотели бы рассказать читателям самэлектрик.ру об устройстве и принципе работы счетчика электроэнергии. Для вас мы рассмотрим как электронную модель, так и старого образца – индукционную.

Индукционный

Старые электросчетчики состоят из следующих элементов:

  1. Последовательная обмотка, именуемая также токовой катушкой. Состоит из нескольких витков толстого провода.
  2. Параллельная обмотка (катушка напряжения). Устроена, наоборот, из большого количества витков провода маленькой толщины.
  3. Счетный механизм. Устанавливается на оси алюминиевого диска.
  4. Постоянный магнит, назначение которого – тормозить и обеспечивать плавный ход диска.
  5. Диск из алюминия. Крепится на подшипниках и подпятниках.

вихревые токи

Как видно на схеме, устройство индукционного счетчика электроэнергии достаточно простое. Что касается принципа работы, он также несложен. Сначала переменное напряжение подается на параллельную обмотку (катушку напряжения) и далее протекает на вторую, токовую катушку. Между двумя электромагнитами катушек возникают магнитные вихревые токи, которые, собственно, и способствуют вращению диска. Чем больше сила тока, тем быстрее будет крутиться диск. В свою очередь счетный механизм работает по следующему принципу: вращение от диска передается к барабану за счет червячной передачи (этому способствует установленный на оси диска червяк, который передает вращение через шестеренку, что видно на схеме выше).

Наглядно увидеть, как работает индукционный электросчетчик, вы можете на видео ниже:

Схема работы прибора учета электроэнергии старого типа

Обращаем ваше внимание на то, что принцип работы однофазного счетчика электроэнергии старого образца аналогичен трехфазной модели.

Электронный

В электронном счетчике, к примеру, Энергомера ЦЭ6803В, нет ни диска, ни червячной передачи. Устройство счетчиков электроэнергии нового образца показано на схеме и фото ниже:

Принцип действия электронной модели заключается в том, что датчики тока и напряжения передают сигналы на преобразователь. Последний, в свою очередь, передает код на микроконтроллер для дальнейшей расшифровки и передачи данных на дисплей. В результате мы видим, сколько киловатт электроэнергии израсходовано на данный момент.

На этом видео подробно рассматривается устройство электронного и индукционного счетчика:

Как устроены электросчетчики

Что касается многотарифных приборов учета, типа «день-ночь» или трехтарифные модели, в их устройстве дополнительно встроен модуль памяти, который запоминает количество тока, «намотанное» в разных режимах: днем и ночью. Это нужно для того, чтобы правильно подсчитывать оплату за электроэнергию (с 23:00 до 7:00 стоимость киловатта меньше, чем в остальное время суток). Про преимущества и недостатки двухтарифных электросчетчиков можете прочитать в нашей статье.

Существуют также модели приборов учета электроэнергии с пультом. В их конструкцию внесен механизм, который может блокировать систему подсчета израсходованного электричества.

Вот и все, что хотелось рассказать вам о том, какое устройство и принцип работы счетчиков электроэнергии. Надеемся, информация была для вас понятной и полезной!

Будет полезно прочитать:

Обзор и устройство современных счётчиков электроэнергии / Хабр

За последнее время на смену индукционным счётчикам электроэнергии пришли электронные. В данных счётчиках счётный механизм приводится во вращение не с помощью катушек напряжения и тока, а с помощью специализированной электроники. Кроме того, средством счёта и отображения показаний может являться микроконтроллер и цифровой дисплей соответственно. Всё это позволило сократить габаритные размеры приборов, а также, снизить их стоимость.

В состав практически любого электронного счётчика входит одна или несколько специализированных вычислительных микросхем, выполняющие основные функции по преобразованию и измерению. На вход такой микросхемы поступает информация о напряжении и силе тока с соответствующих датчиков в аналоговом виде. Внутри микросхемы данная информация оцифровывается и преобразуется определённым образом. В результате, на выходе микросхемы формируются импульсные сигналы, частота которых пропорциональна текущей потребляемой мощности нагрузки, подключенной к счётчику. Импульсы поступают на счётный механизм, который представляет собой электромагнит, согласованный с зубчатыми передачами на колёсики с цифрами. В случае с более дорогостоящими счётчиками с цифровым дисплеем применяется дополнительный микроконтроллер. Он подключается к вышесказанной микросхеме и к цифровому дисплею по определённому интерфейсу, ведёт накопление результата измерения электроэнергии в энергонезависимую память, а также, обеспечивает дополнительный функционал прибора.

Рассмотрим несколько подобных микросхем и моделей счётчиков, которые мне попадались под руку.

Ниже на рисунке в разобранном виде изображён один из наиболее дешёвых и популярных однофазных счётчиков «НЕВА 103». Как видно из рисунка, устройство счётчика довольно простое. Основная плата состоит из специализированной микросхемы, её обвески и узла стабилизатора питания на основе балластового конденсатора. На дополнительной плате размещён светодиод, индицирующий потребляемую нагрузку. В данном случае – 3200 импульсов на 1 кВт*ч. Также есть возможность снимать импульсы с зелёного клеммника, расположенного вверху счётчика. Счётный механизм состоит из семи колёсиков с цифрами, редуктора и электромагнита. На нём отображается посчитанная электроэнергия с точностью до десятых кВт*ч. Как видно из рисунка, редуктор имеет передаточное отношение 200:1. По моим замечаниям, это означает «200 импульсов на 1 кВт*ч». То есть, 200 импульсов, поданных на электромагнит, поспособствуют прокрутке последнего красного колёсика на 1 полный оборот.

Это соотношение кратно соотношению для светодиодного индикатора, что весьма не случайно. Редуктор с электромагнитом размещён в металлической коробке под двумя экранами с целью защиты от вмешательства внешним магнитным полем.

В данной модели счётчика применяется микросхема ADE7754. Рассмотрим её структуру.

На пины 5 и 6 поступает аналоговый сигнал с токового шунта, который расположен на первой и второй клеммах счётчика (на фотографии в этом месте видно повреждение). На пины 8 и 7 поступает аналоговый сигнал, пропорциональный напряжению в сети. Через пины 16 и 15 есть возможность устанавливать усиление внутреннего операционного усилителя, отвечающий за ток. Оба сигнала с помощью узлов АЦП преобразуются в цифровой вид и, проходя определённую коррекцию и фильтрацию, поступают на умножитель. Умножитель перемножает эти два сигнала, в результате чего, согласно законам физики, на его выходе получается информация о текущей потребляемой мощности. Данный сигнал поступает на специализированный преобразователь, который формирует готовые импульсы на счётное устройство (пины 23 и 24) и на контрольный светодиод и счётный выход (пин 22).

Через пины 12, 13 и 14 конфигурируются частотные множители и режимы вышеперечисленных импульсов.

Стандартная схема обвески практически представляет собой схему рассматриваемого счётчика.

Общий минусовой провод соединён с нулём 220В. Фаза поступает на пин 8 через делитель на резисторах, служащий для снижения уровня измеряемого напряжения. Сигнал с шунта поступает на соответствующие входы микросхемы также через резисторы. В данной схеме, предназначенной для теста, конфигурационные пины 12-14 подключены к логической единице. В зависимости от модели счётчика, они могут иметь разную конфигурацию. В данном кратком обзоре эта информация не столь важна. Светодиодный индикатор подключен к соответствующему пину последовательно вместе с оптической развязкой, на другой стороне которой подключается клеммник для снятия счётной информации (К7 и К8).

Из этого же семейства микросхем существуют похожие аналоги для трёхфазных измерений. Вероятнее всего, они встраиваются в дешёвые трёхфазные счётчики.

В качестве примера на рисунке ниже представлена структура одной из таких микросхем, а именно ADE7752.

Вместо двух узлов АЦП, здесь применено их 6: по 2 на каждую фазу. Минусовые входы ОУ напряжения объединены вместе и выводятся на пин 13 (ноль). Каждая из трёх фаз подключается к своему плюсовому входу ОУ (пины 14, 15, 16). Сигналы с токовых шунтов по каждой фазе подключаются по аналогии с предыдущим примером. По каждой из трёх фаз с помощью трёх умножителей выделяется сигнал, характеризующий текущую мощность. Эти сигналы, кроме фильтров, проходят через дополнительные узлы, которые активируются через пин 17 и служат для включения операции математического модуля. Затем эти три сигнала суммируются, получая, таким образом, суммарную потребляемую мощность по всем фазам. В зависимости от двоичной конфигурации пина 17, сумматор суммирует либо абсолютные значения трёх сигналов, либо их модули. Это необходимо для тех или иных тонкостей измерения электроэнергии, подробности которых здесь не рассматриваются.

Данный сигнал поступает на преобразователь, аналогичный предыдущему примеру с однофазным измерителем. Его интерфейс также практически аналогичен.

Стоит отметить, что вышеописанные микросхемы служат для измерения активной энергии. Более дорогие счётчики способны измерять как активную, так и реактивную энергию. Рассмотрим, например, микросхему ADE7754. Как видно из рисунка ниже, её структура намного сложнее структуры микросхем из предыдущих примеров.

Микросхема измеряет активную и реактивную трёхфазную электроэнергию, имеет SPI интерфейс для подключения микроконтроллера и выход CF (пин 1) для внешней регистрации активной электроэнергии. Вся остальная информация с микросхемы считывается микроконтроллером через интерфейс. Через него же осуществляется конфигурация микросхемы, в частности, установка многочисленных констант, отражённых на структурной схеме. Как следствие, данная микросхема, в отличие от предыдущих двух примеров, не является автономной, и для построения счётчика на базе этой микросхемы требуется микроконтроллер.

Можно зрительно в структурной схеме пронаблюдать узлы, отвечающие по отдельности за измерение активной и реактивной энергии. Здесь всё гораздо сложнее, чем в предыдущих двух примерах.

В качестве примера рассмотрим ещё один интересный прибор: трёхфазный счётчик «Энергомера ЦЭ6803В Р32». Как видно из фотографии ниже, данный счётчик ещё не эксплуатировался. Он мне достался в неопломбированном виде с небольшими механическими повреждениями снаружи. При всё при этом он находился полностью в рабочем состоянии.

Как можно заметить, глядя на основную плату, прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера. С нижней стороны основной платы расположены три одинаковых модуля на отдельных платах по одному на каждый узел. Данные модули представляют собой микросхемы AD71056 с минимальной необходимой обвеской. Эта микросхема является однофазным измерителем электроэнергии.

Модули запаяны вертикально на основную плату. Витыми проводами к данным модулям подключаются токовые шунты.

За пару часов удалось срисовать электрическую схему прибора. Рассмотрим её более детально.

Справа на общей схеме изображена схема однофазного модуля, о котором говорилось выше. Микросхема D1 этого модуля AD71056 по назначению похожа на микросхему ADE7755, которая рассматривалась ранее. На четвёртый контакт модуля поступает питание 5В, на третий – сигнал напряжения. Со второго контакта снимается информация в виде импульсов о потребляемой мощности через выход CF микросхемы D1. Сигнал с токовых шунтов поступает через контакты X1 и X2. Конфигурационные входы микросхемы SCF, S1 и S0 в данном случае расположены на пинах 8-10 и сконфигурированы в «0,1,1».

Каждый из трёх таких модулей обслуживает соответственно каждую фазу. Сигнал для измерения напряжения поступает на модуль через цепочку из четырёх резисторов и берётся с нулевой клеммы («N»). При этом стоит обратить внимание, что общим проводом для каждого модуля является соответствующая ему фаза. А вот, общий провод всей схемы соединён с нулевой клеммой. Данное хитрое решение по обеспечению питанием каждого узла схемы расписано ниже.

Каждая из трёх фаз поступает на стабилитроны VD4, VD5 и VD6 соответственно, затем на балластовые RC цепи R1C1, R2C2 и R3C3, затем – на стабилитроны VD1, VD2 и VD3, которые соединены своими анодами с нулём. С первых трёх стабилитронов снимается напряжение питания для каждого модуля U3, U2 и U1 соответственно, выпрямляется диодами VD10, VD11 и VD12. Микросхемы-регуляторы D1-D3 служат для получения напряжения питания 5В. Со стабилитронов VD1-VD3 снимается напряжение питания общей схемы, выпрямляется диодами VD7-VD9, собирается в одну точку и поступает на регулятор D4, откуда снимается 5В.

