Заземление опор деревянных: Заземление. Защита от перенапряжений. / ПУЭ 7 / Библиотека / Элек.ру

Содержание

Повторное заземление ВЛИ | ehto.ru

Что такое повторное заземление ВЛИ?

Повторное заземление ВЛИ подразумевает заземление PEN проводника от трансформатора КТП 10/0,4, на опорах воздушных линий электропередач.

Аббревиатура ВЛИ подразумевает воздушную линию электропередач, выполненную самонесущими изолированными проводами СИП, от трансформатора с глухозаземленной нейтралью.

Выполняются воздушные линии на деревянных или железобетонных опорах. Остановимся на опорах подробнее.

Деревянные опоры линий электропередач

  • Деревянные опоры делаются из бревен (круглого леса без коры) длинной 5-13 метров с шагом 50 см и толщиной 12-26 см с шагом 20 мм.
  • Деревянные опоры покрываются антисептиком, чтобы замедлить гниение древесины.
  • Типы деревянных опор С1 и С2.

Железобетонные опоры

Железобетонные опоры это прямоугольные или трапециевидные конструкции из арматуры и бетона. Маркируются железобетонные опоры, как СВ. Далее идет номер маркировки, который обозначает длину опоры. Например, опора СВ 95 имеет длину 9,5 метров.

Применяются следующие железобетонные опоры:

  • СВ 85;
  • СВ 95
  • СВ 110;
  • СВ 105.

На опорах СВ сверху и снизу приварена арматура для осуществления повторного заземления PEN проводника.

Но вернемся к повторному заземлению.

Повторное заземление, называется повторным, потому что этот провод уже заземлен на КТП.

Трансформатор с глухозаземленной нейтралью (TN-C-S) предполагает, что по ВЛИ тянутся два или четыре провода СИП. Один или три провода фазные, плюс PEN проводник (он несущий). Разделяется PEN проводник на нулевой рабочий провод (N) и нулевой защитный провод (PE)  проводник на столбе, если на нем вы ставите ВУ (вводное устройство) или в щите в доме.

Напомню, что разделяется PEN проводник на нулевой рабочий провод (N) и нулевой защитный провод (PE)  проводник на столбе, если на нем вы ставите ВУ (вводное устройство) или в щите в доме.

Согласно ПУЭ повторное заземление ВЛИ это заземление PEN или PE проводника ВЛИ электропередач.

Как делается повторное заземление ВЛИ.

Повторное заземление ВЛИ на бетонной опоре

Повторное заземление делается на столбе или опоре вне ВУ (вводного устройства) или ВЩ (вводного щита), до вводного автомата или общего рубильника.

PEN проводник следует подсоединять к арматурному выпуску вверху железобетонной опоры, как основной, так и подкосной (если она есть). На следующем фото показано, как делается повторное заземление несущего PEN проводника, прокалывающим зажимом (4) на проходной опоре, без отвода. Такое заземление делается на каждой третьей опоре ВЛ и на опоре отвода к вашему дому.

Повторное заземление на деревянной опоре

Для повторного заземления на деревянной опоре монтируется заземляющий спуск. Заземляющий спуск делается, из металлического прута по опоре, который приваривается к штыревому электроду, вбитому в землю. Прут лучше взять из оцинкованной стали, если он толще 6 мм или из черной стали с антикоррозийным слоем, если он тоньше 6 мм.

Для работ понадобится сам прут, кувалда для его забивания, набор гаечных ключей (или сварка), отрезная болгарка на аккумуляторах. Выбрать болгарку на аккумуляторе нужно по диаметру отрезного круга и наличию двух зарядных батарей. Для работы вам не понадобиться электрическое подключение, что очень удобно в данном контексте.

Аналогично делается повторное заземления железобетонного столба без арматурного выпуска.

На деревянной опоре, где выполнено повторное заземление PEN проводника, нужно заземлить все металлические крюки и штыри опоры. Если на деревянной или железобетонной опоре нет повторного заземления PEN проводника, то крюки и штыри заземлять не нужно (2-4-41 ПУЭ).

Всё металлическое электрооборудование, расположенное на столбах (молниезащита, шиты ВУ, защита от перенапряжений и т.п.) должны заземляться отдельными проводами. Сопротивление повторного заземления не должно превышать 30 Ом (в варианте глухозаземленной нейтрали трансформатора).

Повторное заземление PEN проводника ВЛИ не отменяет устройство заземления частного дома с монтажом контура заземления возле или вокруг дома.

Советы практика

В завершении приведу предписание технического надзора. Где нужно сделать повторное заземление на участке ВЛИ от ТП до дома, длинной 800 метров.

В этом варианте, повторное заземление нужно сделать:

  • На последнем (у дома) и первом (у подстанции) столбах линии;
  • На анкерных опорах ВЛИ;
  • На опорах с шагом 100± метров от первой опоры, с заземлением.

©Ehto.ru

Полезно почитать

  • Записи не найдены

Требования к заземляющим устройствам ВЛ 0,38-20 кВ

данный раздел подготовлен согласно типового проекта СЕРИЯ 3.407-150

 

Типовые конструкции настоящей серии разработаны с учётом требований Правил устройства электроустановок (ПУЭ) шестого издания как по конструктивному исполнению, так и в части учёта нормируемых сопротивлений растеканию заземлителей для грунтов с эквивалентным удельным сопротивлением до 100 .
В серию включены конструкции заземлителей, предназначенных для заземления опор, а также опор с установленным на них оборудованием на ВЛ 0,38, 6, 10, 20 кВ в соответствии с требованиями главы 1.7 и других глав ПУЭ.
Предусмотрены следующие конструкции заземлителей: вертикальные, горизонтальные (лучевые), вертикальные в сочетании с горизонтальными, замкнутые горизонтальные (контурные), контурные в сочетании с вертикальными и горизонтальными (лучевыми).
Конструктивное выполнение заземляющих и нулевых защитных проводников, проложенных на опорах ВЛ, принимаются в соответствии с действующими типовыми проектами и проектами повторного применения опор BЛ.

Конструкции данной серии должны применяться проектировщиками, монтажниками и эксплуатационниками при сооружений и реконструкции ВЛ 0,38, 6, 10 и 20 кВ.
В настоящей серии не рассматриваются заземлители в районах северной строительно — климатической зоны (подрайоны IА , IБ, IГ и IД по СИиП 2.01.01-82) и в районах распространения скальных грунтов.

ОБЩИЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ ЗАЗЕМЛИТЕЛЕЙ
Исходными данными при проектировании заземляющих устройств ВЛ являются параметры электрической структуры земли и требования по величинам сопротивления заземления.
Удельные сопротивления грунтов r и толщина слоёв грунта с различными значениями r могут быть получены непосредственно при измерениях по трассе проектируемой ВЛ или по данным замеров удельных сопротивлений аналогичных грунтов в районе трассы ВЛ, на площадках подстанций и т.д.
При отсутствии данных прямых измерений удельного сопротивления грунта проектировщикам следует пользоваться полученными от изыскателей геологическим разрезом грунта по трассе и обобщёнными значениями удельных сопротивлений различных грунтов, приведёнными в таблице.

 

Обобщенные значения удельных сопротивлений грунтов

В настоящее время разработаны достаточно надёжные инженерные методы определения электрической структуру земли, расчета сопротивлений заземлителей в однородной и двухслойной земле , а также способы приведения реальных многослойных электрических структур земли к расчётным двухслойным эквивалентным моделям. Разработанные методы позволяют определять целесообразные конструкции искусственных заземлителей для данной электрической структуры грунта обеспечивающие нормированную величину сопротивления заземлителей.

ВЫБОР СЕЧЕНИЯ ЭЛЕМЕНТОВ ЗАЗЕМЛИТЕЛЯ
На основании исследований проведённых СИБНИИЭ установлено, что сопротивление растеканию практически не зависит от размеров и конфигурации поперечного сечения заземлителя. В то же время элементы заземлителя, имеющие круглое сечение, значительно долговечнее эквивалентных по сечению плоских проводников, ибо при одинаковой скорости коррозии остающееся сечение последних снижается значительно быстрее. В связи с этим для заземлителей ВЛ целесообразно применять только круглую сталь.

КОНСТРУКТИВНОЕ ВЫПОЛНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ И РЕКОМЕНДАЦИИ ПО МОНТАЖУ
Заземлители ВЛ предусмотрены из круглой стали: горизонтальные диаметром 10 мм, вертикальные — 12мм, что вполне достаточно на расчетный срок службы в условиях слабой и средней коррозии.
В случае усиленной коррозии должны быть приняты меры, повышающие долговечность заземлителей.
В качестве вертикальных заземлителей могут быть использованы также угловая сталь и стальные трубы. При этом их размеры должны соответствовать требованиям ПУЭ.
Учитывая, что предельная глубина погружения вертикальных заземлитёлей (электродов) при существующих в настоящее время механизмах в достаточно мягким грунтах 20 м, в настоящей серии они предусмотрены длиной 3, 5, 10, 15 и 20м.
В грунтах с малыми удельными сопротивлениями (при до 10 ОмЧм) предусматривается использование только нижнего заземляющего выпуска — стержневого электрода длиной порядка 2 м, поставляемого комплектно с железобетонной стойкой.
При монтаже заземлителей следует соблюдать требования строительных норм и правил и ГОСТ 12.1.030-81.
Для разработки траншей при прокладке горизонтальных заземлителей возможно применение экскаватора типа ЭТЦ -161 на базе трактора беларусь МТЗ-50. Они могут укладываться так же с помощью монтажного плуга. При этот следует учитывать необходимость рытья котлованов размером 80х80х60 см в местах погружения вертикальных заземлитёлей и последующего их присоединения с помощью сварки к горизонтальному заземлителю.
Вертикальные заземлители погружаются методом вибрирования или засверливания, а также, забивкой или закладкой в готовые скважины.
Погружение вертикальных электродов производится с тем расчетом, чтобы верх их был на 20 см выше дна траншей.
Затем прокладываются горизонтальные заземлители. Производится отгиб концов вертикальных заземлителей в местах примыкания их к горизонтальному заземлителю по направлению оси траншеи.
Соединение заземлителей между содой следует выполнять сваркой в нахлёстку. При этом длина нахлёстки должна быть равна шести диаметрам заземлителя. Сварку следует выполнять по всему периметру нахлёстки. Узлы соединения заземлителей приведены в разделах ЭС37 и ЭС38.
Для защиты от коррозии сборные стыки следует покрывать битумным лаком.
Засыпка траншей производится бульдозером на базе трактора Беларусь МТЗ-50.
В разделе ЭС42 приведены объёмы земляных работ в случае рытья траншей при механизированной и ручной копке.
При выполнении проекта ВЛ в частности заземлителей необходимо учитывать возможности мехколонны, которая будет строить данную линию с точки зрения оснащения еe механизмами.
После устройства заземлителей производятся контрольные замеры их сопротивления. В случае, если сопротивление превышает нормируемое значение, добавляются вертикальные заземлители для получения требуемой величины сопротивления.

ПРИСОЕДИНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ К ОПОРАМ
Присоединение заземлителей к специальным заземляющим выпускам (деталям) железобетонных стоек опор и заземляющим спускам деревянных опор может быть кок сварным, так и болтовым. Контактные соединения должны соответствовать классу 2 по ГОСТ 10434-82.
В месте присоединения заземлителей к заземляющим спускам на деревянных опорах ВЛ 0,38 кВ предусматриваются дополнительные отрезки из круглой стали диаметром 10 мм, а заземляющие спуски на деревянных опорах ВЛ 6, 10 и 20 кВ выполняемые из круглой стали диаметром не менее 10 мм, присоединяются непосредственно к заземлителю.
Наличие болтового соединения заземляющего спуска с заземлителем обеспечивает возможность осуществления контроля заземляющих устройств опор ВЛ без подъема на опору и отключения линии.
При наличии приборов для контроля заземлителей соединение заземляющего спуска с заземлителем может выполняться неразъёмным.
Контроль и измерения заземлителей должны проводиться в соответствии с «Правилами технической эксплуатации электрических станций и сетей».

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ
В связи с тем, что инженерные методы расчёта заземлителей разработаны для двухслойной структуры грунта, расчётная многослойная электрическая структура грунта приводится к эквивалентной двухслойной структуре. Метод приведения зависит от характера изменения удельных сопротивлений слоев расчётной структуры по глубине и глубины заложения заземлителя.
В однородном грунте и в грунте с убывающим по глубине удельным сопротивлением (порядка в 3 и более раза) наиболее целесообразными являются вертикальные заземлители.
Если нижележащие слои грунта имеют значительно более высокие значения удельных сопротивлений, чем верхние, или когда погружение вертикальных заземлителей затруднено или невозможно из-за плотности грунтов, в качестве искусственных заземлителей рекомендуется применять горизонтальные (лучевые) заземлители.
Если вертикальные заземлители не обеспечивают нормированных значений сопротивления, то дополнительно к вертикальным прокладываются горизонтальные, т. е. применяются комбинированные заземлители.
По эквивалентной двухслойной структуре и предварительно выбранной конструкции заземлителя определяется .
Для найденного и для нормированного сопротивления заземляющего устройства по ПУЭ подбирается соответствующий тип заземлителя данной серии.
Ниже приведена таблица подбора чертежей заземлителей.
Расчёты заземлителей выполнены на ЭВМ по программе, разработанной Западно — Сибирским отделением института «Сельэнергопроект».

Внимание: согласно ПУЭ 7-е изд. заземляющие проводники для повторных заземлений PEN-проводника должны иметь размеры не менее приведенных в табл. 1.7.4.


Таблица 1.7.4. Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

Таблица подбора чертежей заземлителей

Узлы и детали соединений заземляющих проводников на опорах ВЛ 0,38-35 кВ

СЕРИЯ 5.407-146 УЗЛЫ И ДЕТАЛИ

СОЕДИНЕНИЙ ЗАЗЕМЛЯЮЩИХ ПРОВОДНИКОВ НА ОПОРАХ ВЛ 0.38-35кВ
ВЫПУСК I
УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И РАБОЧИЕ ЧЕРТЕЖИ

1. ОБЩАЯ ЧАСТЬ


1.1. «Узлы и детали соединений заземляющих проводников на опорах ВЛ 0,38-35 кВ» разработаны на основании договора с Уральский институтом типового проектирования Госстроя СССР с 30.01.91 № 1315, задания на выполнение вышеназванных узлов и деталей, выданного и утвержденного 01.02.91 Главэлектросетью Минэнерго СССР, согласованного 31.01.91 Уральским институтом типового проектирования Госстроя СССР.
1.2. Узлы и детали соединений заземляющих проводников разработаны в дополнение к типовой серии 3.407-150 «Заземляющие устройства опор воздушных линий электропередачи напряженней 0,38; 6-20 и 35 кВ» введенной в действие в 1987 году.
Разработка узлов и деталей соединений заземляющих проводников вызвана также отменой действия «Инструкции по устройству заземления и зануления в электроустановках» (СН 102-76) Госстроя СССР, ряд положений которой, необходимых для руководства при выполнении заземляющих устройств опор ВЛ 0,38-35 кВ, не вошли в состав действующих нормативных документов.
1.3. Разработанная серия типовых узлов и деталей состоит пэ двух выпусков.
В выпуске I представлены чертежи узлов и деталей, технические требования и указания по выполнению соединений заземляющих проводников, а в выпуске 2 — приемы и методы труда электромонтажников, рациональная организация их рабочих мест при монтаже заземлений металлических элементов опор ВЛ и электрооборудования, устанавливаемого на опорах ВЛ и подлежащего заземлению.

 

2. НАЗНАЧЕНИЕ


Приведенные в выпуске I узлы и детали соединение заземляющих проводников предназначаются для использования при проектировании к монтаже заземлений металлических элементов опор ВЛ и электрооборудования, устанавливаемого на опорах ВЛ и подлежащего заземлению.

 

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ И УКАЗАНИЯ

3.1. Требования и указания, приведенные в выпуске I, являются обязательными при разработке типовых и повторно применяемых конструкций опор ВЛ 0,38-35 кВ, проектов на строительство конкретных ВЛ, а также при производстве работ по монтажу заземляющих устройств опор ВЛ 0,38-35 кВ.
3.2. При проектировании и монтажа заземляющих устройств опор ВЛ 0,38-35 кВ кроме требований настоящей работы должны соблюдаться соответствующие требования СНиП-3.05.06-85 «Электротехнические устройства», «Правил устройства электроустановок» (ПУЭ-85) и других нормативных документов, указанных в перечне основных нормативных документов.
3.3. К частям, подлежащий заземлению или занулению, относится:
3.3.1. Электрооборудование, установленное на опорах воздушных линий электропередачи:
разъединители и приводы к ним;
корпуса светильников уличного освещения;
корпуса щитков и шкафов;
металлические оболочки и броня кабелей;
корпуса концевых кабелей муфт;
разрядники.
Присоединение разрядников к заземлителю должно выполняться самостоятельным заземляющим спуском, отдельным от спуска, к которому присоединяются металлическая оболочка и броня кабеля, корпус концевой кабельной муфты, а также металлические элементы опор, подлежащие в соответствии с требованиями ПУЭ заземлению. На железобетонных опорах анкерного типа ВЛ 0,38-10 кВ для этих целей следует использовать арматуру основной стойки и стойки подкоса.
3.3.2. Все металлоконструкции, крюки и штыри железобетонных опор ВЛ 0,38 кВ, имеющих заземляющие устройства /заземлители/, должны быть заземлены.
Стальные крюки, штыри и др. металлоконструкции деревянных опор ВЛ 0,38 кВ подлежат заземлению на опорах, на которых выполняется:
защита от атмосферных перенапряжений,
повторное заземление нулевого провода,
ответвление к вводу,
пересечение с ВЛ напряжением ваше 1 кВ,
совместная подвеска проводов ВЛ 0,38 кВ с проводами ВЛ 10 кВ — глава 2.4 ПУЭ;
установка электрооборудования — глава 1.7 ПУЭ.
При отсутствии заземляющих устройств все металлоконструкции, крюки и штыри железобетонных опор ВЛ 0,38 кВ подлежат защитному занулению, т.e. должны быть присоединены к нулевому проводу ВЛ 0,38 кВ; на деревянных опорах в этих случаях выполнять защитное зануление не требуется.
3.3.3. Все металлоконструкции железобетонных опор, металлические опоры, а также электрооборудование (разрядники, разъединители, кабельные муфты и др.), установленное на деревянных опорах ВЛ 6-35 кВ должны быть заземлены.
Стальные крюки, штыри и др. металлоконструкции деревянных опор ВЛ 6-10 кВ подлежат заземления на опорах, на которых выполняется:
установка грозозащитных устройств — глава 4.2 ПУЭ;
установка электроаппаратов (разъединителей).;
кабельных муфт — глава 1.7, глава 2.5 и глава 4.2 ПУЭ;
пересечения с ВЛ 0,38 кВ с линиями связи и ПВ, с установкой разрядников и искровых промежутков — глава 2.4 и глава 2.5 ПУЭ;
проектирование и строительство ВЛ в районах с УП степенью загрязненности атмосферы — для предотвращения возгорания древесины (глава 1.9 ПУЭ седьмого издания).
Стальные крюки и штыри деревянных опор ВЛ 6-10 кВ, проходящих в районах с 1У-У1 степенью загрязненности атмосферы подлежат шунтированию, без их заземления (глава 1.9 ПУЭ седьмого издания).
3.3.4. Арматура железобетонных стоек опор, а также стальные оттяжки железобетонных опор ВЛ 0,38-85 кВ следует использовать в качестве заземляющих спусков, присоединяемых к заземлителю.
3.4. Каждый элемент электроустановки, подлежащий заземлению или занулению, должен бить присоединен к спускам заземления или зануления при помощи отдельного ответвления. Последовательное присоединение заземляемых или зануляемых частей и элементов к заземляющему или нулевому проводнику (спуску) не допускается.
3.5. Под один заземляющий болт в спуске заземления (зануления) разрешается присоединять только один проводник ответвления.
3.6. Заземляющие и нулевые защитные проводники, а так же заземляющие спуски на опорах ВЛ 0,88-35 кВ должны иметь размеры не менее приведенных в табл. 1.

Заземление воздушных линий | Монтаж ВЛ распределительных сетей | Архивы

Содержание материала

Страница 5 из 6

Штыревые изоляторы, устанавливаемые на опорах, при нормальных условиях работы обеспечивают надежную изоляцию проводов от элементов опоры. Однако довольно часто напряжение на линии в сотни и даже тысячи раз может превышать номинальное напряжение, на которое рассчитана изоляция ВЛ. Может произойти пробой изоляторов и выход линии из строя. Напряжения, создающие опасность для изоляции ВЛ, называются перенапряжениями.

Чтобы ограничить величину перенапряжения и обеспечить безопасность людей, следует уменьшить сопротивление растеканию тока в земле. Для этой цели устанавливают защитное заземление ВЛ.
Крюки и штыри железобетонных опор в сетях с заземленной нейтралью, а также арматуру этих опор заземляют путем присоединения к заземленному нулевому проводу проводниками диаметром не менее 6 мм. Крюки и штыри на деревянных опорах не заземляют, за исключением       cлyчaeв,  когда линия проходит по населенной местности с одно- и двухэтажной застройкой и не экранирована высокими трубами, деревьями и т. п. Такая линия должна иметь защиту от атмосферных перенапряжений в виде заземляющих устройств сопротивлением не более 30 Ом, установленных на расстоянии 100…200 м друг от друга в зависимости от среднегодового числа гроз в данной местности. Обязательно заземляют опоры с ответвлениями к вводам в здания с большим количеством людей или большой хозяйственной ценности и конечные опоры, имеющие ответвления к вводам (на этих же опорах рекомендуется установка вентильных разрядников).
К монтажу заземления приступают с рытья траншеи глубиной 0,5 м (для пахотной земли — до 1 м), начиная от опоры. Длина траншеи и количество заземлителей указаны в проекте на сооружение ВЛ, а все работы по погружению заземлителей, обварку их полосой или прутом, защиту сварных стыков от коррозии выполняют обычным способом.
После монтажа контура заземления на опоре выполняют заземляющий спуск. Материалом для него служит стальная полоса или пруток тех же размеров, какие применялись для соединения между собой заземлителей. Снизу спуск соединяют с контуром заземления, сверху — с металлическими нетокопроводящими частями опоры. На деревянной одностоечной опоре (рис. 9, а) смонтировав контур заземления, состоящий из заземлителей 1, соединяющей их полосы или прута 2 и спуска 3. На опоре, спуск через каждые 300 мм закреплен скобами. Верхняя часть спуска 4 выступает над вершиной опоры на 100 мм и служит молниеотводом. Для заземления металлической арматуры опоры (рис. 9, б) к спуску 1 присоединены болтовыми зажимами или сваркой перемычки 2, передающие нулевой потенциал земли на крюки 4 и нулевой провод 3.

Рис. 9. Заземляющее устройство на деревянной опоре: а — общий вид, б — заземление крюков
Согласно ПУЭ, в электроустановках с глухозаземленной нейтралью нулевые провода прежде всего должны быть заземлены в начале ВЛ у источника питания (электростанции или трансформаторной подстанции).
При этом монтировать контур заземления у первой опоры нет надобности, так как нулевой провод ВЛ наглухо присоединен к нулевой точке источника, которая надежно заземлена и сопротивление заземления которой заведомо меньше, чем требуется для заземления ВЛ. Кроме того, через каждый километр линии у опор устанавливается повторное заземление. Сопротивление каждого из повторных заземлителей должно быть не более 10 Ом в установках мощностью свыше 100 кВА и не более 30 Ом в установках мощностью до 100 кВА.

Заземление опор освещения: способы и требования

Системы наружного освещения предназначены для подсветки в темное время суток проезжей части в населенных пунктах и на транспортных развязках автомагистралей, тротуаров и внутридомовых территорий, необходимых участков на охраняемых объектах, приусадебных участков в частных домовладениях. Для их безопасного функционирования применяется заземление опор освещения (мачт, столбов) и наружных светильников.

Установка систем наружного освещения производится соответственно требованиям Правил устройства электроустановок (ПУЭ).

Почему необходимо заземлять опоры

Нарушение изоляции, обрыв провода, перекрытие или пробой изолятора вызывают протекание токов через мачту и образование напряжения прикосновения и пошагового напряжения.

Снабжение опор заземляющими устройствами защищает от электротравмирования находящихся поблизости людей.

Исходя из инструкции по молниезащите и устройству систем заземления, металлические опоры, применяемые при проведении наружного освещения, обязательно нужно заземлить.

Заземление требуется при размещении на опоре молниезащитных средств. В случае прямого удара молнии в опору, через заземляющее устройство происходит отвод импульсных токов, понижая напряжение на изоляции силового кабеля.

Способы заземления

Для каждого вида электроопор в ПУЭ разработаны условия и способы заземления. Существует 3 вида столбов линии электропередачи:

  • деревянные;
  • железобетонные;
  • металлические.

В п. 6.1.45 ПУЭ указано, что железобетонные и металлические опоры в сетях с изолированной нейтралью должны быть подключены к заземлителю, в сетях с заземленной нейтралью — к PE (PEN) проводнику.

Арматура на деревянных столбах не заземляется.

Важно! Деревянные опоры заземляются только, если они установлены в населенном пункте с одноэтажными строениями и их высота превышает высоту строений.

Заземление железобетонных опор осуществляется двумя способами:

  1. В сетях с изолированной нейтралью при наличии специальных выпусков в качестве заземляющих магистралей (проводников) применяют продольную арматуру конструкции. При ее отсутствии проводником служит прут диаметром не менее 10 мм или многожильный провод сечением не менее 35 кв. мм. Один конец проводника соединяется с заземлителем, второй — с заземляемыми элементами.
  2. В сетях с заземленной нейтралью арматура и опора подключаются к нулевому проводу при помощи перемычки из неизолированного проводника. При соединении используются ответвительные болтовые зажимы. Для соединения проводника с опорой применяют болтовой зажим или проушину на столбе или траверсе.

Металлические опоры устанавливают чаще, они имеют перед деревянными и железобетонными следующие преимущества:

  • способны выдерживать большие статические нагрузки;
  • функциональны в любых климатических зонах;
  • широкий выбор форм и дизайна;
  • большой срок эксплуатации, до 75 лет.

Заземление металлических опор осуществляется так же, как и ж/б мачт. Заземляющим проводником может служить корпус опоры. Заземляемые элементы соединяются с опорой, а основание опоры — с заземлителем.

Устройство искусственного заземления

Заземляющее устройство состоит из заземляющей магистрали и заземлителя.
Согласно требованиям ПУЭ, в качестве заземляемых электродов, перемычек и магистралей могут применяться:

  • стальной прут диаметром 10 мм;
  • оцинкованный стальной прут диаметром 6 мм;
  • стальной уголок с толщиной полки 4 мм;
  • стальная полоса толщиной 4 мм;
  • отбракованные трубы с толщиной стенки 3,5 мм.

Сечение магистрали должно быть не менее 100 кв. мм, а с молниезащитой — не менее 160 кв. мм.

Соединение магистрали и заземлителя осуществляется путем сварки, места соединения покрываются антикоррозийной краской.

Вышеперечисленные размеры являются минимальными и применяются на временных конструкциях. Для заземляющих устройств на постоянных осветительных системах диаметр заземляемых электродов рассчитывается в зависимости от насыщенности влагой местного грунта. В сухих грунтах диаметр увеличивается на 2-3 мм, во влажных — до 2 раз больше минимального значения.

Варианты подключения

В зависимости от состава и удельного сопротивления грунта применяется заземлитель с вертикальным или горизонтальным расположением электродов.

Если проводимость нижних слоев грунта ниже, чем верхних, рекомендована установка заземлителей с вертикально расположенными электродами. При небольшой занимаемой площади они обеспечивают малое сопротивление растеканию тока и способствуют лучшему отводу импульсных токов при попадании молнии в опору. Электроды углубляются на 3 м. Высота над уровнем грунта — 0,5 м.

При высокой проводимости верхних слоев грунта, в каменистых и скальных грунтах, где невозможно заглубление вертикальных электродов, допускается применение горизонтальных протяженных электродов. Электроды располагаются на глубине 0,5 м, а на вспахиваемых участках углубляются на 1 м.

Важно! При повышенном удельном сопротивлении грунтов целесообразно применение противовесов — непрерывных горизонтальных электродов, соединяющих сразу несколько опор.

Проверка заземления

Согласно Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП),
тщательный осмотр наружных частей устройства заземления следует проводить не реже 1 раза в 6 месяцев. Проверка с выборочным вскрытием грунта проводится не реже 1 раза в 12 лет.

Замеры сопротивления заземления на опорах внешнего освещения проводятся не реже 1 раза в 6 лет.

Справка! Сопротивление устройств заземления на опорах должно быть не более 30 Ом.

Системы наружного освещения, смонтированные, заземленные и обслуживаемые согласно требованиям ПУЭ и ПТЭЭП, могут надежно и безопасно прослужить не одно десятилетие.

Наличие системы заземления на электроопорах обезопасит электромонтажные работы и убережет линию электропередачи от перенапряжения в случае прямого попадания молнии в опору.

Вл 10 кв заземление опор. Заземление опор вл. Для чего необходимо заземление воздушных линий

ЗАЗЕМЛЕНИЕ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ

Для повышения надежности работы линий электропередачи, для защиты электроаппаратуры от атмосферных и внутренних перенапряжений, а также для обеспечения безопасности обслуживающего персонала опоры линий электропередачи должны быть заземлены.

Величина сопротивления заземляющих устройств нормируется «Правилами устройств электроустановок».

На воздушных линиях электропередачи на напряжение 0,4 кВ с железобетонными опорами в сетях с изолированной нейтралью должны быть заземлены как арматура опор, так и крюки и штыри фазных проводов. Сопротивление заземляющего устройства не должно превышать 50 Ом.

В сетях с заземленной нейтралью крюки и штыри фазных проводов, устанавливаемых на железобетонных опорах, а также арматуру этих опор необходимо присоединять к нулевому заземленному проводу. Заземляющие и нулевые проводники во всех случаях должны иметь диаметр не менее 6 мм.

На воздушных линиях электропередачи на напряжение 6-10 кВ должны быть заземлены все металлические и железобетонные опоры, а также деревянные опоры, на которых установлены устройства грозозащиты, силовые или измерительные трансформаторы, разъединители, предохранители или другие аппараты.

Сопротивления заземляющих устройств опор принимаются для населенной местности не выше приведенных в табл. 18, а в ненаселенной местности в грунтах с удельным сопротивлением грунта до 100 Ом·м — не более 30 Ом, а в грунтах с сопротивлением выше 100 Ом·м — не более 0,3. При использовании на ЛЭП на напряжение 6-10 кВ изоляторов ШФ 10-Г, ШФ 20-В и ШС 10-Г сопротивление заземления опор в ненаселенной местности не нормируется.

Таблица 18

Сопротивление заземляющих устройств опор ЛЭП

на напряжение 6-10 кВ

#G0 Удельное сопротивление грунта , Ом·м

Сопротивление заземляющего устройства, Ом

До 100

До 10

100-500

» 15

500-1000

» 20

1000-5000

» 30

Более 5000

6·10

При выполнении заземляющих устройств, т.е. при электрическом соединении заземляемых частей с землей, стремятся к тому, чтобы сопротивление заземляющего устройства было минимальным и, конечно, не выше величин, требуемых #M12293 0 1200003114 3645986701 3867774713 77 4092901925 584910322 1540216064 77 77 ПУЭ#S . Большая доля сопротивления заземления приходится на переход от заземлителя к грунту. Поэтому в целом сопротивление заземляющего устройства зависит от качества и состояния самого грунта, глубины заложения заземлителей, их типа, количества и взаимного расположения.

Заземляющие устройства состоят из заземлителей и заземляющих спусков, соединяющих заземлители с заземляющими элементами. В качестве заземляющих спусков железобетонных опор ЛЭП на напряжение 6-10 кВ следует использовать все элементы напряженной арматуры стоек, которые соединяются с заземлителем. Если опоры установлены на оттяжках, то оттяжки железобетонных опор также должны быть использованы в качестве заземляющих проводников дополнительно к арматуре. Специально прокладываемые по опоре заземляющие спуски должны иметь сечение не менее 35 мм или диаметр не менее 10 мм.

На воздушных линиях электропередачи с деревянными опорами рекомендуется применять болтовое соединение заземляющих спусков; на металлических и железобетонных опорах соединение заземляющих спусков может быть выполнено как сварным, так и болтовым.

Заземлители представляют собой металлические проводники, проложенные в грунте. Заземлители могут быть выполнены в виде вертикально забитых стержней, труб или уголков, соединенных между собой горизонтальными проводниками из круглой или полосовой стали в очаг заземления. Длина вертикальных заземлителей обычно составляет 2,5-3 м. Горизонтальные заземляющие проводники и верх вертикальных заземлителей должны находиться на глубине не менее 0,5 м, а на пахотных землях — на глубине 1 м. Заземлители соединяют между собой сваркой.

При установке опор на сваях, в качестве заземлителя можно использовать металлическую сваю, к которой сваркой подсоединяют заземляющий выпуск железобетонных опор.

Для уменьшения площади земли, занятой заземлителем, используют глубинные заземлители в виде стержней из круглой стали, погружаемых вертикально в грунт на 10-20 м и более. Наоборот, в плотных или каменистых грунтах, где невозможно заглубить вертикальные заземлители, используют поверхностные горизонтальные заземлители, которые представляют собой несколько лучей из полосовой или круглой стали, проложенных в земле на небольшой глубине и подсоединенных к заземляющему спуску.

Все виды заземлений значительно снижают величину атмосферных и внутренних перенапряжений на ЛЭП. Однако все же этих защитных заземлений в некоторых случаях оказывается недостаточно для защиты изоляции ЛЭП и электроаппаратов от перенапряжений. Поэтому на линиях устанавливают дополнительные устройства, к которым, прежде всего, относятся защитные искровые промежутки, трубчатые и вентильные разрядники.

Защитное свойство искрового промежутка основано на создании в линии «слабого» места. Изоляция искрового промежутка, т.е. расстояние по воздуху между его электродами, таково, что электрическая прочность его достаточна, чтобы выдерживать рабочее напряжение ЛЭП и не допустить замыкания рабочего тока на землю, и в то же время она слабее изоляции линии. При ударе молнии в провода ЛЭП грозовой разряд пробивает «слабое» место (искровой промежуток) и проходит в землю, не нарушая изоляции линии. Защитные искровые промежутки 1 (рис. 22, а, б) состоят из двух металлических электродов 2, установленных на определенном расстоянии друг от друга. Один электрод подсоединен к проводу 6 ЛЭП и изолируется от опоры изолятором 5, а другой заземлен (4). Ко второму электроду подсоединен дополнительный защитный промежуток 3. На линиях на напряжение 6-10 кВ со штыревыми изоляторами форма электродов выполняется в виде рогов, что обеспечивает растяжение дуги при разряде. Кроме того, на этой ЛЭП защитные промежутки устраивают непосредственно на заземляющем спуске, проложенном по опоре (рис. 23).


Рис. 22. Защитный искровой промежуток для ЛЭП на напряжение до 10 кВ:

а — электрическая схема; б — схема установки

Рис. 23. Устройство защитного промежутка на опоре

Трубчатые и вентильные разрядники устанавливают, как правило, на подходах к подстанциям, переходах ЛЭП через линии связи и ЛЭП, электрифицированные железные дороги, а также для защиты кабельных вставок на ЛЭП. Разрядники представляют собой аппараты, имеющие искровые промежутки и устройства для гашения дуги. Устанавливают их так же, как и защитные промежутки — параллельно защищаемой изоляции.

Вентильные разрядники типа РВ предназначены для защиты от атмосферных перенапряжений изоляции электрооборудования. Их выпускают на напряжение 3,6 и 10 кВ и можно устанавливать как на открытом воздухе — на ЛЭП, так и в закрытых помещениях. Основная электрическая характеристика разрядников приведена в табл. 19. Конструктивное исполнение, габаритные, установочные и присоединительные размеры разрядников показаны на рис. 24.

Таблица 19

Характеристика вентильных разрядников

#G0 Показатели

РВО-0,5

РВО-3

РВО-6

РВО-10

Номинальное напряжение, кВ

Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождем, кВ:

не менее

не более

30,5

Длина пути утечки внешней изоляции (не менее), см

Масса, кг

Рис 24 Вентильный разрядник типа РВО:

1 — болт М8х20; 2 — покрышка; 3 — искровой промежуток; 4 — два болта М10х25 для крепления

разрядника; 5 — резистор; 6 — хомут; 7 — болт M8х20 для присоединения провода заземления

Разрядник состоит из многократного искрового промежутка 3 и резистора 5, которые заключены в герметически закрытую фарфоровую покрышку 2. Фарфоровая покрышка предназначена для защиты внутренних элементов разрядника от воздействия внешней среды и обеспечения стабильности характеристики. Резистор состоит из вилитовых дисков, изготовленных из карбида кремния, обладает нелинейной вольтамперной характеристикой, т. е. его сопротивление уменьшается под воздействием высокого напряжения, и наоборот.

Многократный искровой промежуток состоит из нескольких единичных промежутков, который образуется двумя фасонными латунными электродами, разделенным изолирующей прокладкой.

При появлении опасного для изоляции оборудования перенапряжения происходит пробой искрового промежутка, и резистор оказывается под высоким напряжением. Сопротивление резистора резко уменьшается и ток молнии проходит через него, не создавая опасного для изоляции повышения напряжения. Следующий за пробоем искрового промежутка сопровождающий ток промышленной частоты прерывается при первом переходе напряжения через нулевое значение.

Буквенная маркировка разрядников означает тип и конструкцию разрядника, а цифры — номинальное напряжение.

Трубчатые разрядники (рис. 25) представляют собой изолирующую трубку 1 с внутренним искровым промежутком , который образуется двумя металлическими электродами 2 и 3. Трубу изготовляют из газогенерирующего материала и одну из ее сторон закрывают наглухо. При ударе молнии пробивается искровой промежуток и между электродами возникает дуга. Под действием большой температуры дуги из изолирующей трубки бурно выделяются газы и давление в ней поднимается. Под воздействием этого давления газы выходят через открытый конец трубки, чем создают продольное дутье, которое растягивает и охлаждает дугу. При прохождении сопровождающего тока через нулевое положение растянутая и охлажденная дуга гаснет и ток обрывается. Чтобы предохранить поверхность изолирующей трубки от разрушения токами утечки, в трубчатом разряднике устраивают внешний искровой промежуток .

Рис 25. Трубчатый разрядник

Трубчатые разрядники выпускают фибробакелитовыми типа РТФ или винипластовыми типа РТВ. Характеристика трубчатых разрядников приведена в табл. 20.

Таблица 20

Характеристика трубчатых разрядников

#G0 Тип разрядника

Номинальное напряжение, кВ

Длина внешнего искрового промежутка, мм

Информация об исключении: И-1-88

Действие завершено 01.01.1988

Титульный лист

Перечень чертежей

Пояснительная записка

Деревянные опоры ВЛ 0,4 кВ. Заземление крюков и поворотное заземление нулевого провода

Деревянные опоры ВЛ 35 кВ. Заземление троса на промежуточной и анкерных опорах

Деревянные опоры ВЛ 6 — 10 кВ. Устройство защитных промежутков на опорах при пересечении с ВЛ или с линиями связи

Деревянные опоры ВЛ 20 кВ. Устройство защитных промежутков на опорах при пересечении с ВЛ или с линиями связи

Деревянные опоры ВЛ 35 кВ. Устройство защитных промежутков на опорах при пересечении с ВЛ или с линиями связи

Деревянные опоры ВЛ 6 — 10 кВ. Заземление трубчатых разрядников РТ-6 и РТ-10 на анкерной и промежуточных опорах

Деревянные опоры ВЛ 6 — 10 кВ. Заземление трубчатых разрядников РТ-6 и РТ-10 (переходные) на анкерной повышенной опоре

Деревянные опоры ВЛ 6 — 10 кВ. Заземление кабельной муфты и трубчатых разрядников на концевой опоре

Деревянные опоры ВЛ 20 кВ (переходные). Заземление трубчатых разрядников РТ-20 на промежуточной повышенной опоре

Деревянные опоры ВЛ 20 кВ (переходные). Заземление трубчатых разрядников РТ-20 на анкерной повышенной опоре

Деревянные опоры ВЛ 35 кВ. Заземление трубчатых разрядников РТ-35 на анкерной опоре

Железобетонные опоры ВЛ 0,4 кВ. Заземление промежуточной ОП-0,4 и промежуточной перекрестной ПК-0,4 опор

Железобетонные опоры ВЛ 0,4 кВ. Заземление промежуточной переходной опоры ПП-0,4

Железобетонные опоры ВЛ 0,4 кВ. Заземление угловых анкерных опор УА-I-0,4 и УА-II-0,4

Железобетонные опоры ВЛ 0,4 кВ. Заземление концевой К-0.4 и анкерной А-0,4 опор

Железобетонные опоры ВЛ 0,4 кВ. Заземление ответвительной анкерной опоры ОА-0,4

Железобетонные опоры ВЛ 0.4 кВ. Заземление ответвительной переходной опоры ОП-0,4

Железобетонные опоры ВЛ 0,4 кВ. Заземление вводных ящиков на промежуточной и концевой опорах для подключения электродвигателей мобильных машин

Железобетонные опоры ВЛ 0,4 кВ. Заземление ящика с АП50-Т для секционирования магистрали на анкерной опоре

Железобетонные опоры ВЛ 0,4 кВ. Заземление кабельной муфты 4 км, разрядников РВН-0,5, светильника СПО-200 на концевой опоре

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление промежуточных опор для ненаселенной и населенной местности П10-1Б; П20-1Б; П10-2Б; П20-2Б

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление угловых промежуточных опор для ненаселенной и населенной местности УП10-1Б; УП20-1Б

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление концевых опор для ненаселенной и населенной местности К10-1Б; К10-2Б; К20-1Б

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление ответвительных промежуточных опор для ненаселенной местности ОП10-1Б; ОП20-1Б; ОП10-2Б; ОП20-2Б

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление ответвительных опор для ненаселенной местности ОП10-1Б; ОП10-2Б и 020-1Б

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление ответвительных угловых промежуточных опор для ненаселенной местности ОУП10-1Б; ОУП20-1Б

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление кабельной муфты КМА(КМЧ) и разрядников РТ-6; РТ-10 на концевой опоре

Железобетонные опоры ВЛ 6 — 10 и 20 кВ. Заземление концевых опор ВЛ 6 — 10 и 20 кВ с разъединителями для населенной и ненаселенной местности КР10-1Б; КР10-2Б; КР10-3Б; КР20-1Б

Железобетонные опоры ВЛ 35 кВ. Заземление промежуточных опор для ненаселенной и населенной местности П35-1Б и П35-2Б

Железобетонные опоры ВЛ 35 кВ. Заземление промежуточных опор с тросом для ненаселенной и населенной местности ПТ35-1Б и ПТ35-2Б

Железобетонные опоры ВЛ 35 кВ. Заземление угловых анкерных опор для ненаселенной и населенной местности УА35-16; УА35-26

Железобетонные опоры ВЛ 35 кВ. Заземление угловой промежуточной опоры для ненаселенной местности УП35-1Б

Железобетонные опоры ВЛ 35 кВ. Заземление концевых и анкерных опор для ненаселенной и населенной местности К35-1Б; К35-2Б; А35-1Б; А35-2Б

Железобетонные опоры ВЛ 35 кВ. Заземление угловой промежуточной, концевой и анкерной опор с тросом для ненаселенной и населенной местности УПТ35-1Б; КТ35-1Б; КТ35-2Б; АТ35-1Б; АТ35-2Б

Железобетонные опоры ВЛ 35 кВ. Заземление угловых анкерных опор с тросом для ненаселенной и населенной местности УАТ35-1Б; УАТ35-2Б

Железобетонные опоры ВЛ 10; 20; 35 кВ. Заземление переходной промежуточной опоры ПП35-Б; ПП20-Б; ПП10-Б

Железобетонные опоры ВЛ 35 кВ. Заземление промежуточной переходной опоры с тросом ППТ35-Б

Железобетонные опоры ВЛ 10; 20; 35 кВ. Заземление угловой анкерной переходной опоры УАП35-Б; УАП20-Б; УАП10-Б

Железобетонные опоры ВЛ 135 кВ. Заземление угловой анкерной переходной опоры УАПТ35-Б

Железобетонные опоры ВЛ 10; 20; 35 кВ. Заземление концевой переходной опоры КП35-Б; КП20-Б; КП10-Б

Железобетонные опоры ВЛ 35 кВ. Заземление концевой переходной опоры с тросом КПТ35-Б

Разъединительный пункт 20 кВ с автоматическим секционирующим отделителем на железобетонной опоре. Заземление

Примеры выполнения повторного заземления нулевого провода, крюков и штырей на железобетонной и деревянной опорах

Эскизы заземлителей для R =

Эскизы заземлителей для R =

Эскизы заземлителей для R =

Формулы для определения сопротивления растеканию тока различных заземлителей

Исходные данные для расчета заземлителей

Железобетонные и деревянные опоры. Заземление опор. Выбор зажимов

Деревянные опоры ВЛ 0,4 кВ. Заземление крюков и поворотное заземление нулевого провода. Узлы. Детали

Узлы и детали

Примеры устройства заземлителей. Узлы

Этот документ находится в:

Организации:

15.06.1971 Утвержден 245
Разработан

ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА ОПОР ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ

0,38; 6; 10; 20 кВ

данный раздел подготовлен согласно типового проекта СЕРИЯ 3.407-150

Типовые конструкции настоящей серии разработаны с учётом требований Правил устройства электроустановок (ПУЭ) шестого издания как по конструктивному исполнению, так и в части учёта нормируемых сопротивлений растеканию заземлителей для грунтов с эквивалентным удельным сопротивлением до 100 .