Общую схему составляет микроконтроллер (МК) D5 PIC16F720. Очевидно, он служит для сбора и обработки информации о текущей потребляемой мощности, поступающей с каждого модуля в виде импульсов. Эти сигналы поступают с модулей U3, U2 и U1 на пины МК RA2, RA4 и RA5 через оптические развязки V1, V2 и V3 соответственно. В результате на пинах RC1 и RC2 МК формирует импульсы для механического счётного устройства M1. Оно аналогично устройству, рассматриваемому ранее, и также имеет соотношение 200:1. Сопротивление катушки высокое и составляет порядка 500 Ом, что позволяет подключать её непосредственно к МК без дополнительных транзисторных цепей. На пине RC0 МК формирует импульсы для светодиодного индикатора HL2 и для внешнего импульсного выхода на разъёме XT1. Последний реализуется через оптическую развязку V4 и транзистор VT1. В данной модели счётчика соотношение составляет 400 импульсов на 1 кВт*ч. На практике при испытании данного счётчика (после небольшого ремонта) было замечено, что электромагнитная катушка счётного механизма срабатывает синхронно со вспышкой светодиода HL2, но через раз (в два раза реже). Это подтверждает соответствие соотношений 400:1 для индикатора и 200:1 для счётного механизма, о чём говорилось ранее.

Слева на плате расположено место для 10-пинового разъёма XS1, который служит для перепрошивки, а также, для UART интерфейса МК.

Таким образом, трёхфазный счётчик «Энергомера ЦЭ6803В Р32» состоит из трёх однофазных измерительных микросхем и микроконтроллера, обрабатывающий информацию с них.

В заключение стоит отметить, что существует ряд моделей счётчиков куда более сложней по своей функциональности. К примеру, счётчики с удалённым контролем показаний по электролинии, или даже через модуль мобильной связи. В данной статье я рассмотрел только простейшие модели и основные принципы построения их электрических схем. Заранее приношу извинения за возможно неправильную терминологию в тексте, ибо я старался излагать простым языком.

Принцип работы электросчетчика | Заметки электрика

Здравствуйте, дорогие гости сайта «Заметки электрика».

Теме учета электроэнергии мы уже посвятили множество статей, а вот разобраться с устройством и принципом работы электросчетчика не хватало времени.

Поэтому сегодняшняя статья посвящается принципу работы однофазных и трехфазных счетчиков электрической энергии.

Как Вы уже знаете, электросчётчики по принципу работы делятся на 2 вида:

  • индукционные
  • электронные

Рассмотрим более подробно принцип работы каждого типа счетчиков.

Принцип работы индукционного электросчетчика

  • 1 — токовая или последовательная  обмотка (катушка)

  • 2 — параллельная катушка (обмотка) или катушка напряжения

  • 3 — счетный механизм в виде червячной передачи

  • 4 — постоянный магнит для создания торможения и плавности хода диска

  • 5 — алюминиевый диск

  • Фi — магнитный поток, который создается током нагрузки

  • Фu — магнитный поток, который создается током в катушке напряжения

Электросчетчик состоит из 2 катушек (обмоток): катушка напряжения и токовая катушка, электромагниты которых расположены под углом 90° относительно друг друга в пространстве. В зазоре между этими электромагнитами находится алюминиевый диск, который с нижней и верхней стороны крепится на подшипниках и подпятниках. На оси диска установлен червяк, который через зубчатые колеса передает вращение счетному механизму (барабану).

Токовая катушка включается в цепь последовательно и состоит из небольшого количества витков. Наматывается такая катушка толстым проводом, соответственно, прямому номинальному току электросчетчика.

Катушка напряжения включается в цепь параллельно и состоит из большого количества витков. Наматывается тонким проводом с диаметром примерно от 0,06 -до 0,12 (мм).

При подачи переменного напряжения на катушку напряжения и при протекании через токовую катушку тока нагрузки, в зазоре  наводятся переменные магнитные потоки Фi и Фu, которые наводят в алюминиевом диске вихревые токи. При взаимодействии этих потоков и вихревых токов в диске, возникает вращающий момент — диск начинает вращаться.

Количество оборотов алюминиевого диска за определенное время — это и будет наша потребляемая электроэнергия.

При увеличении тока нагрузки (например, мы включили в сеть дополнительную нагрузку) в токовой катушке будет возникать больший вращающий момент и диск будет вращаться быстрее.

Для учета электроэнергии в трехфазных сетях переменного тока используют трехфазные индукционные электросчетчики, принцип работы которых аналогичен однофазным.

Принцип работы электронного электросчетчика

На смену индукционным электросчетчикам пришли электронные электросчетчики, например ЦЭ6803В, СЕ 102, СОЭ-55 и другие. Они обладают рядом достоинств, о которых мы поговорим в этой статье.

В электронном электросчетчике преобразователь преобразует входные аналоговые сигналы с датчиков тока и напряжения в цифровой импульсный код. Этот код подается на микроконтроллер, где расшифровывается и рассчитывается, а далее выдает количество потребляемой электроэнергии на дисплей электросчетчика.

P.S. Спасибо за внимание. Автор сайта «Заметки электрика».

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Назначение, устройство, принцип работы счетчиков электрической энергии

Назначение, устройство, принцип работы

Для учета электрической энергии, выработанной на станциях и переданной потребителям, применяют счетчики электрической энергии. Их устанавливают на шинах генераторного напряжения, на отходящих линиях и на стороне НН понизительных подстанций потребителей. Для учета активной энергии применяют однофазные типов СО, СОУ или трехфазные индукционной системы типов САЗ (САЗУ), а для реактивной энергии — счетчики типов СР4 (СР4У). В обозначениях счетчиков буквы и цифры означают: С — счетчик, О — однофазный, А — активной энергии, Р — реактивной энергии, У — универсальный, 3 и 4 — для трех- и четырехпроводных сетей.
Обмотки счетчиков рассчитаны на включение непосредственна в сеть и через измерительные трансформаторы тока и напряжения. Счетчики для непосредственного включения изготовляются на 5, 10, 20, 30 и 50 А, а через трансформаторы тока — до 2000 А, вторичный номинальный ток счетчика при этом для всех случаев будет 5 А. Номинальные напряжения счетчиков для обмоток непосредственного включения: 127, 220 и 380 В, а через трансформаторы напряжения—100 В. При наличии трансформаторов счетчики можно подключать к шинам станций с рабочими напряжениями 500, 600 В или 3, 6, 10 и 35 кВ.
На однофазных трансформаторных подстанциях мощность 4 — 10 кВ-А, напряжением 6—10/0,23 кВ устанавливают счетчик активной энергии СО2М. Его присоединяют к трансформатору тока, установленному за однофазным трансформатором, поэтому он учитывает всю электроэнергию, проходящую через трансформатор. Счетчик имеет подогрев — тепловое сопротивление ПЭ-75.
На однотрансформаторных подстанциях потребителей напряжением 6—10/0,4 кВ, мощностью 100—250 кВ-А устанавливают трехфазные индукционные счетчики активной энергии типов СА4У или СА4И. Счетчики электроэнергии предназначены для четырехпроводной цепи и имеют семь выводов: по два для подключения к каждому из трех трансформаторов тока и один для подключения к нулевому проводу. Такие счетчики устанавливаются со стороны низкого напряжения силового трансформатора до шин, к которым подключены отходящие низковольтные линии, поэтому они учитывают всю электроэнергию, пропускаемую трансформатором.
Конструктивно механизм счетчика монтируется на литой стойке, расположенной в прямоугольном стальном или пластмассовом цоколе, закрывается пластмассовой крышкой. Универсальные счетчики имеют на лицевой стороне крышки съемный щиток и устройство для его опломбирования. Счетчики выпускаются, классом точности 2,0 за исключением счетчиков реактивной энергии непосредственного включения, которые имеют класс точности 3,0.
Устройство и принцип их работы рассмотрим на примере однофазного счетчика типа С0-2М (рисунок 1).
В пластмассовом корпусе расположен стальной сердечник 1, снабженный обмоткой напряжения. Она выполнена из большого числа витков провода малого диаметра и включается в цепь параллельно. Токовая обмотка 4 намотана на сердечник 5 и состоит из малого числа витков провода большого диаметра. Эта обмотка включается в цепь последовательно и рассчитана на номинальный ток 5 А. Между сердечниками имеется воздушный зазор, в котором может свободно вращаться алюминиевый диск 3, закрепленный на оси 2. Для регулировки счетчика служит установленный на стальной скобе постоянный магнит 7. Выводы обмоток подключаются к четырем клеммам б счетчика, которые закрываются крышкой и пломбируются.


Рисунок 1 – Электрический счетчик

При включении счетчика по его обмоткам текут токи, создающие магнитный поток в воздушном зазоре. Этот поток пересекает алюминиевый диск и индуктирует в нем вихревые токи. Взаимодействие токов в диске с магнитным потоком в обмотках вызывает появление механической силы, приводящей диск во вращение. Диск связан зубчатой передачей со счетным механизмом счетчика, дающим показания в кВт • ч.
В схеме включения однофазного счетчика (рисунок 2, а) фазный провод подключается к первой клемме Г (генераторный зажим), а нулевой провод — к третьей клемме Г. Провода, отходящие к электроприемникам, подключаются ко второй и четвертой клеммам, обозначенным буквой Н (нагрузка).
Для измерения расхода электроэнергии в трехфазных электроустановках можно воспользоваться тремя однофазными счетчиками, включенными в каждую фазу по схеме, приведенной на рисунок 2, б. При этом расход энергии определяется как сумма показаний трех счетчиков. Значительно удобнее, однако, пользоваться трехфазными счетчиками, которые представляют собой три однофазных счетчика, собранных в одном корпусе и имеющих общий счетный механизм.


Рисунок 2 – Схемы включения счетчиков:
а — однофазного, б — трёх однофазных в трёхфазную сеть, в — трехфазного

В схеме включения трехфазного трехэлементного счетчика типа СА4 (рисунок 2, в) три фазы подаются на зажимы Г, трехфазная нагрузка подключается на зажимы Н, а на зажимы О подается нулевой провод.
Схемы включения всегда приводятся на обратной стороне крышки счетчика любого типа, закрывающей контакты.
Токовая обмотка счетчика для установки в квартире рассчитана на номинальный ток 5 А, но в современных жилых домах имеются большие многокомнатные квартиры, которые потребляют значительно большую силу тока. В целом же по дому токовая нагрузка может доходить до нескольких сотен ампер. Ясно, что в цепь с такими токами счетчики непосредственно включать нельзя. Для понижения переменного электрического токи большой силы до значения, удобного для измерения стандартными измерительными приборами, предназначен трансформатор тока, или измерительный трансформатор.
Трансформатор тока типа ТК-20 (рисунок 3) имеет стальной сердечник 2 с обмотками. Первичная обмотка 3 с выводами Л1 и Л2 выполнена из провода большого сечения, рассчитанного на ток, который необходим для нормальной работы электроустановки. Вторичная обмотка 4 и выводы И1 и И2 вторичной обмотки подключены к клеммнику 1. Она имеет такое количество витков, чтобы при номинальном токе первичной обмотки в ней индуктировался ток 5 А.


Рисунок 3 – Трансформатор тока ТК-20

Трансформаторы тока выпускаются с разными коэффициентами трансформации: 10/5, 15/5, 20/5 А и применяются в зависимости от величины рабочего тока потребителя.
В настоящее время планируется введение в эксплуатацию систем автоматического учета потребления энергии. Создание таких систем стало возможным благодаря разработке электронных счетчиков. Например, счетчики электрической активной энергии электронные прямого включения типа «Энергия — 9» предназначены для учета электрической активной энергии в однофазных цепях переменного тока частотой 50 Гц, в зависимости от исполнения по одному или нескольким дифференцированным во времени тарифам.
Счетчики, в зависимости от исполнения, обеспечивают также:
— формирование базы данных, содержащей измерительную информацию;
— передачу интерфейсными каналами измерительной информации, хранимой в базе данных, устройствам учета электрической энергии высшего уровня.
Область применения счетчиков – учет электрической энергии на промышленных (мелкомоторных) предприятиях и в коммунально бытовой сфере в условиях применения дифференцированных во времени тарифов на электрическую энергию.
Счетчики, имеющие последовательный интерфейс и телеметрический импульсный выход могут быть применены в автоматизированных системах учета и контроля электрической энергии.