В серию включены конструкции заземлителей, предназначенных для заземления опор, а также опор с установленным на них оборудованием на ВЛ 0,38, 6, 10, 20 кВ в соответствии с требованиями главы 1.7 и других глав ПУЭ.

Предусмотрены следующие конструкции заземлителей: вертикальные, горизонтальные (лучевые), вертикальные в сочетании с горизонтальными, замкнутые горизонтальные (контурные), контурные в сочетании с вертикальными и горизонтальными (лучевыми).

Конструктивное выполнение заземляющих и нулевых защитных проводников, проложенных на опорах ВЛ, принимаются в соответствии с действующими типовыми проектами и проектами повторного применения опор BЛ.

Конструкции данной серии должны применяться проектировщиками, монтажниками и эксплуатационниками при сооружений и реконструкции ВЛ 0,38, 6, 10 и 20 кВ.

В настоящей серии не рассматриваются заземлители в районах северной строительно — климатической зоны (подрайоны IА, IБ, IГ и IД по СИиП 2.01.01-82) и в районах распространения скальных грунтов.

ОБЩИЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ ЗАЗЕМЛИТЕЛЕЙ

Исходными данными при проектировании заземляющих устройств ВЛ являются параметры электрической структуры земли и требования по величинам сопротивления заземления.

Удельные сопротивления грунтов r и толщина слоёв грунта с различными значениями r могут быть получены непосредственно при измерениях по трассе проектируемой ВЛ или по данным замеров удельных сопротивлений аналогичных грунтов в районе трассы ВЛ, на площадках подстанций и т.д.

При отсутствии данных прямых измерений удельного сопротивления грунта проектировщикам следует пользоваться полученными от изыскателей геологическим разрезом грунта по трассе и обобщёнными значениями удельных сопротивлений различных грунтов, приведёнными в таблице.

Обобщенные значения удельных сопротивлений грунтов


В настоящее время разработаны достаточно надёжные инженерные методы определения электрической структуру земли, расчета сопротивлений заземлителей в однородной и двухслойной земле, а также способы приведения реальных многослойных электрических структур земли к расчётным двухслойным эквивалентным моделям. Разработанные методы позволяют определять целесообразные конструкции искусственных заземлителей для данной электрической структуры грунта обеспечивающие нормированную величину сопротивления заземлителей.

ВЫБОР СЕЧЕНИЯ ЭЛЕМЕНТОВ ЗАЗЕМЛИТЕЛЯ

На основании исследований проведённых СИБНИИЭ установлено, что сопротивление растеканию практически не зависит от размеров и конфигурации поперечного сечения заземлителя. В то же время элементы заземлителя, имеющие круглое сечение, значительно долговечнее эквивалентных по сечению плоских проводников, ибо при одинаковой скорости коррозии остающееся сечение последних снижается значительно быстрее. В связи с этим для заземлителей ВЛ целесообразно применять только круглую сталь.

КОНСТРУКТИВНОЕ ВЫПОЛНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ И РЕКОМЕНДАЦИИ ПО МОНТАЖУ

Заземлители ВЛ предусмотрены из круглой стали: горизонтальные диаметром 10 мм, вертикальные — 12мм, что вполне достаточно на расчетный срок службы в условиях слабой и средней коррозии.

В случае усиленной коррозии должны быть приняты меры, повышающие долговечность заземлителей.

В качестве вертикальных заземлителей могут быть использованы также угловая сталь и стальные трубы. При этом их размеры должны соответствовать требованиям ПУЭ.

Учитывая, что предельная глубина погружения вертикальных заземлитёлей (электродов) при существующих в настоящее время механизмах в достаточно мягким грунтах 20 м, в настоящей серии они предусмотрены длиной 3, 5, 10, 15 и 20м.

В грунтах с малыми удельными сопротивлениями (при до 10 ОмЧм) предусматривается использование только нижнего заземляющего выпуска — стержневого электрода длиной порядка 2 м, поставляемого комплектно с железобетонной стойкой.

При монтаже заземлителей следует соблюдать требования строительных норм и правил и ГОСТ 12.1.030-81.

Для разработки траншей при прокладке горизонтальных заземлителей возможно применение экскаватора типа ЭТЦ -161 на базе трактора беларусь МТЗ-50. Они могут укладываться так же с помощью монтажного плуга. При этот следует учитывать необходимость рытья котлованов размером 80х80х60 см в местах погружения вертикальных заземлитёлей и последующего их присоединения с помощью сварки к горизонтальному заземлителю.

Вертикальные заземлители погружаются методом вибрирования или засверливания, а также, забивкой или закладкой в готовые скважины.

Погружение вертикальных электродов производится с тем расчетом, чтобы верх их был на 20см выше дна траншей.

Затем прокладываются горизонтальные заземлители. Производится отгиб концов вертикальных заземлителей в местах примыкания их к горизонтальному заземлителю по направлению оси траншеи.

Соединение заземлителей между содой следует выполнять сваркой в нахлёстку. При этом длина нахлёстки должна быть равна шести диаметрам заземлителя. Сварку следует выполнять по всему периметру нахлёстки. Узлы соединения заземлителей приведены в разделах ЭС37 и ЭС38 .

Для защиты от коррозии сборные стыки следует покрывать битумным лаком.

Засыпка траншей производится бульдозером на базе трактора Беларусь МТЗ-50.

В разделе ЭС42 приведены объёмы земляных работ в случае рытья траншей при механизированной и ручной копке.

При выполнении проекта ВЛ в частности заземлителей необходимо учитывать возможности мехколонны, которая будет строить данную линию с точки зрения оснащения еe механизмами.

После устройства заземлителей производятся контрольные замеры их сопротивления. В случае, если сопротивление превышает нормируемое значение, добавляются вертикальные заземлители для получения требуемой величины сопротивления.

ПРИСОЕДИНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ К ОПОРАМ

Присоединение заземлителей к специальным заземляющим выпускам (деталям) железобетонных стоек опор и заземляющим спускам деревянных опор может быть кок сварным, так и болтовым. Контактные соединения должны соответствовать классу 2 по ГОСТ 10434-82.

В месте присоединения заземлителей к заземляющим спускам на деревянных опорах ВЛ 0,38 кВ предусматриваются дополнительные отрезки из круглой стали диаметром 10 мм, а заземляющие спуски на деревянных опорах ВЛ 6, 10 и 20 кВ выполняемые из круглой стали диаметром не менее 10 мм, присоединяются непосредственно к заземлителю.

Наличие болтового соединения заземляющего спуска с заземлителем обеспечивает возможность осуществления контроля заземляющих устройств опор ВЛ без подъема на опору и отключения линии.

При наличии приборов для контроля заземлителей соединение заземляющего спуска с заземлителем может выполняться неразъёмным.

Контроль и измерения заземлителей должны проводиться в соответствии с «Правилами технической эксплуатации электрических станций и сетей».

В связи с тем, что инженерные методы расчёта заземлителей разработаны для двухслойной структуры грунта, расчётная многослойная электрическая структура грунта приводится к эквивалентной двухслойной структуре. Метод приведения зависит от характера изменения удельных сопротивлений слоев расчётной структуры по глубине и глубины заложения заземлителя.

В однородном грунте и в грунте с убывающим по глубине удельным сопротивлением (порядка в 3 и более раза) наиболее целесообразными являются вертикальные заземлители.

Если нижележащие слои грунта имеют значительно более высокие значения удельных сопротивлений, чем верхние, или когда погружение вертикальных заземлителей затруднено или невозможно из-за плотности грунтов, в качестве искусственных заземлителей рекомендуется применять горизонтальные (лучевые) заземлители.

Если вертикальные заземлители не обеспечивают нормированных значений сопротивления, то дополнительно к вертикальным прокладываются горизонтальные, т. е. применяются комбинированные заземлители.

По эквивалентной двухслойной структуре и предварительно выбранной конструкции заземлителя определяется .

Для найденного и для нормированного сопротивления заземляющего устройства по ПУЭ подбирается соответствующий тип заземлителя данной серии.

Ниже приведена таблица подбора чертежей заземлителей.

Расчёты заземлителей выполнены на ЭВМ по программе, разработанной Западно — Сибирским отделением института «Сельэнергопроект».

Внимание: согласно ПУЭ 7-е изд. заземляющие проводники для повторных заземлений PEN-проводника должны иметь размеры не менее приведенных в табл. 1.7.4.

Таблица 1.7.4. Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле


Таблица подбора чертежей заземлителей


Воздушная линия > Заземляющие устройства опор ВЛ

ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА ОПОР ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ
0,38; 6; 10; 20 кВ
данный раздел подготовлен согласно типового проекта СЕРИЯ 3.407-150

Типовые конструкции настоящей серии разработаны с учётом требований Правил устройства электроустановок (ПУЭ) шестого издания как по конструктивному исполнению, так и в части учёта нормируемых сопротивлений растеканию заземлителей для грунтов с эквивалентным удельным сопротивлением до 100 .
В серию включены конструкции заземлителей, предназначенных для заземления опор, а также опор с установленным на них оборудованием на ВЛ 0,38, 6, 10, 20 кВ в соответствии с требованиями главы 1.7 и других глав ПУЭ.
Предусмотрены следующие конструкции заземлителей: вертикальные, горизонтальные (лучевые), вертикальные в сочетании с горизонтальными, замкнутые горизонтальные (контурные), контурные в сочетании с вертикальными и горизонтальными (лучевыми).
Конструктивное выполнение заземляющих и нулевых защитных проводников, проложенных на опорах ВЛ, принимаются в соответствии с действующими типовыми проектами и проектами повторного применения опор BЛ.

Конструкции данной серии должны применяться проектировщиками, монтажниками и эксплуатационниками при сооружений и реконструкции ВЛ 0,38, 6, 10 и 20 кВ.
В настоящей серии не рассматриваются заземлители в районах северной строительно — климатической зоны (подрайоны IА, IБ, IГ и IД по СИиП 2.01.01-82) и в районах распространения скальных грунтов.

ОБЩИЕ ПОЛОЖЕНИЯ ПО РАСЧЕТУ ЗАЗЕМЛИТЕЛЕЙ
Исходными данными при проектировании заземляющих устройств ВЛ являются параметры электрической структуры земли и требования по величинам сопротивления заземления.
Удельные сопротивления грунтов r и толщина слоёв грунта с различными значениями r могут быть получены непосредственно при измерениях по трассе проектируемой ВЛ или по данным замеров удельных сопротивлений аналогичных грунтов в районе трассы ВЛ, на площадках подстанций и т.д.
При отсутствии данных прямых измерений удельного сопротивления грунта проектировщикам следует пользоваться полученными от изыскателей геологическим разрезом грунта по трассе и обобщёнными значениями удельных сопротивлений различных грунтов, приведёнными в таблице.

Обобщенные значения удельных сопротивлений грунтов

В настоящее время разработаны достаточно надёжные инженерные методы определения электрической структуру земли, расчета сопротивлений заземлителей в однородной и двухслойной земле, а также способы приведения реальных многослойных электрических структур земли к расчётным двухслойным эквивалентным моделям. Разработанные методы позволяют определять целесообразные конструкции искусственных заземлителей для данной электрической структуры грунта обеспечивающие нормированную величину сопротивления заземлителей.

ВЫБОР СЕЧЕНИЯ ЭЛЕМЕНТОВ ЗАЗЕМЛИТЕЛЯ
На основании исследований проведённых СИБНИИЭ установлено, что сопротивление растеканию практически не зависит от размеров и конфигурации поперечного сечения заземлителя. В то же время элементы заземлителя, имеющие круглое сечение, значительно долговечнее эквивалентных по сечению плоских проводников, ибо при одинаковой скорости коррозии остающееся сечение последних снижается значительно быстрее. В связи с этим для заземлителей ВЛ целесообразно применять только круглую сталь.

КОНСТРУКТИВНОЕ ВЫПОЛНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ И РЕКОМЕНДАЦИИ ПО МОНТАЖУ
Заземлители ВЛ предусмотрены из круглой стали: горизонтальные диаметром 10 мм, вертикальные — 12мм, что вполне достаточно на расчетный срок службы в условиях слабой и средней коррозии.
В случае усиленной коррозии должны быть приняты меры, повышающие долговечность заземлителей.
В качестве вертикальных заземлителей могут быть использованы также угловая сталь и стальные трубы. При этом их размеры должны соответствовать требованиям ПУЭ.
Учитывая, что предельная глубина погружения вертикальных заземлитёлей (электродов) при существующих в настоящее время механизмах в достаточно мягким грунтах 20 м, в настоящей серии они предусмотрены длиной 3, 5, 10, 15 и 20м.
В грунтах с малыми удельными сопротивлениями (при до 10 Ом Ч м) предусматривается использование только нижнего заземляющего выпуска — стержневого электрода длиной порядка 2 м, поставляемого комплектно с железобетонной стойкой.
При монтаже заземлителей следует соблюдать требования строительных норм и правил и ГОСТ 12.1.030-81.
Для разработки траншей при прокладке горизонтальных заземлителей возможно применение экскаватора типа ЭТЦ -161 на базе трактора беларусь МТЗ-50. Они могут укладываться так же с помощью монтажного плуга. При этот следует учитывать необходимость рытья котлованов размером 80х80х60 см в местах погружения вертикальных заземлитёлей и последующего их присоединения с помощью сварки к горизонтальному заземлителю.
Вертикальные заземлители погружаются методом вибрирования или засверливания, а также, забивкой или закладкой в готовые скважины.
Погружение вертикальных электродов производится с тем расчетом, чтобы верх их был на 20см выше дна траншей.
Затем прокладываются горизонтальные заземлители. Производится отгиб концов вертикальных заземлителей в местах примыкания их к горизонтальному заземлителю по направлению оси траншеи.
Соединение заземлителей между содой следует выполнять сваркой в нахлёстку. При этом длина нахлёстки должна быть равна шести диаметрам заземлителя. Сварку следует выполнять по всему периметру нахлёстки. Узлы соединения заземлителей приведены в разделах ЭС37 и ЭС38 .
Для защиты от коррозии сборные стыки следует покрывать битумным лаком.
Засыпка траншей производится бульдозером на базе трактора Беларусь МТЗ-50.
В разделе ЭС42 приведены объёмы земляных работ в случае рытья траншей при механизированной и ручной копке.
При выполнении проекта ВЛ в частности заземлителей необходимо учитывать возможности мехколонны, которая будет строить данную линию с точки зрения оснащения еe механизмами.
После устройства заземлителей производятся контрольные замеры их сопротивления. В случае, если сопротивление превышает нормируемое значение, добавляются вертикальные заземлители для получения требуемой величины сопротивления.

ПРИСОЕДИНЕНИЕ ЗАЗЕМЛИТЕЛЕЙ К ОПОРАМ
Присоединение заземлителей к специальным заземляющим выпускам (деталям) железобетонных стоек опор и заземляющим спускам деревянных опор может быть кок сварным, так и болтовым. Контактные соединения должны соответствовать классу 2 по ГОСТ 10434-82 .
В месте присоединения заземлителей к заземляющим спускам на деревянных опорах ВЛ 0,38 кВ предусматриваются дополнительные отрезки из круглой стали диаметром 10 мм, а заземляющие спуски на деревянных опорах ВЛ 6, 10 и 20 кВ выполняемые из круглой стали диаметром не менее 10 мм, присоединяются непосредственно к заземлителю.
Наличие болтового соединения заземляющего спуска с заземлителем обеспечивает возможность осуществления контроля заземляющих устройств опор ВЛ без подъема на опору и отключения линии.
При наличии приборов для контроля заземлителей соединение заземляющего спуска с заземлителем может выполняться неразъёмным.
Контроль и измерения заземлителей должны проводиться в соответствии с «Правилами технической эксплуатации электрических станций и сетей».

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ
В связи с тем, что инженерные методы расчёта заземлителей разработаны для двухслойной структуры грунта, расчётная многослойная электрическая структура грунта приводится к эквивалентной двухслойной структуре. Метод приведения зависит от характера изменения удельных сопротивлений слоев расчётной структуры по глубине и глубины заложения заземлителя.
В однородном грунте и в грунте с убывающим по глубине удельным сопротивлением (порядка в 3 и более раза) наиболее целесообразными являются вертикальные заземлители.
Если нижележащие слои грунта имеют значительно более высокие значения удельных сопротивлений, чем верхние, или когда погружение вертикальных заземлителей затруднено или невозможно из-за плотности грунтов, в качестве искусственных заземлителей рекомендуется применять горизонтальные (лучевые) заземлители.
Если вертикальные заземлители не обеспечивают нормированных значений сопротивления, то дополнительно к вертикальным прокладываются горизонтальные, т. е. применяются комбинированные заземлители.
По эквивалентной двухслойной структуре и предварительно выбранной конструкции заземлителя определяется .
Для найденного и для нормированного сопротивления заземляющего устройства по ПУЭ подбирается соответствующий тип заземлителя данной серии.
Ниже приведена таблица подбора чертежей заземлителей.
Расчёты заземлителей выполнены на ЭВМ по программе, разработанной Западно — Сибирским отделением института «Сельэнергопроект».

Внимание: согласно ПУЭ 7-е изд. заземляющие проводники для повторных заземлений PEN -проводника должны иметь размеры не менее приведенных в табл. 1.7.4.

Наружное освещение в городах и селах играет очень важную роль. Это способ чувствовать себя комфортно каждому жителю, как мегаполиса, так и небольшого поселения. Это показатель безопасности и ответственного отношения к тому месту, где живут люди. Освещение может быть установлено централизованно городскими властями или жителями самостоятельно (возле своего дома). Однако при создании наружного освещения по всему городу не последнюю роль играет заземление опор вл.

При создании заземления, необходимо руководствоваться нормативной документацией, утвержденной на официальном уровне. Особенно это касается заземления воздушных линий (вл). Обо всех тонкостях и нюансах этой процедуры мы поговорим с вами сейчас.

Для чего необходимо заземление воздушных линий?

Установка заземлений на вл необходима для обеспечения безопасности людей. В случае нарушения изоляции линий, ток может перейти в почву и распространиться по территории. Почва не останавливает распространение тока. Таким образом, каждый житель может оказаться в зоне поражения электрическим током.

Заземление опор вл препятствует распространению электрического потенциала и уменьшению шагового напряжения на поверхности грунта. Поэтому если человек заденет за опору, он не получит удара током. Показатель заземления воздушных линий зависит от того, какое сопротивление имеет почва.

Виды заземлений

Установка заземлений на вл формируется, исходя из вида самой конструкции опоры. Она может быть 3 видов:

Железобетонная. Обязательно наличие заземлений нейтралью, арматура, соединение с заземленным проводом специального проводника. Проводник должен составлять в диаметре не меньше 6 мм.

Деревянная. К заземлению деревянных опор применяются повышенные требования. Оно может проходить только в тех населенных пунктах, где высота построек не превышает 2 этажа. Также трубы в населенном пункте не должны иметь высоты более 10-15 метров. Наличие деревьев возможно, но если они не находятся в непосредственной близости с объектом. В этом случае крюки и штыри не требуют заземления. Также заземление опор требует защиту от перенапряжения атмосферного порядка. Чаще всего заземление деревянных опор устанавливается на территориях, в которых нет жилых построек, большого скопления людей.

Металлическая. Это самый распространенный вид опоры. В последние годы он пользуется максимальным спросом. Стальные опоры стали популярнее железобетонных и деревянных, хоть по своей сути схоже с железобетонными опорами. Заземление опор вл 10 кв , 20 и 35 кв требует учета расстояния между соседними опорами. Среднее расстояние между опорами составляет от ста до двухсот метров. Точное расстояние определяется гидрометеорологией, исходя из количества гроз, которое бывает в год на территории. За исходные данные берется усредненное значение за несколько последних лет. Обязательная процедура заземления опор, которые имеют ответвления к сооружениям и местности, где проживают люди.

Виды заземлителей

Для того чтобы предохранить линии электропередач от перенапряжения используют два вида заземлителей:

Вертикальный. Штыри монтируются в землю вертикально.

Горизонтальный. Используются специальные пластины. Они незаменимы при работе на каменистых почвах.

Вид используемого заземлителя определяется типом почвы или степенью наружного освещения.

Как производится установка заземлителей

Установка заземлений на вл (первичная или повторная) осуществляется следующим образом:

От начала опор производится замер земли. После этого создается траншея, ширина которой 0,5 метров, а глубина 1 метр.

Точная длина траншеи указывается в официально утвержденном проекте. Там же обозначается количество необходимых заземлителей.

Заземлители погружаются в траншею, формируется контур.

Производится обварка.

Устанавливается защита стыков, образованных в процессе сварки, от коррозии.

Устанавливается заземляющий спуск.

Официальная документация

ПУЭ — это документация, которая регламентирует основные принципы установки заземлений. Необходимо ориентироваться на данную информацию при реализации защитных мероприятий.

В ПУЭ имеются сведения о:

Установке заземления на каждой опоре;

Установке заземления на части опоры.

Особенности установки заземления на вл

Установка заземлений на вл до 1 кв предполагает учет следующих норм:/p>

Сеть с заземленной нейтралью должна быть с перемычкой из изолированного проводника./p>

Контактные соединения перед использованием тщательно очищаются и покрываются вазелином.

Сопротивление конструкций не должно быть выше 50 Ом.

Заземление опор вл для наружного освещения с кабельным питанием производится через оболочку кабеля.

Заключение

Установка заземлений на вл требует обязательного соблюдения правил и норм, изложенных в ПУЭ. Только так можно произвести качественную, надежную работу, которая обеспечит защиту опорам и предотвратит возможные рисковые ситуации, когда людей может ударить током в момент соприкосновения с опорой.

Повторное заземление линий электропередачи | elesant.ru

 

Вступление

Согласно нормативам, повторное заземление линий электропередачи обязательно и служит для повышения безопасности участков ЛЭП. Для ЛЭП выполненных, самонесущим изолированным проводом СИП, основным элементом, для повторного заземления является нулевая жила СИП. Технически, повторное заземление заключается в соединении нулевой жилы СИП с заземлителем на деревянной опоре или в бетонной опоре. Для этого соединения используются специальные зажимы, например зажимы типа CT-25,CT-25A компании BK. Арматура bk кроме надежного соединения позволяет осуществить подключение без отключения магистрали.

Повторное заземление нулевой жилы СИП на опоре

Согласно нормативам, а именно ПУЭ 2.4.38-2.4.49 повторное заземление нулевой жилы СИП, осуществляется, как на бетонных, так и на деревянных опорах. Нулевой жилой СИП проводника является PEN проводник ВЛИ.

После установки опор, перед натяжением СИП, на опорах выполняется заземление. Для этого по деревянной опоре прокладывается стальная проволока толщиной 6 мм, для заземления бетонной опоры используется арматура находящаяся внутри бетонной опоры.

Само повторное заземление нулевой жилы СИП производится согласно рабочему проекту магистрали ВЛИ, в соответствии с нормативами. Осуществляется повторное заземление после натяжения СИП, если магистраль монтируется или на действующей магистрали ВЛИ.

Нужно ли делать повторное заземление на опоре ответвления частного дома

По практике повторное заземление PEN проводника магистрали ВЛИ выполняется на каждой третьей опоре, что соответствует расстояниям, указанным в нормативах.

Если в доме установлен распределительный щит, с аппаратами автоматического отключения электропитания, то повторное заземление PEN проводника (нулевой жилы СИП) обязательно.

Если ответвление к дому, попадает на опору со сделанным повторным заземлением, PEN проводник подключается к существующему повторному заземлению. Если ответвление попадает на опору без повторного заземления, то повторное заземление PEN проводника ответвления выполняется дополнительно. Делается повторное заземление монтирующей организацией при устройстве ответвления к дому.

Как делается повторное заземление без отключения магистрали

В современных условиях повторное заземление ответвления ВЛИ, а также само подключение ответвления делается без отключения магистрали от электропитания. В компаниях, занимающихся продажей оборудования для ВЛИ и ЛЭП, например, Норма–кабель, можно вместе с кабелем СИП для ответвления, купить комплект арматуры СИП для конкретного типа опоры ВЛИ. Комплекты арматуры для подключения СИП ответвления зависят от типа опоры (промежуточная, угловая, концевая) с которой будет делаться ответвление.

©Elesant.ru

 

  

Заземление

— может ли заземление улучшить ваше здоровье?

Терапия заземлением основывается на интуитивном предположении, что подключение к энергии планеты полезно для нашей души и тела. И хотя есть определенная апелляция к концепции энергетической связи с Матерью-Землей, пусть и в духе Нью-Эйдж, есть также более научный подход к этой практике, который утверждает, что доступ к обильному запасу свободных электронов в (слегка отрицательно заряженных) Земля может помочь нейтрализовать свободные радикалы — если бы мы только сняли обувь и получили к ним доступ.Несколько человек в нашем сообществе (в том числе терапевт) клянутся заземлением — также называемым заземлением — для всего, от воспаления и артрита до бессонницы и депрессии. Ниже давний лидер движения за заземление Клинт Обер объясняет, что такое заземление, как оно работает и, что немаловажно, как сделать это самостоятельно.

Вопросы и ответы с Клинтом Обером

Q

Как вы впервые обнаружили влияние заземления на здоровье?

А

В своей первой карьере я провел тридцать лет в индустрии кабельного телевидения, где все электрические предметы должны иметь часть своей цепи, подключенной к земле.Воздух и окружающая среда содержат статическое электричество, которое придает электрическим проводам потенциал, отличный от потенциала земли; вы также можете думать об этом как о другом количестве электрического заряда. Земля будет разряжать или поглощать бесконечное количество электронов, поэтому, когда что-то с электрическим зарядом подключается к земле, его электрический потенциал нейтрализуется. Если электрические кабели не заземлены, статическое электричество нарушит качество и стабильность сигнала.

Обладая практическими знаниями в области заземления, я стал гораздо лучше осознавать тот факт, что все мы носим обувь с непроводящей (обычно резиновой) подошвой, которая изолирует наши тела от земли.В древние времена большинство людей ходили либо босиком, либо в обуви с кожаной подошвой, которая становилась проводящей, когда они были мокрыми от пота с наших ног. Я спросил себя, каковы могут быть последствия того, что люди больше не будут иметь естественного заземления. Интуитивно понятно, что — как в кабельной системе — заземление нейтрализует любой заряд в теле. После заземления себя и нескольких друзей, страдающих расстройствами здоровья по артритическому типу, я пришел к убеждению, что заземление может уменьшить хроническую боль. Итак, я потратил последние семнадцать лет, пытаясь выяснить, поддерживает ли какая-либо наука мою гипотезу.

Q

Как работает заземление и почему оно такое мощное?

А

Наша врожденная иммунная система использует белые кровяные тельца (известные как нейтрофилы) для высвобождения реактивных молекул кислорода (обычно известных как свободные радикалы) для окисления и уничтожения патогенов и поврежденных клеток. Свободные радикалы имеют электронный дисбаланс, который делает их электрически заряженными — в своем стремлении найти свободный электрон и нейтрализовать, они могут присоединиться к здоровой клетке или украсть электрон у здоровой клетки, повредив ее в процессе.Затем поврежденную клетку необходимо удалить, и иммунная система посылает другого нейтрофила для ее обработки, начиная весь цикл заново. Так начинается хроническое воспаление (которое вызывает хроническую боль и способствует развитию многих заболеваний). Вся эта реакция усугубляется тем фактом, что вещества, генерирующие свободные радикалы, присутствуют повсюду вокруг нас: в жареной пище, алкоголе, табачном дыме, пестицидах, загрязнителях воздуха и даже в солнечных лучах.

Земля имеет бесконечный запас свободных электронов, поэтому, когда человек заземлен, эти электроны естественным образом текут между землей и телом, уменьшая количество свободных радикалов и устраняя любой статический электрический заряд.Причина, по которой заземление является настолько мощным, заключается в том, что оно уменьшает и предотвращает воспаление в организме, что, в свою очередь, предотвращает связанные с воспалением нарушения здоровья.

Q

Какие существуют способы заземления людей?

А

Самый простой и естественный метод заземления — выйти на улицу и положить босые ноги и руки прямо на землю. Многие люди предпочитают гулять босиком в парке или на пляже. (Примечание: ходьба босиком в доме, где материалы с минимальной или меньшей проводимостью, такие как бетонные фундаменты и паркетные полы, изолируют нас от электрического потенциала земли, не будет иметь такого же эффекта.Чтобы получить значительную пользу для здоровья, требуется как минимум полчаса воздействия, поэтому я рекомендую как минимум тридцать минут босиком в день на открытом воздухе, если это возможно.

Для людей, у которых нет безопасного доступа к месту для ходьбы босиком (или для которых это неудобно в течение длительного времени), есть заземленные коврики, которые позволяют людям работать на земле, положив босые ноги на коврик. . Заземляющие коврики изготовлены из полиуретана на углеродной основе и подключаются к проводу, который можно подключить к порту заземления существующей стандартной электрической розетки — специально разработанная вилка не подключается к горячему разъему розетки, поэтому нет риска поражение электрическим током.Углерод является естественным проводником, поэтому, когда вы подключаете площадку к проводу, который соединен с землей через порт заземления, вы уравниваете электрический потенциал мата с землей, предоставляя вашему телу доступ к свободным электронам планеты. Таким образом, вы можете провести большую часть дня на земле, даже если вы работаете за столом.

У заземленного сна есть основные преимущества, поэтому мы изготовили подушечки для кровати из серебра, которое также является естественным проводником: посеребренная ткань на нейлоновой основе проходит по матрасу и под простыню и вставляется в стену, чтобы доступ к заземленной электрической цепи.Результатом является доступ к электрическому потенциалу земли, уменьшающему свободные радикалы, на всю ночь.

Теперь мы производим полный ассортимент продуктов для заземления: вы можете заземлить себя с помощью заземленного коврика для йоги, пластырей (особенно полезно при острой боли) и даже надев заземленную обувь, которая оснащена токопроводящей вилкой в ​​подошве.

Получить заземление

Способ OG — ходить босиком по улице (сад, парк и пляж одинаково эффективны) не менее 30 минут в день.Дополнительный балл за заземление в офисе или дома с помощью заземляющего устройства:

Q

Можете ли вы заземлить себя через любую розетку?

А

Все офисные здания и дома, построенные после 1970-х годов, имеют электрические розетки с заземлением, что означает, что круглое отверстие в розетке соединено с внутренним заземляющим проводом, который соединен с землей (многие старые дома, подвергшиеся ремонту, были обновлены с помощью заземленных электрических цепей). розетки тоже).Все продукты заземления, которые коммерчески доступны для населения от уважаемых компаний, поставляются с устройством для проверки заземления розеток и подтверждения наличия исправного заземляющего провода в розетке.

Если вы живете в старом доме без заземленных электрических розеток, вы можете установить заземляющий стержень или поработать с электриком, чтобы обновить свою электрическую систему.

Q

Каковы основные физические эффекты заземления?

А

Когда я начал заземляться, первым заметным эффектом было то, что я спал намного лучше.Первое, что случается, когда вас заземляют, — это то, что вы чувствуете разряд (когда электрическое статическое электричество с вашего тела исчезает). Это заставляет вас дышать легче — вы просто чувствуете себя лучше. Другие эффекты, такие как спокойствие и усиление кровотока, возникают со временем, поэтому вы не почувствуете их сразу.

Одним из первых серьезных заболеваний, с которыми я столкнулся, был пациент хосписа, страдающий паразитирующим артритом. Он не мог встать с кровати, и его няне и дочери пришлось помочь мне поднять его с кровати, чтобы установить заземленную простыню.Через неделю после моего визита мне позвонил пациент и сказал, что белка прогрызла его заземляющий провод. Это было важно по двум причинам. Во-первых, этот человек, который не мог ходить, теперь был достаточно активен, чтобы выйти из дома и проверить провод. Во-вторых, эффект заземления был настолько впечатляющим, что он сразу заметил, когда связь прервалась. Позже он сказал мне, что заземление уменьшило его воспаление и что жгучая боль, которую он чувствовал, наконец, утихла. Он прожил на шесть или семь лет дольше.

В конце концов я встретил доктора Стивена Синатру, кардиолога из Нью-Йорка, который хотел изучить влияние заземления на воспаление. С тех пор мы обнаружили, что заземление улучшает сон, уменьшает хроническую боль и ускоряет заживление. На самом деле, многие профессиональные спортсмены спят заземленным, так как он уменьшает боль и способствует более быстрому восстановлению воспаленных мышц. Другие исследования показали, что заземление увеличивает энергию, и еще раз подтвердили мои анекдотические наблюдения о том, что заземление улучшает сон.

Электрический заряд в кровотоке также влияет на вязкость крови, которая является основным фактором риска сердечных заболеваний. Как объясняет Синатра в своем обзоре литературы: «Поверхность красных кровяных телец несет отрицательный электрический заряд, который поддерживает расстояние между клетками в кровотоке. Чем сильнее отрицательный заряд, тем выше потенциал клеток отталкивать друг друга, тем лучше (тоньше) вязкость крови и тем лучше поток ». Заземление значительно снижает вязкость крови, особенно после тренировки, отчасти помогая противодействовать воспалению, вызванному физической нагрузкой.

У заземленных женщин обычно усиливается кровоток на лице — они становятся немного розовыми, как ребенок, который бегает летом. В результате этого эффекта мы начинаем изучать процесс старения, поскольку считаем, что заземление увеличивает приток крови к капиллярам — первое исследование увеличения кровотока в лице было опубликовано в 2014 году.

Q

Есть ли эмоциональные преимущества?

А

Эмоциональное заземление — на самом деле самая важная часть этого.

Я вырос на ранчо в Монтане — представьте кролика, который ест траву, наслаждается жизнью, а койот подкрадывается к нему. Кролик слышит койота и получает порцию адреналина и кортизола, поэтому он бежит и начинает зигзагообразно пересекать пастбище. Как только койот перестанет преследовать, кролик остановится — сразу же стряхнет его и снова вернется к еде, как будто ничего не произошло: он может быстро выпустить адреналин и кортизол. Сегодня, поскольку мы больше не заземлены от природы, мы удерживаем в теле все эти естественные реакции «бей или беги», и нет никакого способа избавиться от них; что сильно способствует стрессу и тревоге.

Заземление также влияет на эмоциональное здоровье за ​​счет уменьшения боли — если вы испытываете боль, вы подвергнетесь эмоциональному стрессу. Если уменьшить воспаление, боль прекратится, вы почувствуете себя лучше, и энергия вернется. Также были исследования, которые показывают, что заземление улучшает настроение, снижает стресс и оказывает успокаивающее действие.

Конечно, есть и примитивный эмоциональный эффект от заземления босыми ногами, воссоединения с землей, расслабления на природе.

Q

Как заземление может помочь при более серьезных хронических заболеваниях?

А

После пятнадцати лет заземления людей с серьезными долгосрочными нарушениями здоровья, связанными с воспалениями, я могу сказать, что если бы любой человек с одним из этих расстройств был бы хорошо заземлен хотя бы на один час каждый день, он бы испытал заметное ухудшение здоровья. улучшение.Затем, пока они продолжали заземляться, они уменьшили бы воспаление, чтобы их тело могло начать заживать и вернуться к нормальному состоянию. Кардиолог из Лос-Анджелеса проводит исследование, чтобы изучить пользу для здоровья от гипертонии.

Q

Мы слышали, что заземление изначально может вызывать негативные последствия, особенно у пациентов с болезнью Лайма. Вы можете объяснить?

А

Заземление оказывает лечебное воздействие на людей с болезнью Лайма (особенно потому, что оно способствует такому глубокому и крепкому сну), но пациенты должны действовать с осторожностью.В некоторых случаях заземление может вызвать реакцию Герксхаймера, которая может временно вызвать усталость, тошноту и жар — это воспалительная реакция на гибель бактерий. Одно из возможных объяснений состоит в том, что у людей с болезнью Лайма густая кровь и плохое кровообращение — спирохеты болтаются в их холодных пальцах рук и ног, закрытые от кровообращения. Как только вы заземляете человеческое тело, вы уменьшаете вязкость крови, чтобы кровь могла входить и выходить из капилляров. Когда это происходит, кровь начинает очищать спирохеты, создавая начальные симптомы гриппа, которые в конечном итоге проходят.

Клинтон Обер — генеральный директор EarthFX, научно-исследовательской компании, расположенной в Палм-Спрингс, Калифорния. Обер проработал десятилетия в кабельной промышленности, пока в 1995 году проблема со здоровьем не побудила его уйти на пенсию и отправиться в личное путешествие в поисках высшей цели в жизни. За последние восемнадцать лет Ober поддержал множество исследований, которые в совокупности демонстрируют, что заземление уменьшает воспаление и способствует нормальному функционированию всех систем организма.

Мнения, выраженные в этой статье, направлены на то, чтобы выделить альтернативные исследования и побудить к разговору.Они представляют собой точку зрения автора и не обязательно отражают точку зрения goop, и предназначены только для информационных целей, даже если и в той степени, в которой эта статья содержит советы врачей и практикующих врачей. Эта статья не является и не предназначена для замены профессиональных медицинских рекомендаций, диагностики или лечения, и на нее никогда не следует полагаться при получении конкретных медицинских рекомендаций.

Требования к защитному заземлению для линий передачи и распределения

Введение в защитное заземление

В этой технической статье рассматриваются требования к защитному заземлению для линий передачи и распределения с опорой на стальные опоры и деревянные опоры, а также изолированных силовых кабелей.Защитные заземления должны быть установлены так, чтобы все фазы линий или кабеля были заметно и эффективно соединены вместе в многофазном «коротком замыкании» и подключены к земле (земле) на рабочем месте.

Требования к защитному заземлению для линий передачи и распределения

Однофазное заземление многофазных цепей запрещено. Электропроводящие объекты в пределах досягаемости любого рабочего, будь то воздушные или наземные, должны быть подключены к этой системе заземления. Следовательно, на рабочем месте должно быть установлено достаточное количество защитных заземлений таким образом, чтобы они располагались непосредственно в шунте со всеми точками соприкосновения рабочих.

Заземление НЕ ДОЛЖНО использоваться в качестве проводника защитного заземления или как часть цепи между защитными заземлениями в этом отношении.

Устройство защитных заземлений на сооружениях ЛЭП создает на сооружении эквипотенциальную безопасную рабочую зону . Однако без использования установленных заземляющих матов опасные ступеньки, прикосновения и передаваемые потенциалы прикосновения могут существовать на земле рядом с основанием конструкции и объектами, подключенными к системе заземления на рабочем месте во время случайного включения линии.

Взгляните на рисунок 1 ниже.

Рисунок 1 — График, изображающий ступенчатое и контактное напряжение экспонирования, создаваемое на поверхности земли током, протекающим в землю от заземленных объектов.

Имейте в виду, что при протекании тока замыкания на землю будет повышаться напряжение при каждом подключении к земле. Никто не должен приближаться к в пределах 10 футов от защитной заземленной конструкции или любого другого проводящего объекта, который был подключен к системе заземления на рабочем месте, если не приняты защитные меры для снижения опасности ступенчатого напряжения и напряжения прикосновения.

В противном случае, только когда необходимо получить доступ к строению с земли, линейные монтеры должны быстро приближаться и садиться / спешиваться у основания конструкции.

Содержание:

    1. Заземление на металлических конструкциях передачи
      1. Решетчатые стальные конструкции
      2. Стальные опорные конструкции с скользящим соединением
      3. Стальные опорные конструкции, устойчивые к атмосферным воздействиям
      4. Окрашенная сталь
      5. Подвесные заземляющие тросы
      6. заземления конструкции
    2. Заземление на деревянных опорах передающих конструкций
    3. Заземляющие выключатели оконечных устройств линии передачи
    4. Заземление на распределительных линиях
    5. Наземное оборудование и заземление транспортных средств
      1. Воздушные устройства
      2. Контакт с заземленными транспортными средствами на рабочем месте
    6. Изолированный силовой кабель заземления

1.Заземление на металлических конструкциях электропередач

1.1 Стальные конструкции с решетчатой ​​конструкцией

Предпочтительный метод установки заземления на конструкции одинарных решетчатых стальных линий электропередачи с более высоким напряжением, где проводники находятся на большем расстоянии от конструкции, чем проводники на конструкциях с более низким напряжением, составляет установить их с перемычки над проводниками (см. рисунок 2).

Эта конфигурация сводит к минимуму индукционный контур заземления, образованный линейным рабочим органом, контактирующим со сталью башенного моста и линейным проводником (вдоль боковой гирлянды изоляторов).Это также снижает напряжение воздействия линейного монтера.

В двухконтурных решетчатых стальных конструкциях передачи фазные проводники должны быть заземлены на их верхних плечах конструкции, как показано на Рисунке 2. Защитные заземления должны присоединяться от нижней фазы вверх и удаляться от верхней фазы вниз.

Обратите внимание, что OGW означает Воздушная линия заземления .

Рисунок 2 — Предпочтительный метод заземления проводов на стальных конструкциях одноконтурных высоковольтных линий

Пунктирные линии показывают альтернативную ориентацию защитных заземлений на меньших (более низкое напряжение) конструкциях.OGW обозначает провод заземления. OGW должны быть подключены к системе заземления на рабочем месте, если они находятся в пределах досягаемости линейных монтажников.

Вернуться к таблице содержания ↑

1.2 Конструкции стальных опор скользящего соединения

Конструкции скользящего соединения либо имеют соединительные кабели, постоянно прикрепленные к каждому стыку, либо сопротивление стыка должно измеряться на выбранных конструкциях после установки и периодически, по мнению обслуживающего персонала.

Поверхности, на которые должно быть нанесено защитное заземление, необходимо очистить перед подключением кабеля, чтобы обеспечить надлежащий электрический контакт.

Рисунок 3 — Конструкция стальной опоры скользящего соединения 110 кВ

Вернуться к таблице содержания ↑


1.3 Атмосферные стальные опоры

Нельзя удалять высокорезистивный защитный оксид на стали, подверженной атмосферным воздействиям. Защитное заземление лучше всего выполнять путем приваривания медного или стального стержня или гайки из нержавеющей стали, в которую можно вставить медную шпильку с резьбой в каждом месте заземления.

Стальные опоры, устойчивые к атмосферным воздействиям, должны быть сконструированы с соединениями между поперечинами и полюсами, а также между соединениями скольжения, чтобы обеспечить электрическую непрерывность.Если соединительные ленты не являются частью конструкции, защитное заземление должно быть продлено до заземляющего стержня и воздушного провода заземления.

Рис. 4 — Выветривающиеся стальные опоры, расположенные в линию где-то в Тусоне, США,

Вернуться к таблице содержания ↑

1.4 Окрашенная сталь

Заземление лучше всего выполнить путем создания точки крепления к земле , как описано в разделе 1.3 выше. Соскабливание краски редко обеспечивает надлежащее электрическое соединение, и впоследствии потребуется перекраска.

Вернуться к таблице содержания ↑


1.5 Воздушные провода заземления

Воздушные заземляющие провода должны быть соединены с системой заземления рабочего места (конструкционная сталь) с помощью защитного заземления, если рабочие размещают линейных рабочих в пределах досягаемости.

С точки зрения безопасности нельзя полагаться на надежные подвесы для подвесных заземляющих проводов.

Преднамеренное соединение воздушных заземляющих проводов со структурой рабочего места также помогает отводить ток замыкания на землю от фундамента конструкции к соседним конструкциям, если линия случайно снова включается, что снижает ступенчатое и контактное напряжение на земле на рабочем месте.

Однако следует соблюдать меры предосторожности, чтобы избежать воздействия возможных опасных ступенек и потенциалов прикосновения на соседних конструкциях.

При выполнении работ вблизи изолированных воздушных заземляющих проводов необходимо соблюдать указанное рабочее расстояние для цепи 15 кВ (Таблица 1) или применять защитное заземление.

Таблица 1 — Минимальное расстояние доступа переменного тока для электротехников

Примечание: Все расстояния в футах-дюймах, воздействие фаза-земля.Информацию о межфазном воздействии см. В OSHA CFR 29 1910.269, Таблица R-6 .

Невозможно переоценить важность подключения воздушных заземляющих проводов к строительной конструкции для обеспечения электробезопасности. В противном случае смертельное переданное напряжение прикосновения может появиться между конструкционной сталью и проводом во время случайного включения заземленной линии или, в некоторых случаях, из-за связи от соседней линии, находящейся под напряжением.

Вернуться к таблице содержания ↑


1.6 Заземление опоры конструкции

Перед установкой защитного заземления необходимо проверить постоянное заземление опор конструкции на наличие повреждений, пропусков или других признаков плохой непрерывности между конструкцией и заземляющим электродом фундамента.