Схемы включения

В схеме включения однофазного счетчика совместно с трансформатором тока (рисунок 4, а) первичная обмотка трансформатора Л1 — Л2 включена последовательно в линейный провод с большим током, а токовая обмотка счетчика подключена ко вторичной обмотке трансформатора тока (выводы И1 — И2). Как и в обычной схеме, обмотка напряжения должна быть подключена к фазному и нулевому проводу. С этой целью на схеме между выводами Л1 и И1 сделана перемычка, а третий зажим счетчика соединен с нулевым проводом.
Схемы включения трех однофазных, а также одного трехфазного счетчика совместно с трансформаторами тока приведены на рисунок 4, 6, в.
В случае, если счетчик работает с трансформатором тока, для определения действительного расхода электроэнергии необходимо расход, показанный счетчиком, умножить на коэффициент трансформации измерительного трансформатора.


Рисунок 4 – Схемы включения счетчиков с трансформаторами тока:
а — однофазного, б—трехфазного, в — трех однофазных в трехфазную сеть

Принцип действия однофазного индукционного счетчика

Принцип работы электрон ного счетчика электроэнергии

До недавних пор все измерения потребленной электроэнергии осуществлялись с помощью индукционных счетчиков. Постепенно, с развитием микро электрон ики, произошел существенный сдвиг в деле совершенствования приборов учета и контроля потребляемой электроэнергии. Были созданы современные цифровые электрон ные системы управления с применением новейших микроконтроллеров. Это позволило многократно повысить точность измерений, а отсутствие механики значительно повысило надежность счетчика.

Для электрон ных электросчетчиков разработана специальная элементная база и методы обработки поступающей информации. После обработки цифровых данных стал возможен одновременный подсчет не только активной, но и реактивной мощности

Данный фактор приобретает важное значение при организации учета в трехфазных сетях. В результате, были созданы многотарифные электросчетчики, учитывающие накопленную энергию в течение определенного времени суток

Данные приборы способны автоматически определять тот или иной тариф.

Простейшая цифровая система на основе обычного микроконтроллера применяется в тех случаях, когда необходимо измерить импульсы, вывести информацию на дисплей и обеспечить защиту при аварийном сбое. Такие устройства являются цифровыми аналогами механических электросчетчиков. В этой системе поступление сигнала происходит через определенные трансформаторные датчики. Далее он идет на вход микросхемы-преобразователя.

Снятие частотного сигнала, поступающего на вход микроконтроллера, осуществляется на выходе микросхемы. Микроконтроллер подсчитывает все поступившие импульсы и преобразует их в полученное количество энергии (Вт*ч). Когда поступающие единицы накапливаются, их общее значение выводится на монитор и фиксируется во внутренней флэш-памяти на случай исчезновения напряжения в сети и других сбоев. Это позволяет вести непрерывный учет потребляемой электроэнергии.

Работает многотарифный электрон ный счетчик электроэнергии по собственному алгоритму. Последовательный интерфейс позволяет обмениваться информацией с внешним миром. С его помощью задаются тарифы, устанавливается и включается таймер времени, поступает информация о накопленной электроэнергии и т.д. Энергонезависимая оперативная память разделяется на 13 банков данных, сохраняющих информацию о количестве энергии, накопленной по разным тарифам. Первый банк учитывает всю энергию, накопленную от начала работы счетчика. В следующих 12 банках производится учет накоплений за 11 предыдущих месяцев и за текущий период.

Таким образом, принцип действия электросчетчика в электрон ном варианте, позволяет изменять тарифы в соответствии с заранее установленным расписанием. Через специальный разъем можно подключиться к прибору и выяснить объем электроэнергии, оплаченной потребителем.

{SOURCE}

Устройство и принцип работы гибридного электромеханического счетчика.

Гибридный счетчики электроэнергии необходимо разделять на несколько разных узлов: схема счетчика, блок питания, корректирующие цепи и т. д. Блок питания преобразует переменное входное напряжение в низкое постоянное и обеспечивает питание электронных цепей счетчика. Схема счетчика измеряет ток, который потребляется нагрузкой, с помощью трансформатора тока (датчика), через который и протекает измеряемый ток. Другие блоки счетчика электроэнергии выполняют ряд различных функций: вывод показаний и управление через Ethernet, WiMax, Wi-Fi, ZeegBee сети, управление дисплеем, термокомпенсация счетчика, коррекция точности, и т. п. Счетчик состоит из микросхемы обработки, трех трансформаторов тока, цепи питания, электромеханического счетного устройства и дополнительных цепей. В качестве регистра электроэнергии используется простое электромеханическое отсчетное устройство, в котором применен двухфазный шаговый двигатель. Электропитание счетчика обеспечивает источник, построенный на токовом трансформаторе и двухполупериодном выпрямителе.

Индукционные электросчетчики

Как говорилось выше, индукционный электросчетчик работает на основе индукционного механизма, схема которого приведена ниже:

Итак, состоит он из двух неподвижных катушек (обмоток) 1 и 2 которые в пространстве смещаются друг относительно друга на угол равный 90 0. Соответственно и магнитные потоки, протекающие через обмотки, при подключении их к сети будут сдвинуты друг относительно друга. В результате чего возникнет бегущее магнитное поле, которое порождает вращающий момент, который начнет вращать алюминиевый диск 4 расположенный в магнитном поле катушки. Во избежание инерционного вращения диска, после снятия с катушек напряжений, или слишком быстрого вращения при минимальной нагрузке, на диск также будет воздействовать постоянный магнит 3, который будет обеспечивать тормозной момент. Среднее значение вращающего момента будет равно:

Как и в обычном ваттметре в электросчетчике есть две обмотки, тока и напряжения. Обмотка тока выполнена толстым проводом, соответствующим номинальному току и включается в цепь последовательно.

Обмотка напряжения выполнена тонким проводом (0,06 – 0,12 мм) с большим количеством витков и подключается к цепи параллельно.

Все эти обмотки уже расположены внутри прибора и не требует особой схемы включения. В нем есть только два провода ввода (для однофазных фаза — ноль) и вывода. Счетчики имеют класс точности 1,0; 2,0; 2,5. Они могут выпускаться на различные токи напряжением 127В, 220В. Также трехфазные могут быть 127В, 220В, 380В, а также на токи до 2000 А и 35 кВ но подключаемые через измерительные трансформаторы.

Принцип работы индукционного трехфазного аналогичен однофазному, но так как при использовании трехфазных систем возможны различные схемы включения (треугольник, звезда), необходимо предварительно изучить возможности выбранного устройства.

Установка

В магазинах продают как полные комплекты для установки счетчика, так и отдельные детали. Выбор материалов зависит от модели прибора и от особенностей подключения.

Расположение счетчика обязательно вертикальное. Местом крепления может быть деревянный (металлический) лист или специальный защищенный короб. Прибор обязательно должен находиться в зоне свободного визуального контроля.

Перед установкой следует изучить общую схему электропроводки. Это позволит правильно определить тип и количество автоматических выключателей, а также мощность групп потребителей.

Это важно: самостоятельно выполнять установку без разрешения запрещено.

Виды счетчиков электроэнергии

Однофазные индукционные счетчики электроэнергии

Электросчетчик – это прибор учета расхода электроэнергии переменного и постоянного тока.

Существует два типа данных устройств: электронные и индукционные модели. Все они отличаются принципом своей работы, но это никак не отражается на точности подсчетов, поскольку перед продажей каждое устройство проверяется и при необходимости калибруется сотрудниками соответствующих организаций. Компании независимые, поэтому подвоха в их деятельности ждать не стоит. Чтобы было проще определиться с подходящим видом электрического прибора в конкретном случае, нужно более детально изучить особенности каждого.

Индукционный

Данная разновидность широко распространена благодаря большому количеству преимущественных особенностей. Это традиционная конструкция, оснащенная вращающимся колесом. Работа основывается на принципах магнитного поля. Это поле образует несколько катушек – тока и напряжения. Они приводят диск в движение, который запускает счетный механизм.

Из недостатков стоит отметить точность подсчета. Погрешность находится в зоне допустимой, но результаты могли бы быть и лучше.

Электронный

Модульный трехфазный электронный электросчетчик

Эту разновидность можно считать относительно новой. Принцип работы основывается на измерении напряжения и силы тока в электрической сети. Отсутствуют какие-либо промежуточные механизмы, что обеспечивает высокую точность работы. Все показания отображаются на небольшом дисплее, а также хранятся во встроенной памяти. Более детально о достоинствах приборов:

  • Компактные размеры.
  • Его нельзя остановить или замедлить с помощью магнита.
  • Все модели оснащены многотарифной функцией.
  • Имеется встроенная самокорректировка показаний.
  • Удобное снятие показаний.
  • Точность показаний можно повысить дополнительно, для этого устанавливают специальную микросхему.

Несмотря на большое количество преимуществ, имеются и недостатки. Самый весомый – высокая стоимость.

Однотарифные и многотарифные виды электросчетчиков

Однотарифные приборы можно назвать традиционными. Это устройства, к которым привыкли все жители постсоветского пространства.

Многотарифные счетчики в России новика, поскольку вошли в обиход потребителей относительно недавно. Основная задача такого прибора – сокращение финансовых расходов потребителей. Суть экономии заключается в разнице стоимости электроэнергии от времени суток. В ночное и утреннее время она меньше, чем вечером.

Автоматический тип электросчетчика

Автоматический тип электросчетчика представляет собой разновидность электронных моделей. Особенность его заключается в автоматической передаче данных без участия домовладельцев. Процесс происходит своевременно, без потери личного времени. Такие устройства еще не очень распространены в России, но эксперты предполагают, что через 10-15 лет они будут в каждой второй квартире.

Устройство электронного электросчетчика

Электронный электросчётчик – это устройство измерения электрической мощности с преобразованием её в аналоговый сигнал, который далее преобразуется в импульсный сигнал, пропорциональный потребляемой мощности.

Преобразователь (как видно из названия узла)   преобразует аналоговый сигнал в цифровой импульсный, пропорциональный  потребляемой мощности.

Микроконтроллер – главная часть электросчётчика,  анализирует этот сигнал, рассчитывая количество потребляемой электроэнергии и осуществляет передачу информации на устройства вывода, на электромеханическое устройство или на дисплей – если используется жидкокристаллическая матрица, где и показывается количество потребляемой электроэнергии.

Описание, конечно очень общее, но как видно, устройство электронного электросчетчика – чистая электроника, чего не скажешь об устройстве индукционных счётчиков. Несмотря на то что, благодаря своим техническим характеристикам в настоящее всё большее распространение получает применение электронных счётчиков, старые индукционные счётчики были и остаются самыми распространёнными, их устройство стоит рассмотреть подробно.

Устройство индукционного (электро-механического) электросчетчика.

Основные части индукционного электросчётчика это: токовая катушка 1, катушка напряжения 2, алюминиевый диск 3, счётный механизм с червячной и зубчатой передачей 4 и постоянный магнит 5.

Токовая катушка включена в сеть последовательно и создаёт переменный магнитный поток, пропорциональный току, а катушка напряжения – параллельно, создавая переменный магнитный поток, пропорциональный напряжению.

Эти магнитные потоки пронизывают алюминиевый диск, причём, переменные магнитные потоки токовой обмотки – дважды, в связи с U-образной формой её магнитопровода, наводя в нём ЭДС.

Таким образом, возникают электромеханические силы, создающие крутящий момент – вращение диска, ось которого связана со счётным механизмом червячной и зубчатой передачей, производя  передачу движения оси диска на цифровые барабаны.

Крутящий момент, создающий вращение диска пропорционален мощности сети; выше мощность – сильнее крутящий момент, диск крутится по оси быстрее.

Для выравнивания и успокоения колебаний частоты вращения в устройство электросчётчика входит постоянный магнит, поток которого, взаимодействуя с вихревыми токами диска, создаёт электромеханическую силу с направлением, обратным движению диска, что и создаёт тормозной момент.

Устройство и принцип работы

Конструкция счетчика зависит от принципа его работы и осуществляемых функций. Индукционный однофазный счетчик используется в однофазных переменных сетях и состоит из следующих частей:

  • корпуса составного;
  • двух обмоток: токовой и напряжения;
  • двух магнитопроводов: обмотки тока и обмотки напряжения;
  • противополюса;
  • диска алюминиевого;
  • механизма червячного типа;
  • механизма счетного;
  • магнита постоянного, служащего для торможения диска;
  • оси, на которой закреплены счетный механизм, червячная передача и алюминиевый диск.