В случае сомнений следует установить временный стержень заземления рядом с основанием и прикрепить его к системе заземления рабочего места (стальной).

Вернуться к таблице содержания ↑


2. Заземление на деревянных опорных передающих конструкциях

Предпочтительные применения трехфазного заземления на деревянных опорных конструкциях с использованием заземляющих кластерных стержней показаны на рисунках 6 и 7. Заземляющие кластерные стержни должны располагаться ровно ниже самой низкой отметки ступней линейного монтера для рабочей зоны (приблизительно на высоте фазных проводов) и должен быть соединен с заземляющими проводами опорной конструкции, если они предусмотрены.

Рисунок 5 — Шина заземления, прикрепленная к деревянной опоре

Шина обеспечивает удобную точку крепления для защитного заземления и соединения с заземляющим проводом опорной конструкции, если таковой имеется.

Положение полосы кластера определяет нижнюю границу эквипотенциальной рабочей зоны на опоре. На рисунке 5 показан пример установленной заземляющей кластерной шины.

Рисунок 6 — Установка перемычки защитного заземления для двухполюсных и трехполюсных конструкций (заземленных конструкций)

OGW обозначает контактный заземляющий провод.OGW должны быть подключены к системе заземления рабочего места, если они находятся в пределах досягаемости линейных монтажников. OGW могут быть подключены к кластерным шинам или к заземленным фазным проводам с защитным заземлением.

Перед установкой защитного заземления необходимо проверить постоянное заземление опор полюсов на предмет повреждений, пропусков или других признаков нарушения целостности цепи между конструктивным оборудованием и заземляющим электродом полюса.

Если есть сомнения, необходимо установить временный заземляющий стержень рядом с опорой и присоединить к системе заземления на рабочей площадке (см. Рисунок 5).

Рисунок 7 — Пример установки перемычки защитного заземления, показывающий использование заземляющего стержня для незаземленных конструкций или сооружений с сомнительной целостностью заземления

Вернуться к таблице содержания ↑


3. Выключатели заземления на клеммах линии передачи

Переключатели заземления на клеммах линии передачи могут быть замкнуты параллельно с защитными сооружениями на рабочем месте. Выключатели заземления на клеммах замкнутой линии могут помочь гарантировать, что защитные устройства (реле, предохранители) сработают в заданном соотношении время / ток, чтобы быстро изолировать источник случайного электрического напряжения.

Кроме того, во многих случаях замкнутые клеммные выключатели заземления уменьшают ток короткого замыкания в защитных заземлениях на рабочем месте, что снижает рабочее напряжение.

Однако, в зависимости от конфигурации системы и условий нагрузки, замкнутые клеммные выключатели заземления могут увеличивать наведенный циркулирующий ток в линии и множественные заземления из-за связи с близлежащими линиями, находящимися под напряжением. Этот циркулирующий ток может быть нежелательным при установке или удалении защитного заземления или создавать постоянные опасные уровни ступенчатого напряжения и напряжения прикосновения на заземленной рабочей площадке.

Таким образом, использование выключателей заземления оконечных устройств линии остается на усмотрение экипажа и региональной политики. Выключатели заземления линейных клемм не могут заменить защитное заземление на рабочем месте.

Вернуться к таблице содержания ↑


4. Заземление распределительных линий

Защитное заземление распределительных линий и окончаний воздушных кабелей должно выполняться, как показано на Рисунке 6.

Рисунок 6 — Предпочтительный метод защитного заземления при более низком напряжении распределительные линии

Заземляющая шина кластера (см. фото, рисунок 3) должна располагаться чуть ниже самой нижней отметки ступней линейного монтера для рабочей зоны и должна быть соединена с нейтральным проводом и проводом заземления полюса (не показан), если он предусмотрен. .

Положение кластерной шины определяет нижнюю границу эквипотенциальной рабочей зоны на опоре.

Подключение индивидуальных защитных заземлений от кластерной шины к каждому фазному проводу является допустимой альтернативой, но может привести к немного более высокому напряжению воздействия.

Полюсные заземляющие провода, используемые для защитного заземления , должны быть проверены перед использованием, чтобы убедиться, что они не были разрезаны, повреждены или удалены . Если полюса заземления нет, временный заземляющий стержень следует вбить или вкрутить в землю рядом с полюсом и прикрепить к кластерной шине с помощью защитного заземления.

Любые растяжки в пределах досягаемости линейного мастера должны быть прикреплены к системе заземления рабочего места (групповой стержень). Наземная бригада должна оставаться на расстоянии (не менее 10 футов) от полюсов, заземляющих стержней и растяжек.

Вернуться к таблице содержания ↑


5. Наземное оборудование и заземление транспортных средств

Этот параграф применяется к заземлению и подключению оборудования и транспортных средств, задействованных в работах по техническому обслуживанию на линиях электропередач или вблизи них. Транспортные средства включают, помимо прочего, воздушные устройства, легковые грузовики, копатели столбов и краны.

Целью подключения оборудования и транспортных средств к системе заземления на рабочем месте (во время работы без напряжения) является контроль и минимизация передаваемых потенциалов прикосновения между конструкцией, оборудованием и транспортным средством во время случайного включения линии.

Площадки для транспортных средств и оборудования должны использоваться вместе с правильно установленными средствами индивидуальной защиты. Ни в коем случае нельзя использовать заземления для транспортных средств и оборудования вместо средств индивидуальной защиты.

Вернуться к таблице содержания ↑


5.1 Воздушные устройства

Воздушные устройства, с изолированной или неизолированной стрелой, и другие транспортные средства или оборудование для технического обслуживания, которые могут контактировать с заземленной рабочей площадкой или позволять рабочему контактировать с площадкой, должен быть подключен к системе заземления на рабочем месте.

Они должны быть прикреплены (заземлены) к конструкции в качестве первого шага в установке системы заземления.

Вернуться к таблице содержимого ↑


5.2 Контакт с заземленными транспортными средствами на рабочем месте

Транспортные средства и оборудование, подключенные к системе заземления рабочего места, могут представлять опасное переданное напряжение прикосновения к окружающей поверхности заземления.

Следовательно, любое транспортное средство или оборудование, подключенное к системе заземления рабочего места (включая токопроводящие стропы лебедки) и требующее постоянного контакта при стоянии на земле, должно быть оборудовано изолированной платформой или проводящим ковриком , прикрепленным к транспортному средству или оборудованию для оператор стоять на.

См. Рисунок 7 ниже.

Рисунок 7 — Применение токопроводящего мата для обеспечения безопасной рабочей зоны вдоль машины технического обслуживания (фото предоставлено idube.net)

Коврик и автомобиль прикреплены к системе заземления рабочего места, создавая эквипотенциальную зону между руками оператора (рама автомобиля) и ноги.

Рисунок 8 — Пример использования токопроводящего мата для обеспечения безопасной рабочей зоны вдоль машины технического обслуживания (фото: idube.net)

Вернуться к таблице содержания ↑


6.Заземление изолированного силового кабеля

Защитное заземление на рабочей площадке для изолированных концевых частей силового кабеля должно выполняться аналогично заземлению конструкций линий электропередач. Фазовые клеммы кабеля (терминаторы, наконечники и т. Д.) И проводники экрана должны быть подключены к системе заземления на рабочем месте.

Удаленный (незаземленный) конец кабеля ДОЛЖЕН рассматриваться как находящийся под напряжением . Хотя фазовые жилы кабеля незаземлены (изолированы) на удаленном (нерабочем) конце кабеля, экраны кабеля заземлены там.

Следовательно, рабочие должны принять необходимые меры предосторожности против опасных скачков или прикосновений, которые могут возникнуть на рабочем месте из-за замыкания на землю системы на удаленном конце .

Вернуться к таблице содержания ↑

Источники:

  1. Личное защитное заземление для объектов электроэнергетики и линий электропередач Департаментом внутренних дел США Бюро мелиорации
  2. Работа и методы работы под высоким напряжением руководство Western Power Network

Преимущества и методы заземления

Земля похожа на гигантскую батарею, которая содержит естественный тонкий электрический заряд — особый вид энергии, присутствующий в земле.В целях безопасности и стабильности к нему подключено почти все в электрическом мире, будь то электростанция или ваш холодильник. Вот что означает термин «заземленный».

Заземление относится и к людям. Когда вы электрически заземлены, вы чувствуете:

  • по центру
  • твердый
  • сильный
  • сбалансированный
  • менее напряженный
  • менее напряженный

В целом вы чувствуете себя хорошо. Если у вас есть боль, у вас ее меньше или, может быть, совсем ее нет, когда вы заземлены.

Рост заболеваемости

Многие люди живут с ежедневной болью и постоянным стрессом, тревогой, депрессией и усталостью. Они чувствуют себя не в своем роде — не сосредоточенными, сильными или твердыми. Врачи часто не могут найти причину и прибегают к назначению лекарств, которые вызывают побочные эффекты, такие как усталость, плохое настроение, желудочно-кишечные расстройства и головные боли.

Увеличилось количество людей, страдающих аутоиммунными заболеваниями. Пятьдесят миллионов человек в США страдают от следующих заболеваний:

  • Рассеянный склероз
  • Волчанка
  • Воспалительные заболевания кишечника
  • Ревматоидный артрит

Исследователи не знают конкретных причин резкого увеличения разнообразия заболеваний.Некоторые говорят, что это потому, что люди едят больше неестественных продуктов, чем когда-либо, и что ингредиенты в этих продуктах могут быть вредными.

Хотя некоторые подходы к образу жизни, такие как медитация и йога, могут помочь, их эффективность при многих из этих заболеваний ограничена.

Утрата контакта с землей

Вы — биоэлектрическое существо, живущее на электрической планете. Ваше тело работает электрически. Все ваши клетки передают несколько частот, которые работают, например, с вашим сердцем, иммунной системой, мышцами и нервной системой.

За исключением людей, живущих в индустриальных обществах, все живые существа на нашей планете связаны с электрической энергией земли. В индустриальных обществах редко ходят босиком на улице или носят обувь из натуральной кожи, которая позволяет поглощать энергию земли. В течение многих десятилетий люди все чаще носили обувь на резиновой и пластиковой подошве, которая действует как барьер для энергии Земли, изолируя их от электрического контакта с Землей. Люди также, как правило, больше не спят на земле, как это делали многие культуры на протяжении всей истории.Они живут и работают над землей, даже над землей в многоэтажках.

По правде говоря, вы отключены. Вы безосновательны. Вы не связаны с Землей. Может ли это разъединение быть упущенным из виду фактором роста заболеваний, отмеченного ранее?

Лечебные преимущества заземления

Научные исследования, проводившиеся более десяти лет, показывают, что ваше тело можно защитить и помочь — и что вы чувствуете себя лучше — когда вы снова электрически подключаетесь к Земле. То есть, когда вы заземлены.Вот три примера потенциальных преимуществ, о которых сообщалось в этих исследованиях:

1. Снижение уровня воспаления и боли

Заземление может помочь снять воспаление. На следующих изображениях показана 44-летняя женщина с хронической болью в спине по данным термографии, широко используемого метода визуализации в медицине. Левое изображение было получено до заземления. Красные узоры представляют собой «горячие» участки боли и воспаления. Правое изображение показывает резкое уменьшение воспаления после четырех ночей сна в заземленном состоянии, когда женщина сообщила:

  • 30-процентное уменьшение боли
  • 70-процентное уменьшение боли, мешающей спать
  • 30-процентное снижение утренней скованности и болезненность

Через четыре недели она сообщила:

  • 80-процентное уменьшение боли
  • Отсутствие помех для сна
  • 70-процентное снижение утренней скованности и болезненности

К восьми неделям, по ее словам, ее боль ушла.

2. Пониженный уровень стресса

При заземлении дневной ритм гормона стресса кортизола начинает нормализоваться. Кортизол связан с реакцией вашего организма на стресс и помогает контролировать уровень сахара в крови, регулирует обмен веществ, помогает уменьшить воспаление и способствует формированию памяти. На рисунке ниже показаны результаты исследования , в котором изучались эффекты заземления во время сна в течение восьми недель.

Помимо нормализации ритма кортизола, участники этого исследования также лучше спали и просыпались более отдохнувшими.

Улучшенное кровообращение

Когда вы заземлены, ваше кровообращение улучшается, способствуя доставке кислорода и питательных веществ к тканям вашего тела, включая лучший кровоток к вашему лицу. На изображении ниже, сделанном с помощью лазерной контрастной камеры, видно значительное улучшение лицевого кровотока в течение получаса после заземления.

Улучшение лицевого кровообращения (правое изображение) после 20 минут заземления, что зафиксировано спекл-контрастным лазерным тепловизором (темно-синий = наименьшая циркуляция; темно-красный = максимальная циркуляция).Источник изображения: Публикация научных исследований

Как восстановить связь с Землей

Хотя исследования заземления для вашего здоровья и благополучия относительно новы, эта практика вечна. В прошлом общества ходили босиком или носили кожаную обувь, сделанную из шкур, которая позволяла энергии Земли подниматься в их тела. Они были заземлены.

Вот итог: вы, так сказать, потеряли свои электрические корни. Вы отключены, и это разъединение может быть серьезно недооцененной причиной человеческой боли и дискомфорта, а также стремительно растущего числа хронических заболеваний во всем мире.

Хорошая новость в том, что у вас есть возможность восстановить соединение. Если позволяет погода и расписание, прогуляйтесь босиком на полчаса или около того и посмотрите, как это повлияет на вашу боль или уровень стресса. Сядьте, встаньте или ходите по земле, траве, песку или бетону. Все это проводящие поверхности, с которых ваше тело может черпать энергию Земли. Дерево, асфальт и винил не проводят ток.

В идеале, если вы хотите сохранить опыт заземления, включите эту целительную энергию в свой распорядок дня.

Однако у многих людей нет времени в их нынешнем плотном графике ходить босиком. Итак, есть и комнатные варианты. Приобретите средства для заземления, которые можно использовать во время сна, отдыха или работы, например, проводящие:

  • Стулья
  • Подушки для кроватей
  • Коврики для пола и стульев
  • Повязки для тела
  • Пластыри, которые можно прикрепить к телу там, где это болит

Какой бы маршрут вы ни выбрали, почувствуйте себя здоровым и энергичным.

Рекомендуемая дополнительная литература

Если вы хотите узнать больше по этой теме, прочтите любую из следующих статей:

1. Заземление после умеренных эксцентрических сокращений снижает повреждение мышц.
Brown R, Chevalier G, Hill M.
Открытый доступ J Sports Med. 2015 21 сентября; 6: 305-17. DOI: 10.2147 / OAJSM.S87970.

2. Влияние заземления на воспаление, иммунный ответ, заживление ран, а также профилактику и лечение хронических воспалительных и аутоиммунных заболеваний.
Oschman JL, Chevalier G, Brown R.J Inflamm Res. 2015 24 марта; 8: 83-96. DOI: 10.2147 / JIR.S69656.

3. T эффект заземления человеческого тела на настроение. Chevalier G.Psychol Rep.2015, апрель; 116 (2): 534-42. DOI: 10.2466 / 06.PR0.116k21w5.

4. Заземление человеческого тела снижает вязкость крови — главный фактор сердечно-сосудистых заболеваний. Chevalier G, Sinatra ST, Oschman JL, Delany RM.J Altern Complement Med. 2013 Февраль; 19 (2): 102-10.DOI: 10.1089 / acm.2011.0820.

5. Заземление: последствия для здоровья повторного подключения человеческого тела к электронам на поверхности Земли. Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P.J Environ Public Health. 2012; 2012: 291541. DOI: 10,1155 / 2012/291541. Рассмотрение.

6. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. Гали М., Теплиц Д.Дж. Альтернативная комплементарная медицина. 2004 Октябрь; 10 (5): 767-76.


Начните свой путь к более обоснованному и уравновешенному «я» с управляемыми медитациями и тщательно подобранными практиками в приложении Chopra, доступном уже сейчас.

часто задаваемых вопросов — заземление Канады

Да, если у вас есть розетки с заземлением и вам может понадобиться адаптер розетки. Подробную информацию о каждом типе розеток см. Ниже.

Обратите внимание: если вы находитесь за пределами Канады, в вашей стране может быть несколько типов розеток, поэтому прочтите эту страницу полностью.

Заземляющий стержень: Самый простой способ использования заземления Earthing® в любой точке мира — это заземление заземляющего стержня Earthing®, помещенное в почву за окном или дверью. Это особенно полезно, если у вас нет розеток с заземлением.

Универсальный адаптер: Не покупайте универсальный адаптер. Некоторые универсальные адаптеры выглядят так, как будто у них есть заземление, но при проверке они не работают. Другие имеют неплотные прерывистые соединения, что сводит к минимуму преимущества, которые вы ожидаете от продуктов Earthing®.Если у вас нет заземленной розетки, вам придется использовать заземляющий стержень или попросить электрика подключить ваши электрические розетки к земле.

Напряжение: Продукты Earthing® не работают от электричества, поэтому не имеет значения, какой электрический ток используется в вашей стране (110 или 240 вольт и т. Д.). Все соединительные кабели продукта Earthing® содержат токоограничивающий резистор 100 кОм.

НАСТЕННЫЕ РОЗЕТКИ ТИПА «B»

Используется в: США, Канаде, Мексике, Коста-Рике и некоторых частях Карибского бассейна

  1. Убедитесь, что ваша розетка заземлена.Проверьте это с помощью средства проверки розеток, прилагаемого к вашему заказу на Earthing.com, или с помощью простого средства проверки розеток, которое вы можете приобрести в местном магазине электроснабжения или хозяйственном магазине.
  2. Шнуры, которые поставляются с продуктами Earthing®, предназначены для установки непосредственно в порт заземления (нижнее отверстие) вашей трехконтактной настенной розетки или их можно использовать с заземляющим стержнем Earthing®, помещенным в почву за окном или дверью.

Обратите внимание: розетки только с двумя отверстиями не имеют заземления.Это довольно часто встречается в старых домах. В этой ситуации вы должны использовать заземляющий стержень или попросить электрика заземлить ваши розетки.

НАСТЕННЫЕ РОЗЕТКИ ТИПА «I»

Используется в: Американском Самоа, Аргентине, Австралии, Китае, Сальвадоре, Фиджи, Гватемале, Кирибати, Науру, Новой Зеландии, Окинаве, Панаме, Папуа-Новой Гвинее, Сент-Винсенте, Таджикистане, Тонге и Уругвае

  1. Убедитесь, что ваша розетка заземлена. Проверьте это с помощью простого средства проверки розеток, которое можно приобрести в местном магазине электроснабжения или хозяйственного оборудования, или приобрести средство проверки розеток Earthing® Type I.Если у вас нет заземленных розеток, вы должны использовать заземляющий стержень Earthing® или попросить электрика заземлить ваши розетки.
  2. Для успешного использования продуктов Earthing® в заземленных настенных розетках типа I используйте адаптер розеток Earthing® типа I.

НАСТЕННЫЕ РОЗЕТКИ ТИПА «E / F»

Используется в: Алжире, Американском Самоа, Арубе, Австрии, Азорских островах, Балеарских островах, Боснии, Болгарии, Кабо-Верде, Чаде, Хорватии, Сальвадоре, Финляндии, Франции, Германии, Греции, Гвинее, Венгрии, Исландии, Индонезии, Италии. , Иордания, Корея, Лаос, Люксембург, Мадейра, Монако, Черногория, Мозамбик, Мьянма, Нидерланды, Нидерландские Антильские острова, Нигер, Норвегия, Португалия, Румыния, Сербия, Испания, Суринам, Швеция, Турция и Уругвай

  1. Убедитесь, что ваша розетка заземлена.Проверьте это с помощью простого средства проверки розеток, которое можно приобрести в местном магазине электроснабжения или хозяйственном магазине. Если у вас нет заземленных розеток, вы должны использовать заземляющий стержень Earthing® или попросить электрика заземлить ваши розетки.
  2. Для успешного использования продуктов Earthing® в заземленных настенных розетках типа F используйте адаптер розеток типа E / F (Европа).

НАСТЕННЫЕ РОЗЕТКИ ТИПА «G»

Используется в: Бахрейн, Бангладеш, Белиз, Ботсвана, Бруней, Камерун, Нормандские острова, Китай, Кипр, Доминика, Сальвадор, Гамбия, Гана, Гибралтар, Гренада, Гватемала, Гайана, Гонконг, Ирак, Ирландия, остров Мужчина, Иордания, Кения, Кувейт, Ливан, Макао, Малави, Малайзия, Мальдивы, Мальта, Маврикий, Мьянма, Нигерия, Оман, Катар, Св.Китс-Невис, Сент-Люсия, Сент-Винсент, Саудовская Аравия, Сейшельские острова, Сьерра-Леоне, Сингапур, Танзания, Уганда, Объединенные Арабские Эмираты, Великобритания, Вьетнам, Йемен, Замбия, Зимбабве

  1. Убедитесь, что ваша розетка заземлена. Проверьте это с помощью простого средства проверки розеток, которое можно приобрести в местном магазине электроснабжения или хозяйственного оборудования, или приобрести средство проверки розеток Earthing® типа G. Если у вас нет заземленных розеток, вы должны использовать заземляющий стержень Earthing® или попросить электрика заземлить ваши розетки.
  2. Для успешного использования продуктов Earthing® в заземленных настенных розетках типа G используйте адаптер розеток Earthing® типа G.

НАСТЕННЫЕ РОЗЕТКИ ТИПА «K»

Используется в: Бангладеш, Дании, Фарерских островах, Гренландии, Гвинее, Мадагаскаре, Мальдивах, Сент-Винсенте, Сенегале и Тунисе

  1. Для заземления розетки. Проверьте это с помощью простого средства проверки розеток, которое можно приобрести в местном магазине электроснабжения или хозяйственного оборудования, или приобрести средство проверки розеток Earthing® Type K.Если у вас нет заземленных розеток, вы должны использовать заземляющий стержень Earthing® или попросить электрика заземлить ваши розетки.
  2. Для успешного использования продуктов Earthing® в заземленных настенных розетках типа K используйте средство проверки розеток Earthing® типа K.

Влияние заземления на воспаление, иммунный ответ, заживление ран, а также профилактику и лечение хронических воспалительных и аутоиммунных заболеваний

J Inflamm Res. 2015; 8: 83–96.

Джеймс Л. Ошман

1 Nature’s Own Research Association, Dover, NH, USA

Gaétan Chevalier

2 Кафедра биологии развития и клеточной биологии Калифорнийского университета в Ирвине, Ирвин, Калифорния, США

Ричард Браун

3 Кафедра физиологии человека, Орегонский университет, Юджин, Орегон, США

1 Nature’s Own Research Association, Довер, Нью-Хэмпшир, США

2 Кафедра биологии развития и клеточной биологии Калифорнийского университета в Ирвине, Ирвин, Калифорния, США

3 Кафедра физиологии человека, Орегонский университет, Юджин, штат Орегон, США

Для переписки: Гаэтан Шевалье, Департамент развития и клеточной биологии, Калифорнийский университет в Ирвине, 2103 Макго-Холл, Ирвин, Калифорния, 92697 -2300, США, тел. + 1760815 9271, факс +1858225 3514, электронная почта десять.labolgcbs @ cgobld Авторские права © 2015 Oschman et al. Эта работа опубликована Dove Medical Press Limited и находится под лицензией Creative Commons Attribution — Non Commercial (unported, v3.0) License. Полные условия лицензии доступны по адресу http://creativecommons.org/licenses/by-nc/3.0 / Некоммерческое использование работы разрешено без какого-либо дополнительного разрешения Dove Medical Press Limited, при условии, что работа имеет надлежащую атрибуцию. Эта статья цитируется в других статьях в PMC.

Abstract

Многопрофильные исследования показали, что электрически проводящий контакт человеческого тела с поверхностью Земли (заземление или заземление) оказывает интригующее воздействие на физиологию и здоровье.Такие эффекты относятся к воспалению, иммунным ответам, заживлению ран, а также к профилактике и лечению хронических воспалительных и аутоиммунных заболеваний. Этот отчет преследует две цели: 1) проинформировать исследователей о том, что представляется новым подходом к изучению воспаления, и 2) предупредить исследователей о том, что продолжительность и степень (сопротивление заземлению) заземления экспериментальных животные — важный, но обычно упускаемый из виду фактор, который может повлиять на результаты исследований воспаления, заживления ран и туморогенеза.В частности, заземление организма вызывает измеримые различия в концентрациях лейкоцитов, цитокинов и других молекул, участвующих в воспалительной реакции. Мы представляем несколько гипотез для объяснения наблюдаемых эффектов, основанных на текущих результатах исследований и нашем понимании электронных аспектов физиологии клеток и тканей, клеточной биологии, биофизики и биохимии. Экспериментальное повреждение мышц, известное как мышечная болезненность с отсроченным началом, использовалось для мониторинга иммунного ответа в заземленных и необоснованных условиях.Заземление уменьшает боль и изменяет количество циркулирующих нейтрофилов и лимфоцитов, а также влияет на различные циркулирующие химические факторы, связанные с воспалением.

Ключевые слова: хроническое воспаление, иммунная система, заживление ран, лейкоциты, макрофаги, аутоиммунные заболевания

Введение

Заземление означает прямой контакт кожи с поверхностью Земли, например, босиком или руками , или с различными системами заземления. Субъективные сообщения о том, что ходьба босиком по Земле укрепляет здоровье и дает чувство благополучия, можно найти в литературе и практиках различных культур со всего мира. 1 По разным причинам многие люди не хотят выходить на улицу босиком, если только они не отдыхают на пляже. Опыт и измерения показывают, что постоянный контакт с Землей приносит устойчивые выгоды. Доступны различные системы заземления, которые позволяют часто контактировать с Землей, например, во время сна, сидя за компьютером или прогулок на открытом воздухе. Это простые токопроводящие системы в виде листов, циновок, повязок на запястья или щиколотки, липких пластырей, которые можно использовать в доме или офисе, и обуви.Эти приложения подключаются к Земле через шнур, вставленный в заземленную розетку или прикрепленный к заземляющему стержню, помещенному в почву снаружи под окном. При использовании обуви в подошве обуви на подушечке стопы, под плюсневыми костями, в точке акупунктуры, известной как почка 1, размещается токопроводящая заглушка. С практической точки зрения эти методы предлагают удобный, рутинный и удобный в использовании. подход к заземлению или заземлению. Их также можно использовать в клинических ситуациях, как будет описано в разделе, озаглавленном «Краткое изложение результатов на сегодняшний день». 1

Недавно группа из примерно десятка исследователей (включая авторов этой статьи) изучала физиологические эффекты заземления с различных точек зрения. В результате этого исследования в рецензируемых журналах опубликовано более десятка исследований. Хотя в большинстве этих пилотных исследований было задействовано относительно небольшое количество субъектов, вместе взятых, исследование открыло новые и многообещающие рубежи в исследованиях воспалений с широкими последствиями для профилактики и общественного здравоохранения.Полученные данные заслуживают рассмотрения сообществом исследователей воспаления, у которого есть средства для проверки, опровержения или уточнения интерпретаций, которые мы сделали до сих пор.

Заземление уменьшает или даже предотвращает основные признаки воспаления после травмы: покраснение, жар, отек, боль и потерю функции (и). Быстрое исчезновение болезненного хронического воспаления было подтверждено в 20 тематических исследованиях с использованием медицинских инфракрасных изображений (). 2 , 3

Фотографические изображения, подтверждающие ускоренное улучшение 8-месячной незаживающей открытой раны, перенесенной 84-летней женщиной, страдающей диабетом.

Примечания: ( A ) Показывает открытую рану и бледно-серый оттенок кожи. ( B ) Снимок, сделанный после недели процедур заземления, показывает заметный уровень заживления и улучшения кровообращения, на что указывает цвет кожи. ( C ) Снимок, сделанный после 2 недель лечения заземлением, показывает, что рана зажила, а цвет кожи значительно улучшился. Лечение состояло из ежедневного 30-минутного сеанса заземления с помощью пластыря с электродом, когда пациент сидел удобно.Причиной раны, прилегающей к левой щиколотке, стал плохо подогнанный ботинок. Через несколько часов после ношения ботинка образовался волдырь, который затем превратился в стойкую открытую рану. Пациент проходил различные процедуры в специализированном раневом центре без каких-либо улучшений. Визуализация сосудов нижних конечностей показала плохое кровообращение. При первом осмотре она слегка хромала и испытывала боль. После первых 30 минут контакта с заземлением пациент сообщил о заметном уменьшении боли.По ее словам, после 1 недели ежедневного заземления ее уровень боли уменьшился примерно на 80%. В то время у нее не было никаких признаков хромоты. По прошествии 2 недель она сказала, что полностью избавилась от боли.

Быстрое выздоровление после серьезной раны с минимальным отеком и покраснением, ожидаемым при такой серьезной травме.

Примечания: Велосипедист получил травму на соревнованиях Тур де Франс — цепное колесо выбило ему ногу. ( A ) Пластыри заземления помещали выше и ниже раны как можно скорее после травмы.Фото любезно предоставлено доктором Джеффом Спенсером. ( B ) 1-е сутки после травмы. ( C ) 2-е сутки после травмы. Покраснение, боль и припухлость были минимальными, и велосипедист смог продолжить гонку на следующий день после травмы. ( B и C ) Авторские права © 2014. Перепечатано с разрешения Basic Health Publications, Inc. Обер Калифорния, Синатра СТ, Цукер М. Заземление: самое важное открытие в области здравоохранения? 2-е изд. Лагуна-Бич: Основные публикации о здоровье; 2014 г. 1

Уменьшение воспламенения с помощью заземления, документированное с помощью медицинского инфракрасного изображения.

Примечания: Тепловизионные камеры фиксируют крошечные изменения температуры кожи для создания карты с цветовой кодировкой горячих участков, указывающих на воспаление. На панели A показано уменьшение воспаления после сна в заземленном состоянии. Медицинское инфракрасное изображение показывает теплые и болезненные области (стрелки в верхней части панели A ). Сон на земле в течение 4 ночей разрешил боль, а горячие области охладились.Обратите внимание на значительное уменьшение воспаления и возврат к нормальной термической симметрии. На панели B показаны инфракрасные изображения 33-летней женщины, получившей гимнастическую травму в 15 лет. Пациентка долгое время страдала хронической болью в правом колене, отеком и нестабильностью и не могла стоять в течение длительного времени. Простые действия, такие как вождение, усиливали симптомы. Ей приходилось спать с подушкой между колен, чтобы уменьшить боль. Периодическое лечение и физиотерапия на протяжении многих лет приносили минимальное облегчение.17 ноября 2004 г. она обратилась с жалобой на сильную болезненность правого медиального колена и легкую хромоту. Верхние изображения на панели B были сделаны в положении ходьбы, чтобы показать внутреннюю часть обоих колен. Стрелка указывает на точное место боли у пациента и указывает на выраженное воспаление. Нижние изображения на панели B , сделанные через 30 минут после заземления с помощью электродной накладки. Пациент сообщил о легком уменьшении боли. Обратите внимание на значительное уменьшение воспаления в области колен. После 6 дней заземления она сообщила об уменьшении боли на 50% и сказала, что теперь она может дольше стоять без боли и ей больше не нужно спать с подушкой между ног.После 4 недель лечения она почувствовала себя достаточно хорошо, чтобы играть в футбол, и впервые за 15 лет не почувствовала нестабильности и незначительной боли. К 12 неделям она сказала, что ее боль уменьшилась почти на 90% и отека не было. Впервые за много лет она научилась кататься на водных лыжах. Пациентка обратилась в офис после 6 месяцев лечения, чтобы сообщить, что она завершила полумарафон, о чем она даже не мечтала, что когда-либо сможет это сделать до лечения.

Наша основная гипотеза заключается в том, что соединение тела с Землей позволяет свободным электронам с поверхности Земли распространяться по телу и внутрь тела, где они могут оказывать антиоксидантное действие.В частности, мы предполагаем, что мобильные электроны создают антиоксидантную микросреду вокруг области восстановления повреждений, замедляя или предотвращая появление реактивных форм кислорода (АФК), доставляемых окислительным взрывом, от причинения «побочного повреждения» здоровой ткани, а также предотвращения или уменьшения образования так — так называемая «воспалительная баррикада». Мы также предполагаем, что электроны с Земли могут предотвратить или устранить так называемое «тихое» или «тлеющее» воспаление. В случае подтверждения эти концепции могут помочь нам лучше понять и исследовать воспалительную реакцию и заживление ран, а также получить новую информацию о том, как иммунная система функционирует в условиях здоровья и болезней.

Сводка результатов на сегодняшний день

Заземление улучшает сон, нормализует дневной и ночной ритм кортизола, уменьшает боль, снижает стресс, переводит вегетативную нервную систему с симпатической на парасимпатическую активацию, увеличивает вариабельность сердечного ритма, ускоряет заживление ран и снизить вязкость крови. Резюме было опубликовано в журнале Journal of Environmental and Public Health . 4

Влияние на сон

В одном из первых опубликованных исследований заземления изучалось влияние заземления на сон и циркадные профили кортизола. 5 В исследовании участвовали 12 человек, которые испытывали боль и имели проблемы со сном. Они спали заземленными в течение 8 недель, используя систему, показанную на рисунке. В течение этого периода их дневные профили кортизола нормализовались, и большинство испытуемых сообщили, что их сон улучшился, а уровень боли и стресса снизился.

Заземленная система сна.

Примечания: Заземленная система сна состоит из хлопкового полотна с вплетенными в него проводящими углеродными или серебряными нитями. Нити соединяются с проводом, который выходит из окна спальни или через стену к металлическому стержню, вставленному в землю рядом со здоровым растением.В качестве альтернативы его можно подключить к заземляющей клемме электрической розетки. Сон в этой системе соединяет тело с Землей. Люди, использующие эту систему, часто сообщают, что заземленный сон улучшает качество сна и уменьшает боли по разным причинам.

Результаты эксперимента привели к следующим выводам: 1) заземление тела во время сна дает количественные изменения в суточных или циркадных уровнях секреции кортизола, которые, в свою очередь, 2) вызывают изменения сна, боли и стресса (тревога, депрессия, и раздражительность), согласно субъективным оценкам.Эффекты кортизола, описанные Ghaly и Teplitz 5 , особенно важны в свете недавних исследований, показывающих, что длительный хронический стресс приводит к устойчивости к глюкокортикоидным рецепторам. 6 Такая устойчивость приводит к неспособности подавлять воспалительные реакции, что может, таким образом, увеличивать риски различных хронических заболеваний. Этот эффект дополняет результаты, описанные в разделе «Влияние на боль и иммунный ответ».

Воздействие на боль и иммунный ответ

Пилотное исследование влияния заземления на боль и иммунного ответа на травму использовало мышечную болезненность с отсроченным началом (DOMS). 7 DOMS — это мышечная боль и скованность, которая возникает от нескольких часов до нескольких дней после напряженных и незнакомых упражнений. DOMS широко используется в качестве исследовательской модели физиологами, занимающимися физическими упражнениями и спортом. Болезненность DOMS вызвана временным повреждением мышц, вызванным эксцентрическими упражнениями. Фаза сокращения, которая происходит, когда мышца укорачивается, как при поднятии гантели, называется концентрической, тогда как фаза сокращения, когда мышца удлиняется, как при опускании гантели, называется эксцентрической.

Восемь здоровых испытуемых выполнили незнакомое эксцентрическое упражнение, которое вызвало боль в икроножных мышцах. Для этого им предложили выполнить два подхода по 20 подъемов пальцев ног со штангой на плечах и подушечками стоп на деревянной доске размером 2 × 4 дюйма. 7

Все субъекты ели стандартизированную пищу в одно и то же время дня и придерживались одного и того же цикла сна в течение 3 дней. Ежедневно в 17.40 у четырех испытуемых на икроножных мышцах и подошвах стоп были прикреплены проводящие заземляющие пластыри.Они отдыхали и спали на системах заземления, подобных показанной на рисунке. Они оставались на заземленных простынях, за исключением посещения туалета и приема пищи. В качестве контроля четыре субъекта следовали одному и тому же протоколу, за исключением того, что их пластыри и листы не заземлялись. Перед тренировкой и через 1, 2 и 3 дня после нее были проведены следующие измерения: уровни боли, магнитно-резонансная томография, спектроскопия, содержание кортизола в сыворотке и слюне, химический анализ крови и ферментов, а также количество клеток крови. 7

Боль контролировалась двумя методами.Субъективный метод включал использование визуальной аналоговой шкалы утром и днем. Во второй половине дня на правую икроножную мышцу накладывали манжету для измерения кровяного давления и накачивали до уровня острого дискомфорта. Боль была задокументирована с точки зрения максимально допустимого давления. У заземленных испытуемых было меньше боли, о чем свидетельствует как аналоговая шкала болезненности (), так и их способность выдерживать более высокое давление манжеты для измерения кровяного давления (). 7

Изменения в отчетах по визуальной аналоговой шкале боли во второй половине дня.

Изменение уровня боли после полудня (после полудня) с помощью манжеты для измерения кровяного давления.

Отчет об обоснованном исследовании DOMS 7 содержит обзор литературы по изменениям химического состава крови и содержания форменных элементов (эритроцитов, лейкоцитов и тромбоцитов), ожидаемых после травмы. Иммунная система обнаруживает патогены и повреждение тканей и реагирует, инициируя каскад воспаления, отправляя нейтрофилы и лимфоциты в область. 8 12 Как и ожидалось, количество лейкоцитов увеличилось у необоснованных или контрольных субъектов.Количество лейкоцитов у заземленных субъектов неуклонно снижалось после травмы (). 7

Сравнение количества лейкоцитов, сравнение предварительного и пост-теста для каждой группы.

Предыдущие исследования показали увеличение нейтрофилов после травмы. 13 16 Это произошло как с заземленными, так и с незаземленными субъектами (), хотя количество нейтрофилов всегда было ниже у заземленных субъектов. 7

Сравнение количества нейтрофилов до и после теста для каждой группы.

Ожидается, что по мере увеличения количества нейтрофилов количество лимфоцитов будет уменьшаться. 17 19 В исследовании DOMS количество лимфоцитов у заземленных субъектов всегда было ниже, чем у незаземленных (). 7

Сравнение количества лимфоцитов до и после теста для каждой группы.

Обычно нейтрофилы быстро проникают в поврежденную область 8 , 20 22 , чтобы разрушить поврежденные клетки и посылать сигналы через сеть цитокинов для регулирования процесса восстановления.Производство нейтрофилами АФК и активных форм азота (РНС) называется «окислительным взрывом». 21 В то время как АФК удаляют патогены и клеточный мусор, чтобы ткань могла регенерировать, АФК также могут повреждать здоровые клетки, прилегающие к области восстановления, вызывая так называемое побочное повреждение. Тот факт, что у заземленных субъектов было меньше циркулирующих нейтрофилов и лимфоцитов, может указывать на то, что первоначальное повреждение разрешилось быстрее, побочное повреждение уменьшилось, а процесс восстановления ускорился.Это могло бы объяснить уменьшение основных признаков воспаления (покраснение, жар, отек, боль и потеря функции) после острой травмы, как задокументировано, например, в и, а также быстрое уменьшение хронического воспаления, задокументированное в.

Наша рабочая гипотеза включает такой сценарий: подвижные электроны Земли проникают в организм и действуют как естественные антиоксиданты; 3 они частично проходят через матрикс соединительной ткани, в том числе через воспалительную преграду, если таковая имеется; 23 нейтрализуют АФК и другие окислители при ремонте; и они защищают здоровые ткани от повреждений.Тот факт, что у заземленных субъектов меньше циркулирующих нейтрофилов и лимфоцитов, может быть полезным из-за вредной роли, которую эти клетки, как считается, играют в продлении воспаления. 24 Мы также поднимаем вероятность того, что воспалительная баррикада на самом деле формируется у необоснованных субъектов в результате побочного повреждения здоровых тканей, как было предположено Селье в первом и последующих изданиях его книги The Stress of Life (). 25

Формирование воспалительной баррикады.

Примечания: Copyright © 1984, Селье Х. Воспроизведено с Селье Х. Стресс жизни . Пересмотренное изд. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. 25 ( A ) Нормальная соединительнотканная территория. ( B ) Та же ткань после травмы или воздействия раздражителя. Сосуд расширяется, клетки крови мигрируют к раздражителю, клетки соединительной ткани и волокна образуют толстую непроницаемую преграду, которая предотвращает распространение раздражителя в кровь, но также препятствует проникновению регенеративных клеток, которые могут восстанавливать ткань и замедлять проникновение антиоксидантов в нее. поле ремонта.Результатом может стать длительный очаг не полностью разрешенного воспаления, из которого в конечном итоге могут просачиваться токсины в систему и нарушаться функционирование органа или ткани. Это называется «тихим» или «тлеющим» воспалением. ( C ) Воспалительный мешок, мешочек Селье или гранулема, как первоначально описано Selye, 30 , широко используется в исследованиях воспаления.

Хотя могут быть и другие объяснения, мы предполагаем, что быстрое разрешение воспаления происходит потому, что поверхность Земли является обильным источником возбужденных и подвижных электронов, как описано в другой нашей работе. 1 Мы также предполагаем, что контакт кожи с поверхностью Земли позволяет электронам Земли распространяться по поверхности кожи и внутрь тела. Один из путей внутрь тела может лежать через точки акупунктуры и меридианы. Известно, что меридианы представляют собой пути с низким сопротивлением для прохождения электрических токов. 26 28 Другой путь — через слизистые оболочки дыхательных и пищеварительных трактов, которые проходят через поверхность кожи. Sokal и Sokal 29 обнаружили, что электрический потенциал на теле, на слизистой оболочке языка и в венозной крови быстро падает примерно до -200 мВ.Когда тело отключено от Земли, потенциал быстро восстанавливается. Эти эффекты обнаруживают изменения во внутренней электрической среде тела. 29

Селье 30 исследовали гистологию стенки воспалительного мешка или баррикады (). Он состоит из фибрина и соединительной ткани. Наша гипотеза состоит в том, что электроны могут частично проходить через барьер и затем нейтрализовать активные формы кислорода (свободные радикалы). 30 Путь или коридор полупроводникового коллагена может объяснить, как электроны с Земли быстро ослабляют хроническое воспаление, не устраняемое диетическими антиоксидантами или стандартной медицинской помощью, включая физиотерапию ().Баррикада, вероятно, ограничивает проникновение циркулирующих антиоксидантов в ремонт.

Взятые вместе, эти наблюдения показывают, что заземление человеческого тела значительно изменяет воспалительную реакцию на травму.

Анатомические и биофизические аспекты

Представление о том, что воспалительная баррикада образуется из побочного повреждения здоровых тканей, окружающих место повреждения, подтверждается классическими исследованиями Селье, опубликованными вместе с его описанием гранулемы или мешочка Селье (). 25 , 30 Более того, исследования в области клеточной биологии и биофизики показывают, что человеческое тело оснащено коллагеновой, жидкокристаллической полупроводниковой сетью, известной как живая матрица, 31 или, другими словами, a система наземной регуляции 32 , 33 или матричная система тканевого тенсегрити (). 34 Эта сеть, охватывающая все тело, может доставлять подвижные электроны к любой части тела и, таким образом, регулярно защищать все клетки, ткани и органы от окислительного стресса или в случае травм. 23 , 31 Живая матрица включает внеклеточные и соединительнотканные матрицы, а также цитоскелеты всех клеток. 31 Считается, что интегрины на поверхности клетки обеспечивают полупроводимость электронов внутрь клетки, а связи через ядерную оболочку позволяют ядерной матрице и генетическому материалу быть частью схемы. 23 Наша гипотеза состоит в том, что эта электронная схема, охватывающая все тело, представляет собой первичную систему антиоксидантной защиты.Эта гипотеза является центральным пунктом данного отчета.

Живая матрица, система регуляции почвы или матрица тенсегритичности тканей — это непрерывная волокнистая паутина или сеть, которая проникает в каждую часть тела. Внеклеточные компоненты этой сети состоят в основном из коллагена и основного вещества. Это самая большая система в организме, так как это единственная система, которая затрагивает все остальные системы.

Внеклеточная часть матричной системы состоит в основном из коллагена и основных веществ (и).Цитоскелет состоит из микротрубочек, микрофиламентов и других волокнистых белков. Ядерный матрикс содержит другую белковую ткань, состоящую из гистонов и родственных материалов.

Коллаген и основное вещество.

Примечания: (A) Коллаген, основной белок внеклеточного матрикса соединительной ткани, представляет собой тройную спираль с гидратной оболочкой, окружающей каждую полипептидную цепь. Белок может переносить электроны посредством полупроводников, а протоны (H + ) и гидроксилы (OH ) мигрируют через гидратную оболочку.Эти движения заряда могут быть очень быстрыми и жизненно важны. ( B ) Авторские права © 2005. R Paul Lee Воспроизведено с разрешения Lee RP. Интерфейс. Механизмы духа в остеопатии. Портленд, Орегон: Stillness Press; 2005. 67 Основное вещество — это сильно заряженный полиэлектролитный гель, огромный резервуар электронов. Обратите внимание на фибриллы коллагена, встроенные в единицы основного вещества, известные как матрисомы (термин, введенный Гейне). 33 Деталь матрицы справа ( b ) показывает огромные запасы электронов.Электроны из основного вещества могут мигрировать через сеть коллагена в любую точку тела. Мы предполагаем, что они могут поддерживать антиоксидантную микросреду вокруг области заживления травм, замедляя или препятствуя реактивным формам кислорода, доставляемым окислительным взрывом, вызывать побочное повреждение здоровой ткани, а также предотвращать или уменьшать образование так называемой «воспалительной баррикады». ».