Схематическое устройство однофазного электросчетчика индукционного типа

Принцип работы устройства заключается в следующем. 2 электромагнита представляют измерительный механизм счетчика. Они расположены под углом 90° друг к другу. В магнитном поле этих электромагнитов находится диск, выполненный из алюминия. Счетчик включается в работу путем подсоединения с электроприемниками токовой обмотки последовательно, а с электроприемниками напряжения – параллельно. При прохождении переменного тока по обмоткам в сердечниках возникают магнитные потоки переменной величины. Они пронизывают диск, в результате чего индуцируют вихревые токи. При взаимодействии последних с магнитными потоками создается усилие, которое вращает диск. Он, в свою очередь, связан со счетным механизмом, который учитывает частоту вращения диска. Цифры, расположенные на счетном механизме фиксируют расход электрической энергии.

При увеличении тока нагрузки возникает больший вращающий момент, что заставляет диск вращаться быстрее.

Принцип работы трехфазных индукционных счетчиков аналогичен выше описанному счетчику, с той лишь разницей, что их используют в трехфазных сетях переменного тока.

Вид спереди трехфазного индукционного электросчетчика со снятой крышкой

Вид сбоку со снятой задней частью корпуса трехфазного индукционного счетчика

С развитием электронных технологий появились счетчики учета расхода электроэнергии электронного типа. Принцип действия их довольно прост. Специальный преобразователь входные аналоговые сигналы с датчиков тока и напряжения преобразует в цифровой импульсный код. Он подается на микроконтроллер, который фиксирует количество потребляемой электроэнергии на дисплее изделия. Отсюда основными частями электронного счетчика являются:

  • кожух защитный;
  • трансформаторы измерительные тока и напряжения;
  • преобразователь;
  • микроконтроллера, являющиеся органом управления и передачи информации на дисплей;
  • колодка клеммная для подсоединения эл. проводов.

Работа однофазных и трехфазных электронных счетчиков осуществляется по одним и тем же законам, с той лишь разницей, что в 3-хфазном осуществляется суммирование величин каждого из трех каналов.

Структурная схема работы однофазного счетчика электронного типа

Из схемы видно, что трансформатор тока включен в разрыв фазного провода, а трансформатор напряжения подключен к нулю и фазе. Сигналы величины тока и напряжения с помощью преобразователя преобразуются в мощность и частоту в цифровом виде, в дальнейшем микроконтроллер управляет оперативным запоминающим устройством (ОЗУ), электронным реле и дисплеем, на котором отражается цифровая информация, фиксирующая расход электроэнергии на подключенном к счетчику объекте. ОЗУ в некоторых моделях может играть роль передатчика информации, что дает возможность контролировать работу счетчика на расстоянии.

Электронные счетчики для замеров расхода электроэнергии в трехфазных схемах, могут работать как в трех,- так и четырехпроводных цепях. Устройства хранят информацию с привязкой ко времени. Показания можно снимать за определенный период времени и фиксировать следующие показатели:

  • активное потребление;
  • реактивное потребление;
  • действующие значения напряжения и тока;
  • частоту в каждой фазе.

Все это позволило создать многотарифные счетчики для подсчета потребления электроэнергии в разное время суток, по дням недели или сезонам.

Устройство и принцип работы электросчетчика

Устройство индукционного счетчика

Чтобы в режиме реального времени и непрерывно производить учет активного энергопотребления переменного тока, требуется устанавливать однофазные или трехфазные индукционные приборы учета. Если же важен учет постоянного тока, который широко распространен на железной дороге и всех видах электротранспорта, монтируют электродинамические приборы учета.

Индукционные электрические счетчики оснащены диском, изготовленным из алюминия, при потреблении ресурса этот подвижный элемент вращается из-за вихревых потоков, созданных индукционными катушками. В данном случае встречаются две разные силы – магнитное поле индукционных катушек и магнитное поле вихревых токов. Образованные в результате токи протекают в цепи параллельной нагрузки. Каждая катушка оснащена сердечником, который намагничивается переменным током. Воздействие непрерывного переменного тока приводит к тому, что полюса электромагнитов постоянно изменяются. Это приводит к прохождению между ними магнитного поля. Именно оно тянет за собой алюминиевый диск, образуя вращение.

Скорость вращения диска прямо пропорциональна величине токов, находящихся в обеих катушках. При производстве электросчетчиков применяются простые соединительные приемы из механики, благодаря чему вращающийся диск связан с цифровыми показаниями на панели.

Последние годы люди все чаще отдают предпочтение электронным двухтарифным конструкциям. Непрерывно увеличивающийся спрос объясним следующим перечнем достоинств:

  • Приборы более точно считывают информацию, что позволяет сократить расходы на оплату коммунальных услуг.
  • В сравнении с механическими электросчетчиками они имеют компактные размеры и более привлекательный внешний вид.
  • Автоматически переключаются на дневной и ночной тарифы, участие человека не требуется. Еще на этапе производства прибор программируют на два временных интервала – с 07:00 до 23:00 и с 23:00 до 07:00.
  • Усовершенствованные модели нуждаются в проверке один раз в течение 5-16 лет. Требуется такая проверка для правильности учета и начисления средств. Проверкой должна заниматься энергопоставляющая компания.

Первая проверка работоспособности устройства проводится еще в заводских условиях, дата обязательно должна быть указана в сопроводительной документации.

Снятие показаний

Электромеханические счетчики снабжены цифровым барабаном, на котором отображается расход электроэнергии в киловаттах. Эти данные можно сдать в расчетную службу или самостоятельно производить расчеты.

В зависимости от модели на барабанном табло появляется 5 или 7 цифр, причем последняя отделена от остальных запятой и выделена цветом. При учете не надо считать десятые и сотые доли киловатт – только целые числа. Полученный расход киловатт за месяц умножают на стоимость 1 киловатта и получают сумму, которую надо заплатить за электричество.

Принцип работы

Умным электрическим счетчиком считают автоматизированное специальное устройство, основная задача которого – сбор данных о количестве потребляемых ресурсов. Оптимальная частота передачи данных на информационные узлы компаний – один раз в течение 60 минут.

Ежегодно плата за электроэнергию, а также воду и газ возрастает. Благодаря этому спрос на интеллектуальные устройства растут ежедневно. Их устанавливают в реконструированных сооружениях и новых домах.

Переход на усовершенствованные виды приборов учета дает много преимущества, включая практичность и выгоду.

Состоит устройство из двух основных частей – контроллера, который отвечает за передачу данных, и счетчика. Передача данных осуществляется несколькими способами, это зависит от разновидности установленного контроллера. Самый современный и бюджетный вид – беспроводной контроллер. С его помощью передача данных может осуществляться одним из следующих способов:

  • GPRS – подключается через стандартную сим-карту мобильной связи, ее требуется регулярно пополнять. Информация подается на серверы с помощью общедоступной сотовой связи.
  • LPWAN – технология имеет много общего с предыдущим способом передачи данных, но она менее энергозатратная. Данные подаются благодаря специальным вышкам, основная задача которых – связь контроллеров с сервером.
  • Wi-Fi – самая современная технология, которая совмещает в себе все преимущества предыдущих двух способов передачи данных. Благодаря низкому энергопотреблению контроллер может работать от аккумуляторных батареек.

Различие по типу электросети

Основное различие счетчиков заключается во втором пункте, а именно, для какой электросети они разработаны – для однофазной или трехфазной.  Электрический счетчик однофазный используются в однофазных двухпроводных сетях напряжением 0,4/ 0,23 кВ. Основное их применение – учет расхода электроэнергии в квартирах или частных домах. Изготавливаются счетчики на напряжение 220 (или 127) вольт, номинальный ток — 5, 10, 20, 40, 60 А. Устанавливаются счетчики на вводе и размещаются в этажных (квартирных) щитах.

Электрический счетчик трехфазный предназначен для трехфазных трехпроводных или четырехпроводных сетей. И если с однофазными счетчиками все просто и понятно, то трехфазные приборы требуют расширенного описания, поскольку они используются в электроустановках, работающих на трехфазном токе. Трехфазные счетчики прямого (непосредственного) включения подсоединяются к сети напрямую, без дополнительных приборов – трансформаторов тока. Номинальный ток изготовляемых счетчиков прямого включения — 5, 10, 20, 30, 50, 100А.

Учет потребленной энергии определяется путем вычитания первоначального показания электросчетчика (Пн) из конечного показания (Пк):

Э = Пк — Пн

Однако бывают ситуации, когда электроустановка потребляет значительный ток и счетчик прямого включения такой ток через себя пропустить не сможет. Поэтому в таких случаях используют подключение электросчетчиков через измерительные трансформаторы тока (ТТ). Основное назначение ТТ – уменьшить ток до таких значений, при которых счетчик будет нормально функционировать. Расчет потребленной энергии здесь определяется также вычитанием начальных показаний из конечных и дополнительно – умножением полученной разницы показаний на коэффициент трансформации (Кт) трансформаторов тока:

Э = (Пк — Пн)*Кт

Определить какой коэффициент трансформации у ТТ можно по данным на шильдике самого трансформатора. Например, надпись 150/5 на ТТ означает, что первичная обмотка данного трансформатора рассчитана на ток 150А, а вторичная на 5А. Из этого соотношения мы и получаем коэффициент трансформации, равный 30. Другими словами — ТТ уменьшает первичный ток в 30 раз.

Правила установки электросчетчика на улице

Установка электрического счетчика на открытом воздухе вне помещения должна проводиться согласно ряду техническо-эксплуатационных требований.

Правильней всего установить счетчик с фасадной стороны дома на высоте 0,8-1,7 метра, что обеспечит легкий доступ к нему представителям сетевой компании и техническому обслуживанию.

Смонтировать счетчик можно непосредственно на опоре бетонного столба, если он располагается на территории дома. Также в электро щитке следует установить защитный автомат, а группу автоматов на все потребители дома лучше смонтировать внутри помещения.

Процесс установки счетчика

  1. Перед монтажными работами необходимо выполнить отключение сетевой линии согласно правилам ПУЭ.
  2. Высота для навесного монтажа счетчика варьируется от 0,8 до 1,7 метра горизонтально поверхности.
  3. При температурах ниже 5°С электросчетчики будут вести себя некорректно. Именно по этой причине стоит подумать об отапливаемом электро щитке.
  4. Входная токовая цепь должна подключаться к автоматическому защитному выключателю, а после этого к счетчику.
  5. Не стоит забывать про защитное заземление, которое позволяет в случае перекоса фаз или короткого замыкания обезопасить всю электронику в доме.
  6. Подключаем выход счетчика на вводный автомат или группу автоматов.
  7. Пробное включение.

Источники

  • https://samelectrik.ru/kak-rabotaet-schetchik-elektroenergii-starogo-i-novogo-obrazca.html
  • https://elektro.guru/elektrooborudovanie/schetchiki/ustanovka-v-kvartire-elektroschetchika-cena-uslugi-i-pribora.html
  • https://teplo.guru/elektrichestvo/schetchiki/ustanovka.html
  • https://o-builder.ru/pravila-ustanovki-elektroschetchika-v-chastnom-dome-kvartire-na-ulice/
  • http://mr-build.ru/elektrika/ustanovka-elektroschetchika.html
  • http://podklyuchenie-elektrichestva.ru/uslugi/ustanovka-schetchikov-elektroenergii/
  • https://mosenergosbyt-lichnyj-kabinet.ru/zamena-schetchika
  • https://elquanta.ru/schetchiki/ustrojjstvo-princip-ehlektroschetchika.html
  • https://teplo.guru/elektrichestvo/schetchiki/ustanovka-v-chastnom-dome.html

Как выглядят умные счетчики электроэнергии — принцип работы и способы снятия показаний

Умный счетчик электроэнергии — это прибор для учета расхода электричества с функцией автоматической передачи показаний и параметров электросети конечному потребителю и энергосбытовой компаний. Первые хвалят такие счетчики за автоматизацию процесса отправки показаний и возможность лично контролировать расход ресурса с точностью до каждого часа, вторые — за постоянную актуальность и точность данных в своих системах учета. В роли конечного потребителя могут выступать как частные лица, так и компании из разных сфер деятельности: коммерческая аренда, производство, гостиничный и ресторанный бизнес. Такой прибор учета может работать как в однофазных (бытовых), так и в трехфазных (промышленных) электросетях.

Если вы регулярно опаздываете с передачей показаний в энергосбыт, сталкивались с подозрительными цифрами расхода в платежках, или вам сложно собирать показания со всех субарендаторов, то однозначно стоит присмотреться к умным счетчикам.

Что может умный счетчик электроэнергии

Набор функций зависит от конкретной модели и задач, возлагаемых на умный прибор учета. Если рассматривать не конкретное устройство, а весь класс, то такой счетчик электроэнергии:

  • Передает показания без участия владельца — не придется даже снимать данные о потреблении;
  • Фиксирует сбои сети, отклонения силы тока и напряжения от заявленных параметров — данные важны энергосбытам для быстрого устранения проблем в электросетях и трансформаторных подстанциях;
  • Отключает электричество у неплательщика — эта опция исключает практику перераспределения задолженности на добросовестных плательщиков;
  • Собирает и запоминает детальную информацию по потреблению — умный счетчик поможет скорректировать режим энергопотребления и сэкономить на оплате счетов.

Как видите, передача показаний без участия пользователя — не единственное преимущество умных моделей. Благодаря расширенному функционалу счетчиков потребители электроэнергии могут детально анализировать объем и качество поставляемого энергоресурса. Такие возможности будут актуальны для большинства компаний самостоятельно производящими расчеты с энергосбытами или ведущих внутренний учёт коммунальных ресурсов. Далее рассмотрим принцип работы такого оборудования на примере решений от SAURES.

Как работает умный счетчик электроэнергии

Общая схема работы следующая: прибор фиксирует объем потребленной электроэнергии, накапливает данные по расходу и передает эту информацию в систему учёта. Термин «умный счетчик» может обозначать как устройство, выполняющее все эти функции, так и совокупность устройств, решающих задачи раздельно. У каждого варианта есть свои преимущества. Наша компания специализируется на решениях с внешним контроллером, состоящих из следующих элементов:

  • Многотарифный электрический счетчик — его монтируют в распределительном щите;
  • Контроллера системы SAURES — он устанавливается в месте, где расположен счетчик или на удалении до 1 км и передает информацию облачный сервис;
  • Облачное хранилище — оно расположено в защищенном дата-центре и хранит все данные о потреблении;
  • Клиентское программное обеспечение — для просмотра с десктопа нужен только веб-браузер, а для мобильных устройств есть бесплатные приложения.

Схема работы системы предполагает, что электрический счетчик учитывает киловатты, амперы и вольты, контроллер получает информацию о расходе от прибора в разрезе по тарифам и часам и передает показания в облако. Сервер нашей компании принимает показания и сохраняет полученную информацию в облаке SAURES. Посетив кабинет в облачном сервисе, пользователь может посмотреть показания и оценить объемы потребления в разрезе по часам, дням и месяцам. Также в кабинете настраивается расписание автоматической отправки данных поставщику ресурса.

Счетчики сбрасывают информацию в облако с ежедневной периодичностью. Пользователи — энергетические компании или потребители — получают данные за пару кликов в личном кабинете. Централизованный сервер позволяет не тратить деньги и время на установку, поддержку и обновление софта для учёта данных от счетчиков.

Может ли «поумнеть» обычный электросчетчик?

Электрические счетчики со встроенными модемами (контроллерами) обычно устанавливаются при автоматизации всего объекта: МКД или коттеджного поселка. Они в 3-4 раза дороже обычных моделей, что приводит к удорожанию перехода на системы умного учета электроэнергии. Поэтому наша компания разработала оборудование для автоматизации обычных электросчетчиков – контроллеры SAURES.

Для подключения внешнего контроллера к электросчетчику используется интерфейс RS-485 или импульсный выход с частотой импульса до 25 Гц. Такими интерфейсами оборудованы, например, электросчетчики брендов:

  • Меркурий (Инкотекс) — серии 206, 200.02, 200.04, 236, 234, 230;
  • Энергомера — модели СЕ301, СЕ303, СЕ102М;
  • НЕВА (Тайпит) — модели МТ 124, МТ 114, МТ 115, МТ 323, МТ 324;
  • ABB — серия E31.

Для превращения обычного прибора учета электроэнергии в умный счетчик нужно снять крышку отсека с клеммами интерфейса, подключить контроллер к специальным клеммам. Если интерфейс расположен под общей крышкой с силовой частью, то потребуется привлечь специалиста энергосбытовой компании. Все контроллеры нашей компании никак не влияют на работу самого прибора учета и не нарушают требований контролирующих органов.

Полный список электросчетчиков, совместимых с умной технологией учета, можно увидеть здесь.

Контроллеры компании SAURES

Наша компания производит два типа контроллеров, отличающихся технологией передачи данных и количеством одновременно обслуживаемых приборов:

  1. Wi-Fi линейка с поддержкой до 8 импульсных и 8 цифровых каналов. Работает через домашнюю или общедомовую Wi-Fi сеть с доступом в Интернет.
  2. NB-IoT линейка с обслуживанием до 8 аналоговых и 32 цифровых каналов. NB-IoT — это специальная технология для интернета вещей, базирующаяся на инфраструктуре сотовых сетей.

Апгрейд электросчетчика предполагает установку контроллера на совместимый прибор учета или работы по комплексной замене оборудования. В последнем случае меняется сам прибор учета — клиент получает современный счетчик, а также Wi-Fi или NB-IoT модуль. Услуги по установке оборудования SAURES «под ключ» оказывают сертифицированные партнеры-монтажники. Работы по опломбировке счетчиков электроэнергии проводят представители энергосбыта. Эта услуга оплачивается отдельно.

Отдельные Wi-Fi и NB-IoT-модели контроллеров нашей компании могут выглядеть очень похоже. Чтобы выбрать наиболее подходящий вариант, нужно внимательно изучить особенности устройств.

Преимущества и недостатки Wi-Fi оборудования

SAURES выпускает несколько моделей Wi-Fi-контроллеров. Большинство собраны в корпусах с защитой уровня IP54, что предполагает размещение во внешних боксах с дополнительной герметизацией дверцы. Модуль связи контроллера работает на частоте 2400 МГц. Антенна может находится внутри корпуса (на плате) или быть внешней.

Дальнобойность Wi-Fi-модуля 25-100 метров. Если между устройством и роутером находятся стены —уровень сигнала снижается. Максимальные значения фиксируются только при размещении роутера в прямой видимости. Металлический распределительный щит блокирует сигнал, поэтому мы рекомендуем заменить его пластиковым аналогом, перенести контроллер в квартиру, используя витую пару или использовать внешнюю выносную антенну.

Преимущества Wi-Fi контроллеров компании:

  • работают с двумя беспроводными сетями — основной и резервной;
  • автономность — от обычных батареек устройство работает до 4 лет;
  • простое масштабирование — при автоматизации МКД или поселка можно обновлять парк счетчиков частями;
  • универсальность — к модулю можно подключить не только счетчики электроэнергии, но и газа, воды или тепла.
  • простой монтаж — внешние приборы подключаются через быстрозажимные клеммы, а сам контроллер крепится на специальную консоль;
  • легкая настройка — для запуска контроллера нужен любой смартфон или ПК с Wi-Fi адаптером.

Серьезным недостатком такого оборудования является зависимость от Wi-Fi сети владельца. Если роутер будет обесточен или доступ в Интернет будет ограничен, то передача данных в облачный сервер остановится.

Плюсы и минусы NB-IoT

Narrow Band Internet of Things (NB-IoT) контроллеры работают через сотовые сети операторов, поддерживающие данный стандарт. Они подключаются к электросчетчикам и другим приборам учета кабелем. Для этого используются RS-485 или импульсный интерфейс устройств. В линейке устройств есть модели с корпусом, защищенным по стандарту IP66. Они выдерживают широкий диапазон температур эксплуатации (от -30 до 60 °C). Такие модули размещают внутри распределительного щита или за его пределами. Точка установки должна находиться в зоне покрытия NB-IoT сети, на удалении до 50 метров от импульсных приборов учета и до 1 км для цифровых устройств.

Дальнобойность связи в городской среде составляет около 5 км. В стоимость таких устройств уже заложена цена сетевого трафика на 6 лет или 12Мб. В качестве средства идентификации клиента используется SIM-чип одного из операторов связи (компания SAURES сотрудничает с МТС). Питание модуля связи осуществляется от внешнего источника (электросчетчика) или встроенной литиевой батареи 6000 мАч.

К преимуществам NB-IoT контроллеров относят:

  • Стабильная работа — емкая внутренняя литиевая батарея и возможность переключения на соседнюю вышку связи исключают потерю трафика;
  • Энергонезависимая память — в офлайн-режиме хранится до 1000 записей. После восстановления сети прибор передаст информацию в облако без искажений;
  • Автономность — на литиевой батарее контроллер проработает до 6 лет;
  • Предоплаченный трафик на 6 лет — для контроллеров с сим-чипом не нужно покупать SIM-карту и оплачивать пакет трафика, все это заложено в стоимость аппарата;
  • Возможность подключения до 32 периферийных устройств — такие контроллеры проектировались под автоматизацию любого масштаба и могут обслуживать приборы учета сразу нескольких этажей МКД.

Главный минус — ограниченность распространения IoT-сетей. Если МТС охватил уже почти всю Россию, то другие операторы предоставляют доступ к NB-IoT только в некоторых регионах страны.

Как организован доступ к данным о расходе и автоматическая отправка показаний

Контроллеры Wi-Fi и NB-IoT настраивают сами пользователи, инженеры компаний-пользователей или наши официальные дилеры. После настройки и подключения к интернету умный модуль начинает передавать информацию в облако SAURES. Пользователь может подключиться к своему кабинету в этому облаке, используя веб-кабинет или приложение для смартфона. Для этого нужно зайти на сайт lk.saures.ru или в приложение и указать логин и пароль аккаунта.


В кабинете пользователю доступны следующие функции:

  1. Дистанционный контроль показаний — вы можете увидеть текущие объемы потребления на любую дату из архива.
  2. Архив данных — можно оценить динамику потребления в разрезе дня, месяца или года. При этом вся информация выводится в виде интуитивно понятных графиков, облегчающих сопоставление информации по разным периодам.
  3. Настройка автоматической передачи показаний — вы настраиваете расписание для каждого прибора учета и получаете информацию об успешной отправке показаний на электронную почту или в виде push-уведомления.

Для настройки графика отправки достаточно выбрать в специальной форме личного кабинета способ передачи данных, а также день и час. Далее следует указать e-mail получателя и номер своего лицевого счета.

Для абонентов МосОблЕИРЦ из московской области мы разработали прямую интеграцию с сервером этого расчетного центра. Можно отправлять показания по электроэнергии и воде.


Схема электрическая счетчика

Электрический счетчик, точнее — счетчик расхода электрической энергии является специальным прибором, предназначенным для учета потребляемой нагрузкой электрической энергии. По своей технической идее он представляет из себя комбинацию измерителя потребляемой электрической энергии с отображающим показания счетным механизмом. Различают электрические счетчики для измерения энергии постоянного или переменного тока. Счетчики электроэнергии переменного тока бывают однофазными и трехфазными. По принципу действия электрические счетчики могут быть индукционными и электронными.

Краткая история создания электрического счетчика

В 1885 году итальянцем Галилео Феррарисом (1847-1897) было сделано интересное наблюдение вращения сплошного ротора в виде металлического диска или цилиндра под воздействием двух не совпадающих по фазе полей переменного тока. Это открытие послужило отправной идеей для создания индукционного двигателя и одновременно открыло возможность разработки индукционного счетчика.

Первый счетчик такого типа был создан в 1889 году венгром Отто Титуцем Блати, который работал на заводе «Ганц» (Ganz) в Будапеште, Венгрия. Им был запатентована идея электрического счётчика для переменных токов (патент, выданный в Германии, № 52.793, патент, полученный в США, № 423. 210).

В таком устройстве Блати смог получить внутреннее смещение фаз практически на 90°, что позволило счетчику отображать ватт-часы достаточно точно. В электросчетчике этой модели уже применялся тормозной постоянный магнит, обеспечивавший широкий диапазон измерений количества потребляемой энергии, а также был использован регистр циклометрического типа.

Дальнейшие годы ознаменовались многими усовершенствованиями, проявившимися в уменьшении веса и размеров прибора, расширении диапазона допустимых нагрузок, компенсации изменения величины коэффициента нагрузки, значений напряжения и температуры. Было существенно снижено трение в опорах вращающегося ротора счетчика с помощью замены шарикоподшипниками подпятников, позже применили двойные камни и магнитные подшипники. Значительно увеличился срок стабильной эксплуатации счетчика за счет повышения технических характеристик тормозной электромагнитной системы и неприменения масла в опорах ротора и счетном механизме. Значительно позже для промышленных потребителей был создан трехфазный индукционный счетчик, в котором применили комбинацию из двух или трех систем измерения, установленных на одном, двух или даже трех отдельных дисках.

Схема для подключения счетчика индукционного типа

Схема электрическая принципиальная счетчика индукционного типа в общем случае предельно проста и представляет собой две обмотки (тока и напряжения) и клеммную колодку, на которую выведены их контакты. Условная схема, по которой подключается однофазный электрический счетчик, в стандартном электрощите многоквартирных домов имеет следующий вид:

Здесь фазу «А» обозначает линия желтого цвета, фазу «В» — зеленого, фазу «С» – красного, нулевой провод «N» – линии синего цвета, проводник для заземления «PЕ» — линия желто-зеленого цвета. Пакетный выключатель в настоящее время часто заменяют более современным двухполюсным автоматом с защитой от перегрузки. Следует отметить, что между схемой подключения счетчика индукционного типа и аналогичной схемой подключения электронного счетчика принципиальных различий нет.

Условная схема для подключения электрического счетчика в трехфазной четырехпроводной сети напряжением 380 вольт имеет вид:

Здесь цветовые обозначения аналогичны предыдущей схеме подключения счетчика для однофазной сети.

Важно соблюдать прямой порядок чередования фаз трехфазной сети на колодке контактов счетчика. Определить его можно с помощью фазоуказателя или прибора ВАФ. В прямом порядке чередование фаз напряжений производится так: АВС, ВСА, САВ (если идти по часовой стрелке). В обратном порядке чередование фаз напряжений производится так: АСВ, СВА, ВАС. При этом создается дополнительная погрешность и возникает самоход ротора индукционного счетчика для активной энергии. В электрическом счетчике реактивной энергии обратный порядок чередования фаз нагрузки и напряжений приводит к вращению ротора в обратном направлении.

Схема электрических соединений однофазного индукционного электрического счетчика

На схеме линии красного цвета обозначают фазный провод и токовую катушку, а синего цвет — нулевой провод и катушку напряжения.

Схема электрических соединений трехфазного счетчика индукционного типа при прямом включении в четырехпроводной сети напряжения 380 вольт:

Здесь: фазу «А» обозначает желтый цвет, фазу «В» — зеленый, фазу «С» — красный, нулевой провод «N» — синим цвет; L1, L2, L3 – обозначают токовые катушки; L4, L5, L6 — обозначают катушки напряжения; 2, 5, 8 – контакты напряжения; 1, 3, 4, 6, 7, 9, 10, 11 – контакты для подключения внешней электропроводки к трехфазному счетчику.

Принцип действия и устройство индукционного электросчетчика

Токовая обмотка, включенная последовательно с потребителем электроэнергии, имеет малое число витков, которые намотаны толстым проводом, соответствующим номинальному току данного счетчика. Это обеспечивает минимум ее сопротивления и внесения погрешности измерения тока.

Обмотка напряжения, включенная параллельно нагрузке, имеет большое количество витков (8000 — 12000), которые намотаны тонким проводом, что уменьшает потребляемый ток холостого хода счетчика. Когда к ней подключено переменное напряжение, а в токовой обмотке течет ток нагрузки, через алюминиевый диск, являющийся ротором, замыкаются электромагнитные поля, наводящие в нем так называемые вихревые токи. Эти токи взаимодействуют с электромагнитным полем и создают вращающий момент, приводящий в движение подвижный алюминиевый диск.

Постоянный магнит, создающий магнитный поток через диск счетчика, создает эффект тормозного (противодействующего) момента.

Неизменность скорости вращения диска достигается при балансе вращающего и тормозного усилий.

Количество оборотов ротора за час будет пропорциональным израсходованной энергии, что эквивалентно тому, что значение установившейся равномерной скорости вращения диска является пропорциональным потребляемой мощности, если вращающий момент, воздействующий на диск, адекватен мощности потребителя, к которому подключен счетчик.

Трение в кинематических парах механизма индукционного счетчика создает появление погрешностей в измерительных показаниях. Особенно значительно влияние трения на малых (до 5-10% от номинального значения) нагрузках для индукционного счетчика, когда величина отрицательной погрешности может составлять 12 — 15%. Для сокращения влияния сил трения в индукционном счетчике используют специальное устройство, которое называется компенсатор трения.

Существенный параметр счетчика электрической энергии переменного тока — порог чувствительности прибора, который подразумевает значение минимальной мощности, выраженной в процентах от номинального значения, при котором ротор счетчика начинает устойчиво вращаться. Другими словами, порог чувствительности – это минимальный расход электроэнергии, который счетчик в состоянии зафиксировать.

В соответствии с ГОСТом, значение порога чувствительности для индукционных счетчиков различных классов точности, должно составлять не больше 0,5 — 1,5%. Уровень чувствительности задается значением компенсирующего момента и момента торможения, который создается специальным противосамоходным устройством.

Принцип работы электронного счетчика

Индукционные счетчики расхода электрической энергии при всей их простоте и невысокой стоимости обладают рядом недостатков, в основе которых находится использование механических подвижных элементов, имеющих недостаточную стабильность параметров при долгосрочной эксплуатации прибора. Электронный счетчик электроэнергии лишен этих недостатков, имеет низкий порог чувствительности, более высокую точность измерения потребляемой энергии.

Правда, для построения электронного счётчика требуется применение узкоспециализированных интегральных микросхем (ИС), которые могут выполнять перемножение сигналов тока и напряжения, формировать полученную величину в виде, удобном для обработки микроконтроллером. Например, микросхемы, преобразующие активную мощность — в значение частоты следования импульсов. Общее число полученных импульсов, интегрируемых микроконтроллером, является прямо пропорциональным потребляемой электроэнергии.

Блок-схема электронного счетчика

Не менее важным для полноценной эксплуатации электронного счетчика является наличие всевозможных сервисных функций, таких как удаленный доступ к счётчику для дистанционного контроля показаний, определение дневного и ночного потребления энергии и многие другие. Применение цифрового дисплея позволяет пользователю программно задавать различные форматы вывода сведений, например, отображать на дисплее информацию о количестве потреблённой энергии за определенный интервал, задавать различные тарифы и тому подобное.

Для выполнения отдельных нестандартных функций, например, согласования уровней сигналов, потребуется применение дополнительных ИС. В настоящее время начат выпуск специализированных микросхем — преобразователей мощности в пропорциональную частоту — и специализированные микроконтроллерные устройства, имеющие подобный преобразователь на одном кристалле. Но, чаще всего, они слишком дорогостоящи для применения в коммунально-бытовых устройствах индукционных счётчиков. Поэтому многими мировыми производителями микроконтроллеров разрабатываются специализированные недорогие микросхемы, специально предназначенные для подобного применения.

Какой вид имеет схема электрическая принципиальная счетчика по простейшему цифровому варианту на наиболее недорогом (менее доллара) 8-разрядном микроконтроллере компании Motorola? В рассматриваемом решении осуществлены все минимально обязательные функции устройства. Оно основано на применении недорогой ИС, преобразующей мощность в частоту импульсов типа КР1095ПП1 и 8-разрядного микроконтроллерного устройства MC68HC05KJ1. При такой архитектуре счетчика микроконтроллеру необходимо суммировать получаемое число импульсов, отображать информацию на дисплее и осуществлять защиту устройства в различных нештатных режимах. Описываемый счётчик в действительности является цифровым функциональным аналогом имеющихся механических счётчиков, приспособленным для дальнейшего усовершенствования.

Схема электрическая принципиальная простейшего цифрового счетчика электроэнергии

Сигналы, эквивалентные значениям напряжения и тока в сети, получаются от датчиков и подаются на вход преобразователя. Микросхема осуществляет перемножение входных сигналов, формируя мгновенное значение потребляемой мощности. Это значение поступает на микроконтроллер, преобразуется в ватт-часы. По мере накопления данных изменяются показания счётчика на ЖКИ. Наличие частых сбоев напряжения электропитания устройства приводит к необходимости применения EEPROM для обеспечения сохранности показаний счётчика. Поскольку сбои напряжения питания являются наиболее распространенной нештатной ситуацией, подобная защита требуется в любом электронном счётчике.

Схема электрическая принципиальная счетчика (цифровой вычислитель) приведена ниже. Через разъём X1 присоединяется напряжение сети 220 В и электропотребитель. Датчики напряжения и тока формируют сигналы, поступающие на микросхему КР1095ПП1 преобразователя, имеющего оптронную развязку частотного выхода. Ядром счётчика является микроконтроллер MC68HC05KJ1 производства компании Motorola, производимый в 16-выводном корпусе (корпус DIP или SOIC) и оснащенный 1,2 Кбайтом ПЗУ и 64 байтом ОЗУ. Для сохранения накопленного количества потребленной энергии во время сбоев по питанию применяется EEPROM с малым объёмом памяти 24С00 (16 байт) от компании Microchip. Дисплеем служит 7-сегментный 8-разрядный ЖКИ, который управляется любым недорогостоящим микроконтроллером, обменивающимся с центральным микроконтроллером данными по протоколам SPI или I2C и подключенный через разъём Х2.

Заложенный алгоритм работы счетчика потребовал менее 1 Кбайт памяти и меньше половины из всех портов ввода/вывода на микроконтроллере MC68HC05KJ1. Его технических возможностей достаточно для того, чтобы дополнить счетчик некоторыми сервисными функциями, например, возможностью объединения счётчиков в локальную сеть через интерфейс RS-485. Эта возможность позволяет получать данные о потребленной энергии в сервисный центр и дистанционно отключать электричество, если потребителем не внесена оплата. Сетью, содержащей такие счётчики можно оснастить жилой многоквартирный дом. Все показания счетчиков по сети будут дистанционно поступать в диспетчерский пункт.

Практический интерес представляет применение семейства 8-разрядных микроконтроллеров с кристаллом, содержащим встроенную FLASH-память. Это позволяет его программировать прямо на собранной плате. Это также обеспечивает защищённость от взлома программного кода и удобство обновления ПО без выполнения монтажных работ.

Цифровой вычислитель для электронного счетчика электроэнергии

Более интересным представляется вариант электронного счётчика электроэнергии без применения внешней EEPROM и дорогостоящего внешнего энергонезависимого ОЗУ. В этом случае можно при возникновении аварийной ситуации фиксировать показания и другую служебную информацию во внутренней FLASH-памяти микроконтроллера. Это дополнительно обеспечивает требуемую конфиденциальность данных, что нельзя обеспечить, если применяется внешний кристалл, не защищённый от несанкционированного доступа посторонних лиц. Такой электронный счётчик электроэнергии с любым уровнем сложности и функциональности можно создать с применением микроконтроллера компании Motorola из семейства HC08 с FLASH-памятью, встроенной в основной кристалл.

Осуществление перехода на цифровые дистанционные автоматические средства учёта и контроля расхода электроэнергии является вопросом времени. Технические и потребительские достоинства таких систем являются очевидными. Стоимость их будет неизменно уменьшаться. И даже в случае применения простейшего микроконтроллера такой электронный счётчик электроэнергии обладает очевидными преимуществами: высокая надёжность вследствие полного отсутствия подвижных деталей; миниатюрность; возможность выпуска счетчика в корпусе с учётом особенностей интерьера в современных жилых домах; увеличение интервала поверок в несколько раз; высокая ремонтопригодность и предельная простота в обслуживании и эксплуатации. Даже небольшие дополнительные аппаратные и программные затраты в простейшем цифровом счётчике могут дополнить его рядом сервисных функций, принципиально отсутствующих у всех механических электросчетчиков, например, применение многотарифного начисления оплаты за потребляемую энергию, возможность реализации автоматизированного учёта и управления потреблением электроэнергии.

2022 Лучшие мониторы энергии для дома — цены и обзоры

Что такое монитор энергии?

Энергомониторы — это ворота во внутреннюю энергетическую систему вашего дома. Они подключаются к вашему счетчику электроэнергии, чтобы показать, сколько энергии потребляет ваш дом, и предоставить информацию о том, как вы можете сделать свой дом более энергоэффективным. Мониторы энергопотребления имеют множество функций, от распознавания энергопотребления отдельных приборов до создания персональных рекомендаций по энергоэффективности.

Каковы преимущества энергомонитора?

Если вы когда-нибудь внимательно изучали свой счет за электроэнергию, то знаете, что в нем довольно мало информации. В счете будет указано: 1) сколько электроэнергии вы использовали и 2) сколько с вас взимается плата. К сожалению, это об этом.

Допустим, вы хотите сократить потребление энергии, чтобы сэкономить деньги или уменьшить выбросы углекислого газа. Для этого вам нужно либо попытаться сократить ненужное потребление в целом, либо просто угадать, какие устройства являются активными пользователями. Мониторы энергии существуют, чтобы устранить эту игру в угадайку. Они подключаются к вашему автоматическому выключателю и позволяют вам отслеживать потребление энергии с гораздо большей точностью, позволяя вам вместо этого убрать топор и сократить потребление энергии с помощью скальпеля.

Какие функции монитора энергопотребления важно учитывать?

Не все энергомониторы одинаковы. Когда вы смотрите на варианты вашего энергомонитора, необходимо учитывать несколько факторов.

Бытовые мониторы против.индивидуальные мониторы приборов

Важно различать счетчики энергопотребления для дома и счетчики энергопотребления для отдельных приборов. Некоторые мониторы энергопотребления используются для одновременного мониторинга одного устройства и дают вам более подробный обзор этого конкретного устройства. Бытовые мониторы подключаются к вашему счетчику энергии и дают вам полную картину использования энергии. Эта страница посвящена мониторам с большим изображением.

Распознавание устройства

У ваших приборов есть уникальные способы использования электричества.Некоторые мониторы энергопотребления имеют функцию распознавания устройств, которые подключаются к вашим автоматическим выключателям, определяют, как устройства в вашем доме используют электричество, быстро оценивают тип обнаруженного устройства и сообщают о действиях этого конкретного устройства.

Эта функция есть не у всех мониторов, и даже у тех, у кого она есть, технология не всегда работает идеально. Обычно монитор легко обнаруживает различия между телевизором и холодильником, но устройства, которые используют электричество аналогичным образом (например, нагревательные устройства, такие как тостер и плойка), могут быть более сложными.

Отслеживание затрат в режиме реального времени

Некоторые, но не все, домашние энергомониторы позволяют отслеживать стоимость энергопотребления в режиме реального времени. Отслеживание затрат в режиме реального времени позволит вам наблюдать за увеличением или уменьшением потребления электроэнергии и затрат. Вы также сможете увидеть и понять последствия включения и выключения устройств. Если для вас важна экономия средств, обратите особое внимание на устройства с этой функцией.

Мобильные приложения и уведомления

Многие мониторы энергопотребления подключаются к мобильному приложению, которое может отправлять уведомления о ваших устройствах, советы по дальнейшей экономии и предупреждения о ненормальном использовании устройств.Если вы хотите получать уведомления о конкретной проблеме с использованием электроэнергии, обязательно подтвердите, что выбранное вами устройство поддерживает эту функцию.

Опции монитора с поддержкой солнечной энергии

Для домов с уже установленными солнечными батареями или домовладельцев, рассматривающих солнечную энергию, устройства, готовые к работе с солнечными батареями, позволяют контролировать производство солнечной электроэнергии. Мониторы энергии с этой опцией позволяют вам видеть, сколько энергии вырабатывают ваши солнечные панели, когда и как она используется.

Установка

Если вы не очень хорошо знакомы со своим автоматическим выключателем, мы рекомендуем проконсультироваться с электриком по установке.Многие домашние энергомониторы позиционируют себя как самодельные, но любой проект, связанный с подключением устройства к автоматическому выключателю, сопряжен с опасностью поражения электрическим током.

Это правда, что привлечение электрика к вам домой для установки увеличит общую стоимость оборудования, но после установки устройства позволяют значительно сэкономить. Если вы примените знания, которые может предоставить монитор энергопотребления, вы сможете быстро компенсировать первоначальные затраты и стоимость установки.

Нейрио против.Смысл: как складываются топовые мониторы?

Два ведущих монитора бытовой энергии, Neurio и Sense , имеют несколько отличительных характеристик, которые следует учитывать при сравнении двух продуктов. Хотя основы одинаковы, оба устанавливаются в автоматический выключатель путем подключения трансформаторов к линиям электропередач и позволяют отслеживать потребление и выработку электроэнергии в режиме реального времени, но есть несколько существенных отличий.

Возможно, самым большим отличием Sense является его стандартная функция, позволяющая распознавать устройства.Чем дольше и больше вы используете Sense, тем лучше он будет распознавать сигнатуры бытовой техники в вашем доме. Neurio позволяет вам обновить эту функцию, но она может быть не такой продвинутой, как версия Sense.

Новая уникальная функция Neurio позволяет вам контролировать и контролировать распределенные системы хранения, потенциально повышая окупаемость инвестиций в системы хранения. Neurio утверждает, что более эффективное использование системы солнечная батарея + батарея может сократить срок окупаемости на 30%.

ИС для измерения энергии | Analog Devices

Некоторые файлы cookie необходимы для безопасного входа в систему, а другие являются необязательными для функциональных действий.Сбор данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы убедиться, что вы получаете наилучшую производительность и функциональность, которые может предоставить наш сайт. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Используемые нами файлы cookie можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или конкретные предлагаемые функции. Они либо служат единственной цели осуществления сетевой передачи, либо строго необходимы для предоставления онлайн-услуги, явно запрошенной вами.
Аналитические/производительные файлы cookie:
Эти файлы cookie позволяют нам проводить веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, гарантируя, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши услуги менее функциональными, но не помешает работе веб-сайта.
Целевые/профилирующие файлы cookie:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и/или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы перешли.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам для этой цели.
Отказ от печенья

Электрические счетчики | Аналоговые устройства

ADE7978, ADE7933/ADE7932 и ADE7923 образуют набор микросхем, предназначенный для измерения 3-фазной электрической энергии с использованием шунты как датчики тока. ADE7933/ADE7932 изолированные, 3-канальные сигма-дельта аналого-цифровые преобразователи (Σ-Δ АЦП) для многофазной энергии измерительные приложения, в которых используются шунтирующие датчики тока.

ADE7923 — неизолированный 3-канальный Σ-Δ АЦП для нейтральной линии. в котором используется шунтирующий датчик тока. ADE7932 имеет два АЦП, а ADE7933 и ADE7923 имеют три АЦП.

Один канал предназначен для измерения напряжения на шунт, когда шунт используется для измерения тока. Этот канал обеспечивает отношение сигнал/шум (SNR) 67 дБ на частоте 3,3 кГц. полоса пропускания сигнала. Выделено до двух дополнительных каналов для измерения напряжений, которые обычно измеряются с помощью резистора разделители.

Неиспользуемые каналы напряжения на нейтрали ADE7923 могут быть используется для измерения вспомогательного напряжения. Эти каналы обеспечивают отношение сигнал-шум 75 дБ в полосе пропускания сигнала 3,3 кГц. Одно напряжение канал можно использовать для измерения температуры кристалла через внутренний датчик. ADE7933 и ADE7923 включают три канала: один канал тока и два канала напряжения. ADE7932 включает один канал тока и один канал напряжения, но в остальном идентичен ADE7933.

ADE7933/ADE7932 включают isoPower ® , интегрированный, изолированный преобразователь постоянного тока.На основе Analog Devices, Inc., iCoupler ® , преобразователь постоянного тока обеспечивает регулируемая мощность, необходимая первому каскаду АЦП при Входное питание 3,3 В. ADE7933/ADE7932 устраняют необходимость для внешнего блока изоляции постоянного тока. Весы чипов iCoupler трансформаторная технология используется для изоляции логических сигналов между первым и вторым каскадом АЦП. В результате Малый форм-фактор, полная изоляция. ADE7923 — это неизолированная версия ADE7933, которую можно использовать для измерение тока нейтрали при изоляции от нейтрали линия не требуется.

ADE7933/ADE7932 и ADE7923 содержат цифровой интерфейс который специально разработан для взаимодействия с ADE7978. С использованием через этот интерфейс ADE7978 получает доступ к выходам АЦП и параметры конфигурации ADE7933/ADE7932 и АДЭ7923.

ADE7933/ADE7932 доступны в 20-выводном, бессвинцовом корпусе с широким корпусом. Пакет SOIC с увеличенной длиной пути утечки. ADE7923 это доступен в аналогичном 20-выводном, бессвинцовом корпусе SOIC с широким корпусом без повышенной утечки.

ADE7978 — это высокоточный трехфазный преобразователь электроэнергии. измерительная ИС с последовательными интерфейсами и тремя гибкими импульсами выходы.ADE7978 может взаимодействовать с четырьмя ADE7933/ Устройства ADE7932 и ADE7923. ADE7978 включает в себя все обработка сигнала, необходимая для выполнения полной (основной и гармоника) измерение активной, реактивной и полной энергии и расчеты среднеквадратичных значений, а также активные и измерение реактивной энергии и расчет среднеквадратичных значений. Фиксированный Функция цифрового сигнального процессора (DSP) выполняет этот сигнал обработка.

ADE7978 измеряет активную, реактивную и полную энергию в различных трехфазных конфигурациях, таких как услуги «звезда» или «треугольник», как с тремя, так и с четырьмя проводами. ADE7978 обеспечивает систему функции калибровки для каждой фазы, калибровка усиления и дополнительные коррекция смещения. Фазовая компенсация также доступна, но нет необходимости, потому что токи воспринимаются с помощью шунтов. То Логические выходы CF1, CF2 и CF3 обеспечивают широкий выбор информация о мощности: полная активная, реактивная и полная мощности; сумма текущих среднеквадратичных значений; и фундаментальные активные и реактивные мощности.

ADE7978 включает измерения качества электроэнергии, такие как как кратковременное обнаружение низкого или высокого напряжения, кратковременное колебания больших токов, измерение периода линейного напряжения и углы между фазными напряжениями и токами.Два последовательных интерфейса, SPI и I 2 C можно использовать для связи с ADE7978. Специальный высокоскоростной интерфейс — высокоскоростной захват данных (HSDC) — может использоваться вместе с I 2 C для обеспечения доступ к выходам АЦП и информации о мощности в реальном времени. ADE7978 также имеет два вывода запроса на прерывание, IRQ0 и IRQ1, чтобы указать, что произошло разрешенное событие прерывания. ADE7978 доступен в 28-выводном корпусе LFCSP без свинца.

Приложения

  • Многофазные счетчики на основе шунта
  • Контроль качества электроэнергии
  • Солнечные инверторы
  • Мониторинг процесса
  • Защитные устройства Изолированные сенсорные интерфейсы
  • Промышленные ПЛК

Умные счетчики электроэнергии Qubino | Измеряйте потребление смарт-устройств

Страна

Выберите страну Афганистан Аландские острова Албания Алжир американское Самоа Андорра Ангола Ангилья Антарктида Антигуа и Барбуда Аргентина Армения Аруба Австралия Австрия Азербайджан Багамы Бахрейн Бангладеш Барбадос Беларусь Бельгия Белиз Бенин Бермуды Бутан Боливия, Многонациональное Государство Бонайре, Синт-Эстатиус и Саба Босния и Герцеговина Ботсвана Остров Буве Бразилия Британская территория Индийского океана Бруней-Даруссалам Болгария Буркина-Фасо Бурунди Камбоджа Камерун Канада Кабо-Верде Каймановы острова Центрально-Африканская Республика Чад Чили Китай Остров Рождества Кокосовые (Килинг) острова Колумбия Коморы Конго Конго, Демократическая Республика Острова Кука Коста-Рика Берег Слоновой Кости Хорватия Куба Кюрасао Кипр Чешская Республика Дания Джибути Доминика Доминиканская Республика Эквадор Египет Сальвадор Экваториальная Гвинея Эритрея Эстония Эфиопия Фолклендские (Мальвинские) острова Фарерские острова Фиджи Финляндия Франция Французская Гвиана Французская Полинезия Южные Французские Территории Габон Гамбия Грузия Германия Гана Гибралтар Греция Гренландия Гренада Гваделупа Гуам Гватемала Гернси Гвинея Гвинея-Бисау Гайана Гаити Остров Херд и острова Макдональдс Святой Престол (город-государство Ватикан) Гондурас Гонконг Венгрия Исландия Индия Индонезия Иран, Исламская Республика Ирак Ирландия Остров Мэн Израиль Италия Ямайка Япония Джерси Иордания Казахстан Кения Кирибати Корея, Народно-Демократическая Республика Корея, Республика Кувейт Кыргызстан Лаосская Народно-Демократическая Республика Латвия Ливан Лесото Либерия Ливия Лихтенштейн Литва Люксембург Макао Македония, бывшая югославская республика Мадагаскар Малави Малайзия Мальдивы Мали Мальта Маршалловы острова Мартиника Мавритания Маврикий Майотта Мексика Микронезия, Федеративные Штаты Молдова, Республика Монако Монголия Черногория Монтсеррат Марокко Мозамбик Мьянма Намибия Науру Непал Нидерланды Новая Каледония Новая Зеландия Никарагуа Нигер Нигерия Ниуэ Остров Норфолк Северные Марианские острова Норвегия Оман Пакистан Палау Палестинская территория, оккупированная Панама Папуа — Новая Гвинея Парагвай Перу Филиппины Питкэрн Польша Португалия Пуэрто-Рико Катар Реюньон Румыния Российская Федерация Руанда Сен-Бартельми Остров Святой Елены, Вознесение и Тристан-да-Кунья Сент-Китс и Невис Санкт-Люсия Сен-Мартен (французская часть) Сен-Пьер и Микелон Святой Винсент и Гренадины Самоа Сан-Марино Сан-Томе и Принсипи Саудовская Аравия Сенегал Сербия Сейшелы Сьерра-Леоне Сингапур Синт-Мартен (голландская часть) Словакия Словения Соломоновы острова Сомали Южная Африка Южная Георгия и Южные Сандвичевы острова южный Судан Испания Шри-Ланка Судан Суринам Шпицберген и Ян-Майен Свазиленд Швеция Швейцария Сирийская Арабская Республика Тайвань, провинция Китая Таджикистан Танзания, Объединенная Республика Таиланд Тимор-Лешти Идти Токелау Тонга Тринидад и Тобаго Тунис Турция Туркменистан острова Теркс и Кайкос Тувалу Уганда Украина Объединенные Арабские Эмираты объединенное Королевство Соединенные Штаты Малые отдаленные острова США Уругвай Узбекистан Вануату Венесуэла, Боливарианская Республика Вьетнам Виргинские острова, Британские Виргинские острова, Ю. С. Уоллис и Футуна Западная Сахара Йемен Замбия Зимбабве

устройств | Итрон

Переход на цифровые технологии с помощью решений для интеллектуального учета

Интеллектуальные счетчики находятся в начале пути к данным, а данные являются важнейшим компонентом, помогающим решать повседневные задачи: от лучшего управления сетью до более эффективной работы подключенные счетчики предоставляют информацию, необходимую для преобразования вашего бизнеса.

Мы внедряем инновации, чтобы изменить игру

Помимо базового измерения потребления энергии и воды, мы первыми внедрили расширенные возможности, такие как дистанционное отключение и повторное подключение, измерение качества и температуры воды, идентификация загрязняющих веществ, сигнализация высокого расхода, обнаружение утечек, встроенные запорные клапаны и интеллектуальные функции, которые обеспечивают беспрецедентное понимание ваша система.

Открыть. Гибкий. Масштабируемость.

Наши интеллектуальные устройства работают с различными открытыми ведущими коммуникационными протоколами, сетями и технологическими платформами, а не только с нашими собственными.Наша технология совместима и способна удовлетворить потребности наших клиентов по мере их развития.

Электросчетчик — Energy Education

Рис. 1. Североамериканский электросчетчик. [1]

Электросчетчик — это устройство, используемое для измерения потребления электроэнергии в доме, здании или другом устройстве с электропитанием. Они используются для обеспечения точного выставления счетов клиентам. [2]

Аналоговые электросчетчики, подобные тому, что показан на рис. 1, используют различные катушки и шестерни, однако его работа может быть упрощена до работы электродвигателя. Электрический ток, проходящий через катушки, создает изменяющиеся магнитные поля, на которые реагирует металлический диск. С помощью постоянного магнита диск вращается пропорционально количеству потребляемой электроэнергии. Его движение вращает шестерни, которые, наконец, показывают показания на циферблате, похожем на часы.

Цифровые счетчики просто показывают количество использованной электроэнергии в кВтч. Важно отметить, что ни цифровые, ни аналоговые счетчики не сбрасываются в начале месяца, энергетическая компания вычитает начало из конца, чтобы выяснить, сколько нужно выставить счет домохозяйству. Цифровые счетчики часто могут напрямую связываться с энергетической компанией, что снижает потребность людей ходить по окрестностям и смотреть на все счетчики.

Как читать

Электрический счетчик кажется сложным со всеми этими вращающимися циферблатами, каждый из которых вращается в противоположных направлениях, однако это не так уж сложно, когда секрет раскрыт.Следующее видео дает отличное руководство по считыванию показаний электросчетчика, краткое изложение которого приведено ниже.

шагов

  1. Начните с крайнего правого набора . Запишите цифру, на которой стоит циферблат, или, если она находится между двумя цифрами, запишите меньшую из двух.
  2. Теперь прочтите циферблат слева от , снова записывая меньшую из двух цифр, если она находится между двумя цифрами.
  3. Продолжайте, пока крайний левый циферблат не будет записан как , затем прочитайте записанный номер в обычном режиме.

Примечания

  • Если циферблат находится между 0 и 1, 0 является меньшим числом. Однако, если оно находится между 9 и 0, 9 — меньшее число (точно так же, как на часах, где 12 меньше 1).
  • Помните, что все эти циферблаты взаимосвязаны. Если неясно, прошел ли циферблат число или нет, прочитайте циферблат справа от него — если он прошел 0, следующий циферблат прошел число.

Число, указанное на счетчике, является показателем потребляемой электроэнергии (в киловатт-часах, если на счетчике не указано иное).

Пример : если числа со счетчика в следующем порядке справа налево — 1, 3, 4, 2 — то использовано 2431 кВтч. Взгляните на счетчик на рисунке 1 (нажмите, чтобы развернуть) и попробуйте его прочитать (он показывает 2211 кВтч).

Для дальнейшего чтения

Для получения дополнительной информации см. соответствующие страницы ниже:

Ссылки

Трехфазный счетчик энергии WiFi, трехфазный электрический счетчик/монитор

Трехфазный счетчик энергии Wi-Fi (WEM3080T) представляет собой трехфазный счетчик энергии Wi-Fi/монитор электроэнергии Wi-Fi на DIN-рейку. Его можно легко установить и аккуратно разместить внутри вашего электрощита, а также получить информацию о потреблении энергии и анализе с помощью нашей специальной системы онлайн-мониторинга энергопотребления (https://www.iammeter.com/) и приложения Android/IOS. С помощью нашего облачного сервиса вы можете легко понять свой счет за электроэнергию и своевременно получать оповещения, когда общее потребление энергии в месяц достигает заданного значения.

Это высокоинтегрированный измеритель мощности со встроенным модулем Wi-Fi, который измеряет данные, такие как переменное напряжение и ток каждой фазы, активную мощность, общую энергию, и передает их в облако каждую минуту.Вы можете напрямую получить доступ к его внутреннему веб-серверу и легко настроить конфигурацию сети Wi-Fi с помощью настройки одним нажатием кнопки. Благодаря открытому интерфейсу данных (Http-интерфейс получения и Tcp-интерфейс) данные измерений могут быть очень гибкими для хранения локально или загрузки на ваш собственный сервер.

Товар Кол-во Примечание
1 Счетчик энергии Wi-Fi 1 Встроенный модуль Wi-Fi
2 Трансформатор тока с разъемным сердечником 3 ТТ на 150 А, 250 А или 400 А опционально
3 2.Антенна Wi-Fi 4G 1

1. Солнечная фотоэлектрическая система

  • Экспорт/импорт энергии в сравнении с производством солнечных инверторов

  • Статистика доходов от счетов за электроэнергию и солнечной фотоэлектрической системы

    Демонстрация системы и приложения

ОБЗОР СОЛНЕЧНОЙ СИСТЕМЫ

ОТЧЕТ О СЧЕТАХ И ДОХОДАХ

В этом отчете показаны как общее потребление энергии в сети, так и счет за электроэнергию, общий экспорт энергии и доход, а также баланс на ежедневной/ежемесячной/годовой основе.

ОБЩИЙ ОТЧЕТ О СБЕРЕЖЕНИЯХ

В этом отчете показан уровень прямого собственного использования и общая экономия (деньги, сэкономленные за счет прямого потребления энергии для собственного использования вместо энергии из сети + доход от экспорта энергии в сеть) вашей солнечной фотоэлектрической системы.

2. Монитор использования электроэнергии/система мониторинга энергии

  • Мониторинг потребления электроэнергии в режиме реального времени

  • Расчет счетов за электроэнергию ежечасно/ежедневно/ежемесячно

    Демонстрация системы и приложения

ОБЗОР ТРЕХФАЗНОЙ ЭЛЕКТРОСИСТЕМЫ

ПЕРЕЧЕНЬ ПОТРЕБЛЯЕМОЙ ЭНЕРГИИ И СЧЕТ

ОТЧЕТ ОБ ИСПОЛЬЗОВАНИИ ЭНЕРГИИ И СЧЕТАХ

В этом отчете показаны статистические данные о потреблении электроэнергии (кВтч) и счетах за электроэнергию в разные периоды времени (от пика до впадины) по дням/месяцам/годам.

ПРОГНОЗ ПОТРЕБЛЕНИЯ ЭНЕРГИИ И СЧЕТОВ

Наша система может ежемесячно давать вам прогноз потребления энергии и счетов за электроэнергию, изучая данные о потреблении энергии в прошлом и установленном вами методе выставления счетов.

РАСШИРЕННЫЙ ОТЧЕТ ПО АНАЛИЗА ПОТРЕБЛЕНИЯ ЭНЕРГИИ

3. Домашняя автоматизация

Наш счетчик энергии Wi-Fi предоставляет открытый интерфейс API для идеальной интеграции данных с системой домашней автоматизации стороннего производителя, такой как HomeAssistant, openHAB и т. д.Мы также скоро объединим счетчики с другими платформами.

  1. Двунаправленный счетчик для отслеживания энергии в двух направлениях («из сети» и «в сеть»)
  2. Монтаж на DIN-рейку аккуратно помещается в измерительную коробку
  3. Облачная веб-служба и приложение для Android/IOS доступны в Google play и Apple store
  4. Трехфазный счетчик может быть установлен в однофазной системе (как 3 однофазных счетчика), в трехфазной системе или в двухфазной системе.
  5. Открытый API обеспечивает идеальную интеграцию со сторонними серверами (HomeAssistant, PVoutput, ваш собственный сервер…)

СОЛНЕЧНАЯ СИСТЕМА

ЖИЛАЯ ЭЛЕКТРОСИСТЕМА

СКАЧАТЬ ПРИЛОЖЕНИЕ

  1. СЕ
  2. РКМ
  3. RoHS

Мы предоставляем собственный облачный сервис IAMMETER и мобильное приложение для наших счетчиков энергии WiFi, чтобы реализовать различные приложения, такие как мониторинг солнечной фотоэлектрической системы, мониторинг использования электроэнергии. Кроме того, вы можете интегрировать наши счетчики энергии WiFi на другие сторонние платформы.

Интегрирован со сторонним сервером MQTT

https://www.iammeter.com/docs/integrate-with-mqtt-server

Интегрирован со сторонним сервером TCP/TLS/http

https://www.iammeter.com/docs/интеграция-с-третьим-сервером

REST API

https://www. iammeter.com/docs/integrate-with-PVOutput

Домашний помощник

https://www.iammeter.com/docs/homeassistant

Опенхаб

https://www.iammeter.com/docs/openhab

NodeRED

https://www.iammeter.com/docs/nodered

HomeAssistant-InfluxDB-Grafana

https://www.iammeter.com/docs/homeassistant-grafana

IAMMETER Монитор энергии

Контролируйте свою солнечную фотоэлектрическую систему с помощью Home Assistant

Интеграция счетчика энергии IAMMETER со сторонней платформой

Контролируйте свою солнечную фотоэлектрическую систему в облаке IAMMETER

Контролируйте потребление электроэнергии в облаке IAMMETER

.

Добавить комментарий

Ваш адрес email не будет опубликован.