Не принято считать, что коллаген и другие структурные белки являются полупроводниками.Эта концепция была представлена ​​Альбертом Сент-Дьерди на лекции в память о Корани в Будапеште, Венгрия, в 1941 году. Его доклад был опубликован в журналах Science (На пути к новой биохимии?) 35 и Nature (Исследование уровней энергии) в биохимии). 36 Идея о том, что белки могут быть полупроводниками, была немедленно и решительно отвергнута биохимиками. Многие современные ученые продолжают отвергать полупроводимость в белках, потому что живые системы имеют только следовые количества силикона, германия и соединений галлия, которые являются наиболее широко используемыми материалами в электронных полупроводниковых устройствах.Однако существует множество способов изготовления органических полупроводников без использования металлов. Одним из источников путаницы было широко распространенное мнение, что вода — это просто наполнитель. Теперь мы знаем, что вода играет решающую роль в ферментативной активности и полупроводимости. Гидратированные белки на самом деле являются полупроводниками и стали важными компонентами мировой индустрии микроэлектроники. Для некоторых приложений предпочтительнее использовать органические микросхемы, поскольку они могут быть очень маленькими, самосборными, прочными и с низким энергопотреблением. 37 , 38

Один из лидеров в области молекулярной электроники, Н.С. Хуш, поблагодарил Альберта Сент-Дьерди и Роберта С. проводимость и теория молекулярных орбиталей соответственно. 39 В недавних исследованиях, получивших награды Общества исследования материалов в Европе и США, ученые из Израиля создали гибкие биоразлагаемые полупроводниковые системы, используя белки из крови, молока и слизи человека. 40 Кремний, наиболее широко используемый полупроводниковый материал, является дорогостоящим в чистом виде, необходимым для производства полупроводников, негибким и экологически опасным. По прогнозам, органические полупроводники приведут к появлению нового ряда гибких и биоразлагаемых компьютерных экранов, сотовых телефонов, планшетов, биосенсоров и микропроцессорных чипов. Мы прошли долгий путь с тех пор, как полностью отвергли полупроводимость белков. 41 , 42 , 43

Молекулы полиэлектролита основного вещества, связанные с матрицей коллагеновой соединительной ткани, являются резервуарами заряда ().Таким образом, матрица представляет собой обширную окислительно-восстановительную систему всего тела. Гликозаминогликаны имеют высокую плотность отрицательных зарядов из-за сульфатных и карбоксилатных групп на остатках уроновой кислоты. Таким образом, матрица представляет собой систему, охватывающую все тело, способную поглощать и отдавать электроны везде, где они необходимы для поддержания иммунного функционирования. 44 Внутренние части клеток, включая ядерный матрикс и ДНК, являются частями этой биофизической электрической системы хранения и доставки. Продолжительность воздействия заземления на восстановление травм можно оценить по-разному.Во-первых, мы знаем из медицинских инфракрасных изображений, что воспаление начинает спадать в течение 30 минут после соединения с землей через проводящий участок, помещенный на кожу. 2 , 3 Во-вторых, в этот же период увеличивается метаболическая активность. В частности, наблюдается увеличение потребления кислорода, частоты пульса и дыхания, а также снижение оксигенации крови в течение 40 минут заземления. 45 Мы подозреваем, что «заполнение» резервуаров с зарядом происходит постепенно, возможно, из-за огромного количества заряженных остатков в полиэлектролитах и ​​из-за того, что они расположены по всему телу.Когда резервуары с зарядом насыщены, организм находится в состоянии, которое мы называем «подготовленностью к воспалительным процессам». Это означает, что основное вещество, пронизывающее каждую часть тела, готово быстро доставить антиоксидантные электроны к любому месту повреждения через полупроводниковую коллагеновую матрицу (см.).

Резюме центральной гипотезы этого отчета: сравнение иммунного ответа у необоснованного и заземленного человека.

Примечания: ( A ) После травмы незаземленный человек (мистер Туфель) образует воспалительную баррикаду вокруг места травмы.( B ) После травмы заземленный человек (г-н Бэрфут) не образует воспалительную преграду, потому что активные формы кислорода, которые могут повредить близлежащие здоровые ткани (побочное повреждение), немедленно нейтрализуются электронами, полупроводниками из насыщенного электронами основного вещества. через коллагеновую сеть.

Эти соображения также подразумевают антивозрастные эффекты заземления, поскольку доминирующая теория старения подчеркивает кумулятивный ущерб, вызванный АФК, образующимися во время нормального метаболизма или возникающими в ответ на загрязняющие вещества, яды или травмы. 46 Мы предполагаем антивозрастной эффект заземления, основанный на том, что живая матрица достигает каждой части тела и способна доставлять антиоксидантные электроны к участкам, где целостность ткани может быть нарушена реактивными окислителями из любого источника. 47 , 48

Молекулы, образующиеся во время иммунного ответа, также отслеживались в исследовании DOMS. 7 Параметры, которые постоянно различались на 10% или более между заземленными и незаземленными субъектами, нормализованные до исходного уровня, включали креатинкиназу, соотношение фосфокреатин / неорганический фосфат, билирубин, фосфорилхолин и глицеринфосфорилхолин.Билирубин — природный антиоксидант, который помогает контролировать АФК. 49 53 В то время как уровни билирубина снижались как в обоснованных, так и в необоснованных группах, разница между испытуемыми была большой (). 7

Сравнение уровней билирубина до и после теста для каждой группы.

Маркеры воспаления менялись одновременно с изменением показателей боли. Это было выявлено как с помощью визуальной аналоговой шкалы боли, так и путем измерения давления на правой икроножной мышце (и).Авторы исследования DOMS предположили, что билирубин мог использоваться в качестве источника электронов у незаземленных субъектов. 7 Возможно, меньшее снижение уровня циркулирующего билирубина у заземленных людей было связано с наличием в поле восстановления свободных электронов с Земли.

Другие маркеры подтверждают гипотезу о том, что заземленные субъекты более эффективно устраняют повреждение тканей: показатели боли, соотношение неорганического фосфата и фосфокреатина (Pi / PCr) и креатинкиназа (CK).Повреждение мышц широко коррелировали с КК. 54 56 Как видно, значения CK у необоснованных испытуемых постоянно были выше, чем у заземленных испытуемых. 7 Различия между Pi / PCr двух групп контролировали с помощью спектроскопии магнитного резонанса. Эти соотношения указывают на скорость метаболизма и повреждение клеток. 57 60 Уровни неорганических фосфатов указывают на гидролиз PCr и аденозинтрифосфата.Незаземленные субъекты имели более высокие уровни Pi, в то время как заземленные субъекты демонстрировали более высокие уровни PCr. Эти результаты показывают, что митохондрии заземленных субъектов не производят столько метаболической энергии, вероятно, потому, что потребность в ней меньше из-за более быстрого достижения гомеостаза. Различия между группами показаны в.

Уровни креатинкиназы до и после теста для каждой группы.

Отношения неорганического фосфата / фосфокреатина (Pi / PCr) до теста по сравнению с пост-тестом для каждой группы.

Пилотное исследование 7 о влиянии заземления на ускорение выздоровления от боли DOMS обеспечивает хорошую основу для более крупного исследования. Представленные здесь концепции резюмируются в сравнении между «мистером Ботинсом» (необоснованный человек) и «мистером Бэрфут» (обоснованным лицом).

Обсуждение

Текущие объемные исследования коррелируют воспаление с широким спектром хронических заболеваний. Поиск по запросу «воспаление» в базе данных Национальной медицинской библиотеки (PubMed) выявил более 400 000 исследований, из которых только в 2013 году было опубликовано более 34 000 исследований.Наиболее частой причиной смерти и инвалидности в США являются хронические заболевания. Семьдесят пять процентов национальных расходов на здравоохранение, которые в 2008 году превысили 2,3 триллиона долларов США, идут на лечение хронических заболеваний. Болезни сердца, рак, инсульт, хроническая обструктивная болезнь легких, остеопороз и диабет являются наиболее распространенными и дорогостоящими хроническими заболеваниями. 61 Другие включают астму, болезнь Альцгеймера, расстройства кишечника, цирроз печени, муковисцидоз, рассеянный склероз, артрит, волчанку, менингит и псориаз.Десять процентов всех долларов здравоохранения тратятся на лечение диабета. Остеопороз поражает около 28 миллионов стареющих американцев. 61 , 62 Однако существует несколько теорий о механизмах, связывающих хроническое воспаление с хроническим заболеванием. Обобщенные здесь исследования заземления представляют собой логичную и поддающуюся проверке теорию, основанную на различных доказательствах.

Описание иммунного ответа в учебнике описывает, как большие или маленькие повреждения заставляют нейтрофилы и другие белые кровяные тельца доставлять большое количество ROS и RNS для разрушения патогенов и поврежденных клеток и тканей.Классические описания в учебниках также относятся к «воспалительной баррикаде», которая изолирует поврежденные ткани, чтобы препятствовать перемещению патогенов и мусора из поврежденной области в соседние здоровые ткани. Селье описал, как мусор коагулирует, образуя воспалительную баррикаду (). Этот барьер также препятствует перемещению антиоксидантов и регенеративных клеток в заблокированную зону. Восстановление может быть неполным, и это неполное восстановление может создать порочный воспалительный цикл, который может сохраняться в течение длительного периода времени, что приводит к так называемому тихому или тлеющему воспалению, которое, в свою очередь, со временем может способствовать развитию хронического заболевания.

Каким бы примечательным это ни казалось, наши открытия предполагают, что эта классическая картина воспалительной баррикады может быть следствием отсутствия заземления и, как следствие, «недостатка электронов». Раны заживают по-разному, когда тело заземлено (и). Заживление происходит намного быстрее, а основные признаки воспаления уменьшаются или устраняются. Профили различных воспалительных маркеров с течением времени сильно различаются у здоровых людей.

Те, кто исследует воспаление и заживление ран, должны знать, как заземление может изменить временной ход воспалительных реакций.Им также необходимо знать, что экспериментальные животные, которых они используют для своих исследований, могут иметь очень разные иммунные системы и реакции, в зависимости от того, были ли они выращены в заземленных или незаземленных клетках. Стандартная исследовательская практика состоит в том, чтобы исследователи тщательно описывали свои методы и вид животных, которых они используют, чтобы другие могли повторить исследования, если захотят. Предполагается, что, например, все крысы линии Вистар будут генетически и физиологически похожи. Однако сравнение новообразований у крыс Sprague-Dawley (первоначально аутбредных от крысы Wistar) из разных источников выявило весьма значимые различия в частоте возникновения эндокринных опухолей и опухолей молочной железы.Частота опухолей мозгового вещества надпочечников также варьировала у крыс от одних и тех же поставщиков, выращенных в разных лабораториях. Авторы «подчеркнули необходимость крайней осторожности при оценке исследований канцерогенности, проводимых в разных лабораториях и / или на крысах из разных источников». 63

С нашей точки зрения, в этих вариациях нет ничего удивительного. Животные будут сильно различаться по степени насыщения их зарядовых резервуаров электронами. Их клетки сделаны из металла, и если да, то заземлен ли этот металл? Насколько близко их клетки находятся к проводам или трубопроводам, по которым проходит электричество 60/50 Гц? Согласно нашим исследованиям, эти факторы будут иметь измеримое влияние на иммунные реакции.Фактически, они представляют собой «скрытую переменную», которая могла повлиять на результаты бесчисленных исследований, а также могла повлиять на способность других исследователей воспроизвести конкретное исследование.

Доминирующие факторы образа жизни, такие как изоляционная обувь, высотные здания и возвышающиеся кровати, отделяют большинство людей от прямой связи кожи с поверхностью Земли. Связь с землей была повседневной реальностью в прошлых культурах, которые использовали шкуры животных для обуви и сна. Мы предполагаем, что процесс уничтожения патогенов и очистки участков повреждений с помощью ROS и RNS эволюционировал, чтобы воспользоваться преимуществом постоянного доступа организма к практически безграничному источнику мобильных электронов, который Земля обеспечивает, когда мы находимся в контакте с ней.Антиоксиданты являются донорами электронов, и мы твердо верим, что лучший донор электронов находится прямо у нас под ногами: поверхность Земли с ее практически неограниченным хранилищем доступных электронов. Электроны с Земли на самом деле могут быть лучшими антиоксидантами с нулевыми отрицательными вторичными эффектами, потому что наше тело эволюционировало, чтобы использовать их в течение эонов физического контакта с землей. Наша иммунная система прекрасно работает до тех пор, пока доступны электроны для уравновешивания АФК и активных форм азота (РНС), используемых при борьбе с инфекциями и повреждениями тканей.Наш современный образ жизни застал организм и иммунную систему врасплох, внезапно лишив их изначального источника электронов. Это планетарное разделение начало ускоряться в начале 1950-х годов с появлением обуви с изоляционной подошвой вместо традиционной кожи. Вызовы образа жизни для нашей иммунной системы происходили быстрее, чем могла приспособиться эволюция.

Отключение от Земли может быть важным, коварным и упускаемым из виду вкладом в физиологическую дисфункцию и вызывающий тревогу глобальный рост неинфекционных хронических заболеваний, связанных с воспалительными процессами.Недостаток электронов также может привести к ненасыщению цепей переноса электронов в митохондриях, что приведет к хронической усталости и замедлению клеточных миграций и других важных действий клеток иммунной системы. 64 На этом этапе даже незначительная травма может привести к долгосрочным проблемам со здоровьем. Когда подвижные электроны недоступны, воспалительный процесс принимает ненормальное течение. Области с дефицитом электронов уязвимы для дальнейшего повреждения — они становятся положительно заряженными, и им будет сложно предотвратить инфекции.В результате иммунная система постоянно активируется и в конечном итоге истощается. Клетки иммунной системы могут не различать различные химические структуры организма (называемые «я») и молекулы паразитов, бактерий, грибков и раковых клеток (называемые «чужими»). Эта потеря иммунологической памяти может привести к атаке некоторых иммунных клеток на собственные ткани и органы тела. Примером может служить разрушение продуцирующих инсулин бета-клеток островков Лангерганса у больного диабетом.Другой пример — иммунная система, атакующая хрящ в суставах, вызывая ревматоидный артрит. Красная волчанка — крайний пример аутоиммунного состояния, вызванного атакой иммунной системы организма на ткани и органы хозяина. Волчанка, например, может поражать множество различных систем организма, включая кожу, почки, клетки крови, суставы, сердце и легкие. Со временем иммунная система ослабевает, и человек становится более уязвимым для воспалений или инфекций, которые могут не зажить, как это часто бывает с ранами пациентов с диабетом.В частности, какая часть или части тела ослабленная иммунная система атакует первой, зависит от многих факторов, таких как генетика, привычки (сон, еда, напитки, упражнения и т. Д.), А также токсины в организме и в окружающей среде. 65 , 66 Повторное наблюдение показывает, что заземление уменьшает боль у пациентов с волчанкой и другими аутоиммунными заболеваниями. 1

Заключение

Накопленный опыт и исследования по заземлению указывают на появление простой, естественной и доступной стратегии здравоохранения против хронического воспаления, требующей серьезного внимания клиницистов и исследователей.Живая матрица (или основная регуляция, или система тканевого тенсегрити-матрица), сама ткань тела, по-видимому, служит одной из наших основных систем антиоксидантной защиты. Как объясняется в этом отчете, для оптимальной эффективности этой системы требуется периодическая подзарядка за счет проводящего контакта с поверхностью Земли — «батареи» для всей планетарной жизни.

Благодарности

Авторы признательны Мартину Цукеру за очень ценные комментарии к рукописи. Клинтон Обер из EarthFx Inc.оказывает постоянную поддержку и поощрение исследований, которые были проведены для изучения науки о заземлении, с особым вниманием к иммунной системе.

Сноски

Раскрытие информации

G Chevalier и JL Oschman являются независимыми подрядчиками EarthFx Inc., компании, спонсирующей исследования в области заземления, и владеют небольшой долей акций компании. Ричард Браун — независимый подрядчик EarthFx Inc., компании, спонсирующей исследования в области заземления.Авторы не сообщают о других конфликтах интересов.

Ссылки

1. Обер Калифорния, Синатра СТ, Цукер М. Заземление: самое важное открытие в области здравоохранения? 2-й. Лагуна-Бич: Основные публикации о здоровье; 2014. [Google Scholar] 3. Oschman JL. Могут ли электроны действовать как антиоксиданты? Обзор и комментарии. J Altern Complement Med. 2007. 13: 955–967. [PubMed] [Google Scholar] 4. Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P. Обзорная статья: Заземление: последствия для здоровья повторного соединения человеческого тела с электронами на поверхности Земли.J Environ Public Health. 2012; 2012: 291541. [Бесплатная статья PMC] [PubMed] [Google Scholar] 5. Гали М., Теплиц Д. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. J Altern Complement Med. 2004. 10 (5): 767–776. [PubMed] [Google Scholar] 6. Коэн С., Яницки-Девертс Д., Дойл В. Дж. И др. Хронический стресс, резистентность к рецепторам глюкокортикоидов, воспаление и риск заболеваний. Proc Natl Acad Sci U S. A. 2012; 109 (16): 5995–5999.[Бесплатная статья PMC] [PubMed] [Google Scholar] 7. Браун Д., Шевалье Г., Хилл М. Пилотное исследование влияния заземления на болезненность мышц с отсроченным началом. J Altern Complement Med. 2010. 16 (3): 265–273. [Бесплатная статья PMC] [PubMed] [Google Scholar] 8. Баттерфилд ТА, Лучшая ТМ, Меррик Массачусетс. Двойная роль нейтрофилов и макрофагов в воспалении: критический баланс между повреждением и восстановлением тканей. J Athl Train. 2006. 41 (4): 457–465. [Бесплатная статья PMC] [PubMed] [Google Scholar] 9. Такмакидис С.П., Коккинидис Е.А., Симилиос И., Дуда Х.Влияние ибупрофена на отсроченную болезненность мышц и мышечную работоспособность после эксцентрических упражнений. J Strength Cond Res. 2003. 17 (1): 53–59. [PubMed] [Google Scholar] 10. Закройте Г.Л., Эштон Т., Кейбл Т., Доран Д., Макларен Д.П. Эксцентрические упражнения, изокинетический мышечный момент и отсроченное начало болезненности мышц: роль активных форм кислорода. Eur J Appl Physiol. 2004. 91 (5–6): 615–621. [PubMed] [Google Scholar] 11. Макинтайр Д.Л., Рид В.Д., Листер Д.М., Сас И.Дж., Маккензи, округ Колумбия. Наличие лейкоцитов, снижение силы и отсроченная болезненность в мышцах после эксцентрических упражнений.J Appl Physiol (1985) 1996; 80 (3): 1006–1013. [PubMed] [Google Scholar] 12. Франклин М.Э., Карриер Д., Франклин Р.С. Влияние одной тренировки мышечной болезненности, вызывающей подъем тяжестей, на количество лейкоцитов, креатинкиназу сыворотки и объем плазмы. J Orthop Sports Phys Ther. 1991. 13 (6): 316–321. [PubMed] [Google Scholar] 13. Пик Дж, Носака К., Судзуки К. Характеристика воспалительных реакций на эксцентрические упражнения у людей. Exerc Immunol Rev.2005; 11: 64–85. [PubMed] [Google Scholar] 14. Макинтайр Д.Л., Рид В.Д., Маккензи, округ Колумбия.Отсроченная болезненность мышц: воспалительная реакция на мышечное повреждение и ее клинические последствия. Sports Med. 1995. 20 (1): 24–40. [PubMed] [Google Scholar] 15. Смит Л.Л., Бонд Дж. А., Холберт Д. и др. Дифференциальное количество лейкоцитов после двух беговых тренировок. Int J Sports Med. 1998. 19 (6): 432–437. [PubMed] [Google Scholar] 16. Смит Л.Л. Цитокиновая гипотеза перетренированности: физиологическая адаптация к чрезмерному стрессу? Медико-спортивные упражнения 2000322317–331. [PubMed] [Google Scholar] 17. Ascensão A, Rebello A, Oliveira E, Marques F, Pereira L., Magalhães J.Биохимическое воздействие футбольного матча: анализ окислительного стресса и повреждения мышц на протяжении восстановления. Clin Biochem. 2008. 41 (10–11): 841–851. [PubMed] [Google Scholar] 18. Смит Л.Л., Маккаммон М., Смит С., Чамнесс М., Израиль Р.Г., О’Брайен К.Ф. Реакция белых кровяных телец на ходьбу в гору и бег трусцой при одинаковых метаболических нагрузках. Eur J Appl Physiol. 1989. 58 (8): 833–837. [PubMed] [Google Scholar] 19. Бродбент С., Руссо Дж. Дж., Торп Р.М., Чоат С.Л., Джексон Ф.С., Роулендс Д.С. Вибрационная терапия снижает уровень IL6 в плазме и болезненность мышц после бега с горы.Br J Sports Med. 2010. 44 (12): 888–894. [PubMed] [Google Scholar] 20. Глисон М., Алми Дж., Брукс С., Кейв Р., Льюис А., Гриффитс Х. Гематологические и острофазовые реакции, связанные с отсроченной болезненностью мышц. Eur J Appl Physiol Occup Physiol. 1995. 71 (2–3): 137–142. [PubMed] [Google Scholar] 21. Tidball JG. Воспалительные процессы при повреждении и восстановлении мышц. Am J Physiol Regul Integr Comp Physiol. 2005; 288 (2): R345 – R353. [PubMed] [Google Scholar] 22. Чжан Дж., Клемент Д., Тонтон Дж. Эффективность Фараблока, электромагнитного щита, в ослаблении отсроченной мышечной болезненности.Clin J Sport Med. 2000. 10 (1): 15–21. [PubMed] [Google Scholar] 23. Oschman JL. Перенос заряда в живой матрице. J Bodyw Mov Ther. 2009. 13 (3): 215–228. [PubMed] [Google Scholar] 24. Бест ТМ, Хантер К.Д. Травма и восстановление мышц. Phys Med Rehabil Clin North Am. 2000. 11 (2): 251–266. [PubMed] [Google Scholar] 25. Селье Х. Жизненный стресс. Пересмотрено. Нью-Йорк: McGraw-Hill Companies, Inc .; 1984. [Google Scholar] 26. Мотояма Х. Измерения энергии Ki: диагностика и лечение. Токио: Human Science Press; 1997 г.[Google Scholar] 27. Колберт А.П., Юн Дж., Ларсен А., Эдингер Т., Грегори В.Л., Тонг Т. Измерения импеданса кожи для исследования акупунктуры: разработка системы непрерывной записи. Evid Based Complement Altern Med. 2008. 5 (4): 443–450. [Бесплатная статья PMC] [PubMed] [Google Scholar] 28. Райхманис М, Марино А.А., Беккер РО. Электрические корреляты точек акупунктуры. IEEETrans Biomed Eng. 1975. 22 (6): 533–535. [PubMed] [Google Scholar] 29. Сокал К., Сокал П. Заземление организма человека влияет на биоэлектрические процессы.J Altern Complement Med. 2012. 18 (3): 229–234. [PubMed] [Google Scholar] 30. Селье Х. О механизме воздействия гидрокортизона на устойчивость тканей к травмам; экспериментальное исследование с техникой мешка гранулемы. ДЖАМА. 1953. 152 (13): 1207–1213. [PubMed] [Google Scholar] 31. Ошман Дж.Л., Ошман Н.Х. Материя, энергия и живая матрица. Рольф Лайнс. 1993. 21 (3): 55–64. [Google Scholar] 32. Пишингер А. Внеклеточный матрикс и основная регуляция: основа целостной биологической медицины.Беркли: Североатлантические книги; 2007. [Google Scholar] 33. Heine H. Lehrbuch der biologischen Medizin. Grundregulation und Extrazellulare Matrix. [Справочник по биологической медицине. Внеклеточный матрикс и наземная регуляция] Штутгарт: Hippokrates Verlag; 2007. Немецкий. [Google Scholar] 34. Пиента К.Дж., Коффи Д.С. Передача клеточной гармонической информации через систему тканевого тенсегрити-матрикса. Мед-гипотезы. 1991. 34 (1): 88–95. [PubMed] [Google Scholar] 35. Сент-Дьёрдьи А. К новой биохимии? Наука.1941; 93: 609–611. [PubMed] [Google Scholar] 36. Сент-Дьёрдьи А. Исследование уровней энергии в биохимии. Природа. 1941; 148 (3745): 157–159. [Google Scholar] 38. Сарпешкар Р. Биоэлектроника со сверхнизким энергопотреблением. Основы, биомедицинские приложения и биологические системы. Кембридж: Издательство Кембриджского университета; 2010. [Google Scholar] 39. Тише NS. Обзор молекулярной электроники за первые полвека. Ann N Y Acad Sci. 2003; 1006: 1–20. [PubMed] [Google Scholar] 40. Ментович Э., Белгородский Б, Гозин М, Рихтер С, Коэн Х.Легированные биомолекулы в миниатюрных электрических переходах. J Am Chem Soc. 2012. 134 (20): 8468–8473. [PubMed] [Google Scholar] 41. Куэвас Дж. К., Шеер Э. Молекулярная электроника: Введение в теорию и эксперимент. Vol. 1. World Scientific Publishing Co; Сингапур: 2010. (Сингапур; World Scientific Series in Nanoscience and Nanotechnology). [Google Scholar] 42. Реймерс-младший, United Engineering Foundation (США) и др. Молекулярная электроника III. Vol. 1006. Нью-Йорк, штат Нью-Йорк: Анналы Нью-Йоркской академии наук; 2003 г.[Google Scholar] 43. Иоахим C, Ратнер MA. Молекулярная электроника: некоторые взгляды на транспортные соединения и не только. Proc Natl Acad Sci USA. 2005. 102 (25): 8801–8808. [Бесплатная статья PMC] [PubMed] [Google Scholar] 44. Heine H. Система гомотоксикологии и наземной регуляции (GRS) Баден-Баден: Aurelia-Verlag; 2000. [Google Scholar] 45. Chevalier G. Изменения частоты пульса, частоты дыхания, оксигенации крови, индекса перфузии, проводимости кожи и их изменчивость, вызванные во время и после заземления людей в течение 40 минут.J Altern Complement Med. 2010. 16 (1): 81–87. [PubMed] [Google Scholar] 46. Мива С., Бекман КБ, Мюллер Флорида, редакторы. Окислительный стресс при старении: от модельных систем к болезням человека. Тотова: Humana Press; 2008. [Google Scholar] 47. Oschman JL. Митохондрии и клеточное старение. В: Клац Р., Голдман Р., редакторы. Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2008. 2009. С. 275–287. [Google Scholar] 48. Кесслер WD, Oschman JL. Противодействие старению с помощью основ физики. В: Клац Р., Голдман Р., редакторы.Антивозрастная терапия. XI. Чикаго: Американская академия антивозрастной медицины; 2009. С. 185–194. [Google Scholar] 49. Штокер Р. Антиоксидантная активность желчных пигментов. Антиоксидный окислительно-восстановительный сигнал. 2004. 6 (5): 841–849. [PubMed] [Google Scholar] 50. Paschalis V, Nikolaidis MG, Fatouros IG, et al. Равномерные и продолжительные изменения окислительного стресса в крови после мышечных нагрузок. In Vivo. 2007. 21 (5): 877–883. [PubMed] [Google Scholar] 51. Николаидис М.Г., Пасхалис В., Гиакас Г. и др. Снижение окислительного стресса в крови после повторяющихся упражнений, повреждающих мышцы.Медико-спортивные упражнения. 2007. 39 (7): 1080–1089. [PubMed] [Google Scholar] 52. Флорчик У. М., Йожкович А., Дулак Дж. Биливердин-редуктаза: новые свойства старого фермента и его потенциальное терапевтическое значение. Pharmacol Rep. 2008; 60 (1): 38–48. [Бесплатная статья PMC] [PubMed] [Google Scholar] 53. Sedlak TW, Salehb M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Билирубин и глутатион выполняют взаимодополняющие антиоксидантные и цитопротекторные функции. Proc Natl Acad Sci U S. A. 2009; 106 (13): 5171–5176. [Бесплатная статья PMC] [PubMed] [Google Scholar] 54.Close GL, Ashton T., McArdle A, MacLaren DP. Растущая роль свободных радикалов в отсроченном возникновении мышечной болезненности и мышечных повреждений, вызванных сокращениями. Comp Biochem Physiol A Mol Integr Physiol. 2005. 142 (3): 257–266. [PubMed] [Google Scholar] 55. Хиросе Л., Носака К., Ньютон М. и др. Изменения медиаторов воспаления после эксцентрической нагрузки сгибателей локтя. Exerc Immunol Rev.2004; 10: 75–90. [PubMed] [Google Scholar] 56. Hartmann U, Mester J. Маркеры тренировок и перетренированности в отдельных спортивных соревнованиях.Медико-спортивные упражнения. 2000. 32 (1): 209–215. [PubMed] [Google Scholar] 57. Маккалли К.К., Аргов З., Боден Б.П., Браун Р.Л., Банк В.Дж., Шанс Б. Обнаружение мышечных травм у людей с помощью магнитно-резонансной спектроскопии 31-Р. Мышечный нерв. 1988. 11 (3): 212–216. [PubMed] [Google Scholar] 58. Маккалли К.К., Познер Дж. Измерение адаптации и травм, вызванных физической нагрузкой, с помощью магнитно-резонансной спектроскопии. Int J Sports Med. 1992; 13 (S1): S147 – S149. [PubMed] [Google Scholar] 59. Маккалли К.К., Шеллок Ф.Г., Банк В.Дж., Познер Д.Д. Использование ядерного магнитного резонанса для оценки повреждения мышц.Медико-спортивные упражнения. 1992. 24 (5): 537–542. [PubMed] [Google Scholar] 60. Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U. Дальнейшее снижение гликогена во время раннего восстановления после эксцентрических упражнений, несмотря на высокое потребление углеводов. Eur J Nutr. 2004. 43 (3): 148–159. [PubMed] [Google Scholar] 63. Мак Кензи WF, Гарнер FM. Сравнение новообразований в шести источниках крыс. J Natl Cancer Inst. 1973; 50 (5): 1243–1257. [PubMed] [Google Scholar] 64. Oschman JL. В кн .: Митохондрии и клеточное старение. Антивозрастная терапия, том XI.Клац Р., Гольдман Р., редакторы. Чикаго, штат Иллинойс: Американская академия антивозрастной медицины; 2008. С. 285–287. [Google Scholar] 65. Биаджи Э., Кандела М., Фэйрвезер-Тейт С., Франчески С., Бриджиди П. Старение человеческого метаорганизма: микробный аналог. Возраст (Дордр) 2012; 34 (1): 247–267. [Бесплатная статья PMC] [PubMed] [Google Scholar] 66. Франчески С., Бонафе М., Валенсин С. и др. Воспаление-старение. Эволюционная перспектива иммунного старения. Ann N Y Acad Sci. 2000; 908: 244–254. [PubMed] [Google Scholar] 67. Ли РП.Интерфейс. Механизмы духа в остеопатии. Портленд, Орегон: Stillness Press; 2005. [Google Scholar]

Earthing — Gounded.com

Человеческие существа эволюционировали в связи с энергией Земли. Мы ходили босиком и спали, соприкасаясь с Землей, никогда не осознавая, что ее поверхность содержит безграничную, естественную, исцеляющую энергию. Хождение босиком больше не является нашим основным способом передвижения. Мы живем в помещении большую часть времени, и когда мы гуляем или бегаем на улице, мы носим обувь на резиновой подошве, которая мешает нашим ногам поглощать тонкую энергию Земли.Резина не проводит электричество, но наши тела — нет!

Вот и мы. Цивилизованный в современном мире, но отключенный от первобытного мощного источника энергии и исцеления. Видите ли, Земля в основном представляет собой батарею в шесть секстиллионов (это шесть с двадцатью одним нулем) метрической тонной батареей, которая постоянно пополняется солнечным излучением, молнией и теплом из расплавленного глубоко под ней ядра. Естественные ритмические пульсации энергии, протекающей через поверхность Земли и исходящей от нее, поддерживают в ритме и равновесии биологические механизмы и глобальную жизнь — в том числе и вас! К сожалению, мы живем как срезанные цветы, оторвавшись от питательной энергии Земли.Заземление, также известное как заземление, просто воссоединяется с целительной энергией Земли.

Как заземлить? Это очень просто; Вы, несомненно, делали это раньше! Ходите босиком по траве, песку, грязи или бетону. Как и ваше тело, это проводящие поверхности, и энергия Земли течет через них в ваше тело. Дерево, асфальт и винил не проводят ток. Вы также можете подключиться к энергии Земли, используя простые заменители босиком. Заменители босиком состоят из циновок, лент, заплат и листов, которые при подключении к порту заземления заземленной домашней или офисной розетки с помощью простого шнура соединяют вас с энергией Земли через заземляющий провод розетки.

Зачем заземлять? В последние годы воспаление вышло на передний план медицинского внимания и было признано ведущим триггером хронической боли и большинства серьезных нарушений здоровья, включая сердечно-сосудистые заболевания, диабет, артрит, болезнь Альцгеймера и рак. «Все пути к хроническим заболеваниям ведут через воспаление», — все чаще говорят исследователи. Тела горят. Заземление, кажется, тушит пламя за счет передачи отрицательно заряженных электронов с поверхности Земли в тело, где они нейтрализуют положительно заряженные разрушительные свободные радикалы, участвующие в хроническом воспалении.Энергия Земли делает землю под нашими ногами чрезвычайно эффективным и богатым антиоксидантом! И это бесплатно. Ни таблеток, ни рецептов. Все, что вам нужно сделать, это повторно подключиться.

Феномен заземления был открыт в 1998 году, когда Клинт Обер, пионер американской индустрии кабельного телевидения на пенсии, сидел на скамейке в парке, наблюдая за проходящими мимо людьми. Он понял, что каждый из нас носит обувь на резиновой подошве и что эта обувь мешает нам соединиться с Землей. По работе в сфере телекоммуникаций он знал, что кабельные системы необходимо заземлять, чтобы защитить их от других электромагнитных сигналов в окружающей среде, которые могут вызвать помехи при передаче по кабелю.Он начал задаваться вопросом, какие преимущества могут получить люди от связи с Землей, и решил найти ответ. После настройки простых систем заземления, которые можно было использовать в помещении (www.earthing.com), г-н Обер обнаружил, сначала на себе, а затем на других, что то же самое стабилизирующее влияние заземления, используемое в телекоммуникациях на проводах, также может уменьшить боль и улучшить сон для людей, когда они связаны с Землей. Впоследствии он отправился в научную одиссею, работая с исследователями, включая биофизиков и электрофизиологов, и разработал удобные системы заземления, которые люди могли использовать в помещениях.

2010 год ознаменовался революционным выпуском книги «Заземление: самое важное открытие в области здравоохранения»? Заземление было написано Клинтом Обером, известным кардиологом, писателем и экспертом по электромедицине, доктором Стивеном Синатрой, и ветераном здравоохранения Мартином Цукером. Книга «Заземление» рассказывает историю мощного, естественного явления воссоединения с Землей и знакомит с научными выводами, собранными в ходе исследований, а также с множеством отзывов, полученных от людей, которые заземлились.Книга была опубликована на нескольких языках по всему миру, а в 2011 году книга «Заземление» получила премию Nautilus Book Award 2011. Это было большой честью, поскольку книжная премия Наутилус присуждается книгам, которые способствуют духовному росту, осознанному образу жизни и позитивным социальным изменениям.

Несколько пилотных исследований заземления имеют очень интересные последствия. Один, касающийся электродинамики (дзета-потенциал) клеток крови, указывает на то, что заземление значительно улучшает вязкость (толщину крови), воспаление и кровоток.Есть четкие указания на то, что люди с диабетом, у которых наблюдается воспаление крови и высокий риск сердечно-сосудистых заболеваний, могут извлечь большую пользу от заземления как в профилактических, так и в терапевтических целях. Свидетельства как отдельных людей, так и врачей говорят об улучшении кровообращения, артериального давления, аритмии и невропатии. Исследование было опубликовано в Журнале альтернативной и комплементарной медицины, и его можно прочитать в Интернете по адресу:

http://online.liebertpub.com/doi/pdf/10.1089 / acm.2011.0820

Другое исследование показало, как заземление способствует снятию стресса и уравновешиванию нервной системы и, как следствие, функции сердца. Это исследование, опубликованное в журнале Integrative Medicine: A Clinician’s Journal, можно прочитать в Интернете по адресу:

http://imjournal.com/pdfarticles/IMCJ10_3_p16_24chevalier.pdf

Обзор всех проведенных к настоящему времени исследований заземления можно найти по адресу: он-лайн веб-сайт Journal of Environmental Health and Policy здесь:

http: // www.hindawi.com/journals/jeph/2012/291541/

Сегодня мы живем в современном мире и каждый день узнаем больше о мире природы вокруг нас. Теперь мы понимаем, что нам больше не нужно жить как срезанные цветы. Независимо от того, решите ли вы восстановить связь, прогуливаясь или бегая босиком, или используя заменители босиком, восстановить связь с тонкой энергией Земли легко, безопасно и просто. Чтобы узнать всю историю заземления, пожалуйста, послушайте бесплатную аудиоверсию заземления — Щелкните здесь, чтобы просмотреть книгу по заземлению.И не забудьте посетить Институт заземления, чтобы узнать больше о заземлении из исследований и статей здесь.

Общие сведения об электрическом заземлении и принципах его работы

Заземление — это принцип электричества, который иногда ставит в тупик домовладельцев. Чтобы понять его важность для домашней системы электропроводки, важно знать кое-что о природе потока электроэнергии.

Что такое электрическое заземление?

Заземление предлагает наиболее эффективный и безопасный путь избыточного электричества от устройства к земле через электрическую панель.Электрическое заземление — это резервный путь, который обычно используется только в случае неисправности в системе электропроводки.

Некоторые основы электричества

Электрический ток в системе электропроводки вашего дома состоит из потока электронов в металлических проводах цепи. Ток имеет две формы: отрицательный и положительный заряд, и это заряженное электрическое поле создается огромными генераторами, эксплуатируемыми коммунальной компанией, иногда за много сотен миль от них. Именно этот поляризованный заряд фактически составляет поток электрического тока, и он достигает вашего дома через обширную сеть высоковольтных служебных проводов, подстанций и трансформаторов, покрывающих ландшафт.

Отрицательная половина заряда — это «горячий» ток. В системе электропроводки вашего дома горячий ток обычно передается по черным проводам, а белые нейтральные провода несут положительный заряд. Оба набора проводов входят в ваш дом через основные служебные провода коммунального предприятия, проходят через вашу электрическую панель обслуживания и проходят бок о бок через каждую цепь в вашем доме.

Физика электрического потока сложнее, чем можно передать большинством простых объяснений, но по сути, электричество стремится вернуть свои электроны на «землю», то есть разрядить свою отрицательную энергию и вернуться к равновесию.Обычно ток возвращается на землю через нейтральные провода в электрической системе. Но если произойдет какой-то сбой в пути, горячий ток может вместо этого протекать через другие материалы, такие как металлические или деревянные конструкции, металлические трубы или легковоспламеняющиеся материалы в вашем доме. Это то, что может произойти в ситуации короткого замыкания, из-за которой возникает большинство электрических пожаров и ударов. Короткое замыкание — это когда электричество выходит за пределы проводов, по которым оно должно протекать, другими словами, когда оно проходит по более короткому пути к земле.

Домашняя система заземления

Чтобы предотвратить эту опасность, электрическая система вашего дома включает в себя запасной план — систему заземляющих проводов, проложенных параллельно горячему и нейтральному проводу. Он обеспечивает альтернативный путь прохождения электрического тока в случае выхода из строя системы горячих и нейтральных проводов, по которым обычно протекает ток. Если, например, проводное соединение ослабнет или грызун прогрызет провод, система заземления направит паразитный ток обратно на землю по этому альтернативному пути, прежде чем он может вызвать пожар или поражение электрическим током.

Заземляющий путь обычно образован системой неизолированных медных проводов, которые подключаются к каждому устройству и каждой металлической электрической коробке в вашем доме. В стандартном кабеле NM с оболочкой этот неизолированный медный провод включен вместе с изолированными проводящими проводами внутри кабеля. Оголенные медные заземляющие провода заканчиваются заземляющей шиной на вашей главной сервисной панели, и эта заземляющая шина, в свою очередь, подключается к заземляющему стержню, вбитому глубоко в землю за пределами вашего дома. Эта система заземления обеспечивает путь с наименьшим сопротивлением, по которому электричество возвращается обратно к земле, если разрыв в системе электропроводки позволяет электричеству «просачиваться» из предпочтительной системы черных и белых проводов цепи.

В большинстве домашних систем электропроводки свидетельство системы заземления можно увидеть на каждой розетке, где третья круглая прорезь на лицевой стороне розетки представляет собой заземляющее соединение. Когда заземленный прибор подключается к такой розетке, его круглый заземляющий штырь теперь напрямую подключается к системе неизолированных медных заземляющих проводов внутри электрических цепей дома.

Не во всех домах есть эта тщательно продуманная и полная система заземления, состоящая из сети неизолированных медных проводов.Хотя такая система заземления является стандартной в домах с автоматическими выключателями, которые соединены кабелем NM с оболочкой, старые системы проводки, установленные до 1965 года, могут быть заземлены через металлический кабелепровод или металлический кабель, а не через оголенные медные заземляющие провода. И даже более старые системы, установленные до 1940 года, могут вообще не иметь заземления. Так обстоит дело с проводкой с ручкой и трубкой, где нет никаких путей заземления. Многие старые системы уже были обновлены, и это хорошая идея, если ваша проводка относится к более старому поколению.Одним из признаков того, что ваша проводка устарела, является то, что в розетках есть два разъема, а не три. Это указывает на то, что розетки могут быть не заземлены.

Встроенная защита

Ваша домашняя электропроводка также включает в себя другие защитные устройства, которые помогут предотвратить катастрофу. Автоматические выключатели или предохранители защищают и контролируют каждую отдельную цепь. Автоматические выключатели или предохранители выполняют две функции: они защищают провода от перегрева в случае их перегрузки из-за протекания через них слишком большого электрического тока; они также обнаруживают короткое замыкание и срабатывают или «взрывают», чтобы мгновенно остановить прохождение тока при возникновении проблем.В случае короткого замыкания или замыкания на землю внезапное снижение сопротивления вызывает неконтролируемое протекание тока, и автоматический выключатель реагирует на это отключением.

Наконец, довольно распространенная практика заключается в том, что металлические водопроводные трубы в вашем доме также подключаются к заземляющей дорожке. Это обеспечивает дополнительную защиту в случае контакта электричества с этими металлическими трубами. Часто это заземление обеспечивается заземляющим проводом, прикрепленным к металлической водопроводной трубе рядом с водонагревателем или там, где водопровод общего пользования входит в ваш дом.

Заземление прибора

Мало того, что ваша домашняя электропроводка имеет систему заземления для безопасности, но и многие съемные приборы и устройства тоже. Электроинструменты, пылесосы и многие другие устройства намного безопаснее, если у них есть третий контакт на вилке шнура, форма которого соответствует круглому отверстию заземления на розетке. Наличие этого третьего контакта указывает на то, что в приборе есть система заземления, и важно, чтобы они были подключены к заземленным розеткам.Известно, что некоторые люди отрезали заземляющий штырь на вилке прибора, чтобы он подходил к розетке или удлинителю, не имеющим гнезда для заземления. Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки устройства.

Переходники

Большинство людей знакомы с адаптерами вилки, чем позволяют вставлять вилки с тремя контактами в розетки с двумя гнездами. Важно отметить, что они обеспечивают защиту от заземления. ТОЛЬКО , если гибкий провод или металлическая петля на адаптере правильно прикреплены к крепежному винту на выходной крышке, И , если этот винт крышки присоединен к металлической коробке. И , если этот металлический ящик правильно заземлен.Это ни в коем случае нельзя точно сказать, поэтому адаптеры с тремя на два слота следует использовать с большой осторожностью, если вообще использовать. Лучшее решение — вставлять вилки с тремя контактами только в заземленные розетки с тремя гнездами.

Если заземленная розетка невозможна, как в старой проводке, некоторая защита обеспечивается путем установки розетки GFCI (прерыватель цепи замыкания на землю) в этом месте. GFCI обнаружит замыкания на землю и отключит питание до того, как утечка тока может вызвать проблемы.Однако важно отметить, что использование GFCI на самом деле не создает пути заземления; это просто делает незаземленную розетку более безопасной.

Конечно, не все приборы и съемные устройства имеют трехконтактную вилку с заземлением, и они по-прежнему безопасны в использовании, поскольку обычно имеют конструкцию с двойной изоляцией, которая сводит к минимуму риск коротких замыканий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *