Насос лепестковый – Принцип работы насоса. Типы насосов. Работа насоса. Устройство насоса

Содержание

Принцип работы насоса. Типы насосов. Работа насоса. Устройство насоса

В этой статье мы постарались собрать все возможные принципы работы насосов. Часто, в большом разнообразии марок и типов насосов достаточно трудно разобраться не зная как работает тот или иной агрегат. Мы постарались сделать это наглядным, так как лучше один раз увидеть, чем сто раз услышать.
В большинстве описаний работы насосов в интернете есть только разрезы проточной части (в лучшем случае схемы работы по фазам). Это не всегда помогает разобраться в том как именно функционирует насос. Тем более, что не все обладают инженерным образованием.
Надеемся, что этот раздел нашего сайта не только поможет вам в правильном выборе оборудования, но и расширит ваш кругозор.


Водоподъемное колесо


С давних времен стояла задача подъема и транспортировки воды. Самыми первыми устройствами такого типа были водоподъемные колеса. Считается, что их изобрели Египтяне.
Водоподъемная машина представляла собой колесо, по окружности которого были прикреплены кувшины. Нижник край колеса был опущен в воду. При вращении колеса вокруг оси, кувшины зачерпывали воду из водоема, а затем в верхней точке колеса , вода выливалась из кувшинов в специальный приемный лоток. для вращения устройства применялать мускульная сила человека или животных.



Винт архимеда


Архимед (287–212 гг. до н. э.), великий ученый древности, изобрел винтовое водоподъемное устройство, позже названное в его честь. Это устройство поднимало воду с помощью вращающегося внутри трубы винта, но некоторое количество воды всегда стекало обратно, т. к. в те времена эффективные уплотнения были неизвестны. В результате, была выведена зависимость между наклоном винта и подачей. При работе можно было выбрать между большим объемом поднимаемой воды или большей высотой подъема. Чем больше наклон винта, тем больше высота подачи при уменьшении производительности.



Поршневой насос


Первый поршневой насос для тушения пожаров, изобратенный древнегреческим механиком Ктесибием, был описан еще в 1 веке до н. э. Эти насосы, по праву, можно считать самыми первыми насосами. До начала 18 века насосы этого типа использовались довольно редко, т.к. изготовленные из дерева они часто ломались. Развитие эти насосы получили после того, как их начали изготавливать из металла.

С началом промышленной революции и появлением паровых машин, поршневые насосы стали использовать для откачки воды из шахт и рудников.
В настоящее время, поршневые насосы используются в быту для подъема воды из скважин и колодцев, в промышленности - в дозировочных насосах и насосах высокого давления.


Существуют и поршневые насосы, объединенные в группы: двухплунжерные, трехплунжерные, пятиплунжерные и т.п.
Принципиально отличаются количеством насосов и их взаимным расположением относительно привода.
На картинке вы можете увидеть трехплунжерный насос.



Крыльчатый насос



Крыльчатые насосы являются разновидностью поршневых насосов. Насосы этого типа были изобретены в середине 19 века.
Насосы являются двухходовыми, то есть подают воду без холостого хода.
Применяются, в основном, в качестве ручных насосов для подачи топлива, масел и воды из скважин и колодцев.

Конструкция:
Внутри чугунного корпуса размещены рабочие органы насоса: крыльчатка, совершающая возвратно-поступательные движения и две пары клапанов (впускные и выпускные). При движении крыльчатки происходит перемещение перекачиваемой жидкости из всасывающей полости в нагнетательную. Система клапанов препятствует перетоку жидкости в обратном направлении



Сильфонный насос



Насосы этого типа имеют в своей конструкции сильфон ("гармошку"), сжимая который производят перекачку жидкости. Конструкция насоса очень простая и состоит всего из нескольких деталей.
Обычно, такие насосы изготавливают из пластика (полиэтилена или полипропилена).
Основное применение - выкачивание химически активных жидкостей из бочек, канистр, бутылей и т.п.

Низкая цена насоса позволяет использовать его в качестве одноразового насоса для перекачивания едких и опасных жидкостей с последующей утилизацией этого насоса.



Пластинчато-роторный насос



Пластинчато-роторные (или шиберные) насосы представляют собой самовсасывающие насосы объемного типа. Предназначены для перекачивания жидкостей. обладающих смазывающей способностью (масла. дизельное топливо и т.п.). Насосы могут всасывать жидкость "на сухую", т.е. не требуют предварительного заполнени корпуса рабочей жидкостью.

Принцип работы: Рабочий орган насоса выполнен в виде эксцентрично расположенного ротора, имеющего продольные радиальные пазы, в которых скользят плоские пластины (шиберы), прижимаемые к статору центробежной силой.

Так как ротор расположен эксцентрично, то при его вращении пластины, находясь непрерывно в соприкосновении со стенкой корпуса, то входят в ротор, то выдвигаются из него.
Во время работы насоса на всасывающей стороне образуется разрежение и перекачиваемая масса заполняет пространство между пластинами и далее вытесняется в нагнетательный патрубок.



Шестеренный насос с наружным зацеплением



Шестеренные насосы с наружным зацеплением шестерен предназначены для перекачивания вязких жидкостей, обладающих смазывающей способность.
Насосы обладают самовсасыванием (обычно, не более 4-5 метров).

Принцип действия:
Ведущая шестерня находится в постоянном зацеплении с ведомой и приводит её во вращательное движение. При вращении шестерён насоса в противоположные стороны в полости всасывания зубья, выходя из зацепления, образуют разрежение (вакуум). За счёт этого в полость всасывания поступает жидкость, которая, заполняя впадины между зубьями обеих шестерён, перемещается зубьями вдоль цилиндрических стенок в корпусе и переносится из полости всасывания в полость нагнетания, где зубья шестерён, входя в зацепление, выталкивают жидкость из впадин в нагнетательный трубопровод. При этом между зубьями образуется плотный контакт, вследствие чего обратный перенос жидкости из полости нагнетания в полость всасывания невозможен.



Шестеренный насос с внутренним зацеплением



Насосы аналогичны по принципу работы обычному шестеренному насосу, но имеют более компактные размеры. Из минусов можно назвать сложность изготовления.

Принцип действия:
Ведущая шестерня приводится в действие валом электродвигателя. Посредством захвата зубьями ведущей шестерни, внешнее зубчатое колесо также вращается.
При вращении проемы между зубьями освобождаются, объем увеличивается и создается разряжение на входе, обеспечивая всасывание жидкости.
Среда перемещается в межзубьевых пространствах на сторону нагнетания. Серп, в этом случае, служит в качестве уплотнителя между отделениями засасывания и нагнетания.
При внедрении зуба в межзубное пространство объем уменьшается и среде вытесняется к выходу из насоса.



Кулачковый насос с серпообразными роторами


Кулачковые (коловратные или роторные) насосы предназначены для бережной перекачки вызких продуктов, содержащих частицы.
Различная форма роторов, устанавливаемая в этих насосах, позволяет перекачивать жидкости с большими включениями (например, шоколад с цельными орехами и т.п.)
Частота вращения роторов, обычно, не превышает 200...400 оборотов, что позволяет производить перекачивание продуктов не разрушая их структуру.
Применяются в пищевой и химической промышленности.

На картинке можно посмотреть роторный насос с трехлепестковыми роторами.
Насосы такой конструкции применяются в пищевом производстве для бережной перекачки сливок, сметаны, майонеза и тому подобны жидкостей, которые при перекачивании насосами других типов могут повреждать свою структуру.
Например, при перекачке центробежным насосом (у которого частота вращения колеса 2900 об/мин) сливок, они взбиваются в масло.



Импеллерный насос


Импеллерный насос (ламельный, насос с мягким ротором) является разновидностью пластинчато-роторного насоса.
Рабочим органом насоса является мягкий импеллер, посаженый с эксцентриситетом относительно центра корпуса насоса. За счет этого при вращении рабочего колеса изменяется объем между лопастями и создается разряжение на всасывании.

Что происходит дальше видно на картинке.
Насосы являются самовсасывающими (до 5 метров).
Преимущество - простота конструкции.



Синусный насос



Название этого насоса происходит от формы рабочего органа – диска, выгнутого по синусоиде. Отличительной особенностью синусных насосов является возможность бережного перекачивания продуктов содержащих крупные включения без их повреждения.
Например, можно легко перекачивать компот из персиков с включениями их половинок (естественно, что размер перекачиваемых без повреждения частиц зависит от объема рабочей камеры. При выборе насоса нужно обращать на это внимание).

Размер перекачиваемых частиц зависит от объема полости между диском и корпусом насоса.
Насос не имеет клапанов. Конструктивно устроен очень просто, что гарантирует долгую и безотказную работу.


Принцип работы:

На валу насоса, в рабочей камере, установлен диск, имеющий форму синусоиды. Камера разделена сверху на 2 части шиберами (до середины диска), которые могут свободно перемещаться в перпендикулярной к диску плоскости и герметизировать эту часть камеры не давая жидкости перетекать с входа насоса на выход (см. рисунок).

При вращении диска он создает в рабочей камере волнообразное движение, за счет которого происходит перемещение жидкости из всасывающего патрубка в нагнетательный. За счет того, что камера наполовину разделена шиберами, жидкость выдавливается в нагнетательный патрубок.



Винтовой насос


Основной рабочей частью эксцентрикового шнекового насоса является винтовая (героторная) пара, которая определяет как принцип работы, так и все базовые характеристики насосного агрегата. Винтовая пара состоит из неподвижной части – статора, и подвижной – ротора.

Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой).

Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.

Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Винтовые насосы относятся к объемным насосам. Эти типы насосов могут перекачивать высоковязкие жидкости, в том числе с содержанием большого количества абразивных частиц.
Преимущества винтовых насосов:
- самовсасывание (до 7...9 метров),
- бережное перекачивание жидкости, не разрушающее структуру продукта,
- возможность перекачивания высоковязких жидкостей, в том числе содержащих частицы,

- возможность изготовления корпуса насоса и статора из различных материалов, что позволяет перекачивать агрессивные жидкости.

Насосы этого типа получили большое распространение в пищевой и нефтехимической промышленности.



Перистальтический насос



Насосы этого типа предназначены для перекачивания вязких продуктов с твердыми частицами. Рабочим органом является шланг.
Преимущество: простота конструкции, высокая надежность, самовсасывание.

Принцип работы:
При вращении ротора в глицерине башмак полностью пережимает шланг (рабочий орган насоса), расположенный по окружности внутри корпуса, и выдавливает перекачиваемую жидкость в магистраль. За башмаком шланг восстанавливает свою форму и всасывает жидкость. Абразивные частицы вдавливаются в эластичный внутренний слой шланга, затем выталкиваются в поток, не повреждая шланга.



Вихревой насос



Вихревые насосы предназначены для перекачивания различных жидкотекучих сред. насосы обладают самовсасыванием (после залива корпуса насоса жидкостью).
Преимущества: простота конструкции, высокий напор, малые размеры.

Принцип действия:
Рабочее колесо вихревого насоса представляет собой плоский диск с короткими радиальными прямолинейными лопатками, расположенными на периферии колеса. В корпусе имеется кольцевая полость. Внутренний уплотняющий выступ, плотно примыкая к наружным торцам и боковым поверхностям лопаток, разделяет всасывающий и напорный патрубки, соединенные с кольцевой полостью.

При вращении колеса жидкость увлекается лопатками и одновременно под воздействием центробежной силы закручивается. Таким образом, в кольцевой полости работающего насоса образуется своеобразное парное кольцевое вихревое движение, почему насос и называется вихревым. Отличительная особенность вихревого насоса заключается в том, что один и тот же объем жидкости, движущейся по винтовой траектории, на участке от входа в кольцевую полость до выхода из нее многократно попадает в межлопастное пространство колеса, где каждый раз получает дополнительное приращение энергии, а следовательно, и напора.



Газлифт



Газлифт (от газ и англ. lift — поднимать), устройство для подъёма капельной жидкости за счёт энергии, содержащейся в смешиваемом с ней сжатом газе. Газлифт применяют главным образом для подъёма нефти из буровых скважин, используя при этом газ, выходящий из нефтеносных пластов. Известны подъёмники, в которых для подачи жидкости, главным образом воды, используют атмосферный воздух. Такие подъёмники называют эрлифтами или мамут-насосами.

В газлифте, или эрлифте, сжатый газ или воздух от компрессора подаётся по трубопроводу, смешивается с жидкостью, образуя газожидкостную или водо-воздушную эмульсию, которая поднимается по трубе. Смешение газа с жидкостью происходит внизу трубы. Действие газлифта основано на уравновешивании столба газожидкостной эмульсии столбом капельной жидкости на основе закона сообщающихся сосудов. Один из них — буровая скважина или резервуар, а другой — труба, в которой находится газожидкостная смесь.



Мембранные насосы



Мембранные насосы относятся к объемным насосам. Существуют одно- и двухмембранные насосы. Двухмембраные, обычно выпускаются с приводом от сжатого воздуха. На нашем рисунке показан именно такой насос.
Насосы отличатся простотой конструкции, обладают самовсасыванием (до 9 метров), могут перекачивать химически агрессивные жидкости и жидкости с большим содержанием частиц.

Принцип работы:
Две мембраны, соединенные валом, перемещаются вперед и назад под воздействием попеременного нагнетания воздуха в камеры позади мембран с использованием автоматического воздушного клапана.

Всасывание: Первая мембрана создает разрежение, когда она движется от стенки корпуса.
Нагнетание: Вторая мембрана одновременно передает давление воздуха на жидкость, находящуюся в корпусе, проталкивая ее по направлению к выпускному отверстию. Во время каждого цикла давление воздуха на заднюю стенку выпускающей мембраны равно давлению, напору со стороны жидкости. Поэтому мембранные насосы могут работать и при закрытом выпускном клапане без ущерба для срока службы мембраны



Оседиагональные насосы (шнековые)




Шнековые насосы часто путают с винтовыми. Но это совершенно разные насосы, как можно увидеть в нашем описании. Рабочим органом является шнек.
Насосы этого типа могут перекачивать жидкости средней вязкости (до 800 сСт), обладают хорошей всасывающей способностью (до 9 метров), могут перекачивать жидкости с крупными частицами (размер определяется шагом шнека).
Применяются для перекачивания нефтешламов, мазутов, солярки и т.п.

Внимание! Насосы НЕСАМОВСАСЫВАЮЩИЕ. Для работы в режиме всасывания требуется заливка корпуса насоса и всего всасывающего шланга)



Центробежный насос



Центробежные насосы являются самыми распространенными насосами. Название происходит от принципа действия: насос работает за счет центробежной силы.
Насос состоит из корпуса (улиитки) и расположенного внутри рабочего колеса с радиальными изогнутыми лопастями. Жидкость попадает в центр колеса и под действием центробежной силы отбрасывается к его перифирии а затем выбрасывается через напорный патрубок.

Насосы используются для перекачивания жидких сред. Существуют модели для химически активный жидкостей, песка и шлама. Отличаются материалами корпуса: для химических жидкостей используют различные марки нержавеющих сталей и пластика, для шламов - износостойкие чугуны или насосы с покрытием из резины.
Массовое использование центробежных насосов обусловлено простотой конструкции и низкой себестоимостью изготовления.



Многосекционный насос



Многосекционные насосы - это насосы с несколькоми рабочими колесами, расположенными последовательно. Такая компоновка нужна тогда, когда необходимо большое давление на выходе.

Дело в том, что обычное центробежное колесо выдает максимальное давление 2-3 атм.

По этому, для получения более высоких значение напора, используют несколько последовательно установленных центробежных колес.
(по сути, это несколько последовательно соединенных центробежных насосов).

Такие типы насосов используют в качестве погружных скважинных и в качестве сетевых насосов высокого давления.


Трехвинтовой насос



Трехвинтовые насосы предназначены для перекачивания жидкостей, обладающих смазывающей способностью, без абразивных механических примесей. Вязкость продукта - до 1500 сСт. Тип насоса объемный.
Принцип работы трехвинтового насоса понятен из рисунка.

Насосы этого типа применяются:
- на судах морского и речного флота, в машинных отделениях,
- в системах гидравлики,
- в технологических линиях подачи топлива и перекачивания нефтепродуктов.


Струйный насос



Струйный насос предназначен для перемещения (откачки) жидкостей или газов с помощью сжатого воздуха (или жидкости и пара), подающегося через эжектор. Принцип работы насоса основан на законе Бернули (чем выше скорость течения жидкости в трубе, тем меньше давление этой жидкости). Этим обусловлена форма насоса.

Конструкция насоса чрезвычайно проста и не имеет движущихся деталей.
Насосы этого типа можно использовать в качестве вакуумный насосов или насосов для перекачивания жидкости (в том числе, содержащих включения).
для работы насоса необходим подвод сжатого воздуха или пара.

Струйные насосы, работающие от пара, называют пароструйными насосами, работающие от воды - водоструйными насосами.
Насосы, отсасывающие вещество и создающие разряжение, называются эжекторами. Насосы нагнетающие вещество под давлением - инжекторами.



Гидротаранный насос



Этот насос работает без подвода электроэнергии, сжатого воздуха и т.п. Работа насоса этого типа основана на энергии поступающей самотеком воды и гидроудара, возникающего при резком её торможении.

Принцип работы гидротаранного насоса:
По всасывающей наклонной трубе вода разгоняется до некоторой скорости, при которой отбойный подпружиненный клапан (справа), преодолевает усилие пружины и закрывается, перекрывая поток воды. Инерция резко остановленной воды во всасывающей трубе создает гидроудар (т.е. кратковременно резко возрастает давление воды в питающей трубе). Величина этого давления зависит от длины питающей трубы и скорости потока воды.
Возросшее давление воды открывает верхний клапан насоса и часть воды из трубы проходит в воздушный колпак (прямоугольник сверху) и отводящую трубу (слева от колпака). Воздух в колпаке сжимается, накапливая энергию.
Т.к. вода в питающей трубе остановлена, давление в ней падает, что приводит к открытию отбойного клапана и закрытию верхнего клапана. После этого вода из воздушного колпака выталкивается давлением сжатого воздуха в отводящую трубу. Так как отбойный клапан открылся, вода снова разгоняется и цикл работы насоса повторяется.



Спиральный вакуумный насос


Спиральный вакуумный насос представляет собой объёмный насос внутреннего сжатия и перемещения газа.
Каждый насос состоит из двух высокоточных спиралей Архимеда (серповидные полости) расположенных со смещением в 180° друг относительно друга. Одна спираль неподвижна, а другая крутится двигателем.
Подвижная спираль совершает орбитальное вращение, что приводит к последовательному уменьшению газовых полостей, по цепочке сжимая и перемещая газ от периферии к центру.
Спиральные вакуумные насосы относятся к категории «сухих» форвакуумных насосов, в которых не используются вакуумные масла для уплотнения сопряженных деталей (нет трения - не нужно масло).
Одной из сфер применения данного вида насосов являются ускорители частиц и синхротроны, что само по себе уже говорит о качестве создаваемого вакуума.



Ламинарный (дисковый) насос


Ламинарный (дисковый) насос является разновидностью центробежного насоса, но может выполнять работу не только центробежных, но и прогрессивных полостных насосов, лопастных и шестеренчатых насосов, т.е. перекачивать вязкие жидкости.
Рабочее колесо ламинарного насоса представляет собой два и более параллельных диска. Чем больше расстояние между дисками, тем более вязкую жидкость может перекачивать насос. Теория физики процесса: в условиях ламинарного течения слои жидкости движутся с различной скоростью по трубе: слой, наиболее близкий к неподвижной трубе (так называемый пограничный слой), течёт медленнее, чем более глубокие (близкие к центру трубы) слои текущей среды.
Аналогично, когда жидкость поступает в дисковый насос, на вращающихся поверхностях параллельных дисков рабочего колеса образуется пограничный слой. По мере вращения дисков энергия переносится в последовательные слои молекул в жидкости между дисками, создавая градиенты скорости и давления по ширине условного прохода. Эта комбинация граничного слоя и вязкого перетаскивания приводит к возникновению перекачивающего момента, который «тянет» продукт через насос в плавном, почти не пульсирующем потоке.

*Информация взята из открытых источников.


www.ampika.ru

Песковые насосы: технические характеристики | Мой колодец

Насос песковой KSB

Как известно, большинство насосов для чистой воды, не любят повышенного содержания в ней абразивных веществ. Они ухудшают характеристики, заявленные производителем, и способствуют быстрому износу рабочих деталей.

В связи с этим, у многих возникает вопрос: «Какой насос лучше для скважины с песком?». Ассортимент насосного оборудования настолько велик, что подобрать вариант можно не только для воды с большим содержанием песка, но и для песка, с небольшим содержанием воды.

О том, что такое насосы песковые, вы поймёте, посмотрев видео в этой статье.

Оборудование для грязной воды и шлама

Если сказать коротко, то шламом называется смесь жидкости с твёрдыми частицами. Они могут быть неабразивными, как например, в канализационных стоках.

Но когда речь идёт о шламе природного происхождения, то частицы всегда абразивные, и отличаются они только фракцией.

  • Есть ил и песок, а есть увлажнённый каменистый грунт, который, представьте себе, тоже можно перекачивать. Поэтому, насосы для грязи и песка, с полной уверенностью можно называть шламовыми.
  • Естественно, что необходимость перекачки увлажнённого грунта и песка, диктует совсем другие требования к оборудованию, чем те, которые предъявляются к насосам для чистой воды, с небольшим содержанием твёрдых включений.
  • Насос для скважины на песок, в самом лучшем случае, может перекачивать воду с содержанием абразивных частиц 120г/м3. Это достаточно высокий показатель для центробежных агрегатов премиум-класса. Для большинства бытовых насосов небольшой мощности такая вода «не по зубам». Дня них содержание песка 50г на 1м3 воды – потолок.

Для тех, кто своими руками выбирает насос для скважины с большим содержанием песка, дадим совет. Отдайте предпочтение не центробежной, а винтовой (шнековой) конструкции.

Такие насосы могут перекачивать жидкость с содержанием примесей 200г/м3. Их можно даже использовать для прокачки заилившегося водозабора.

Что касается откачки густого шлама, то для правильного подбора оборудования, нужно иметь кое- какие познания, касающиеся свойств перекачиваемого содержимого. Ведь инструкция производителя регламентирует только допустимое содержание твёрдых примесей, и их концентрацию в воде.

Характеристики шламовых насосов

Существует два типа шлама. Один из вариантов называется «неоседающий» шлам.

В процессе перекачки он ведёт себя как вязкая однородная смесь. То есть, это жидкость, в которой твёрдые частицы распределяются равномерно.

  • К оседающему шламу можно отнести все разнородные смеси. Твёрдые частицы в них быстро оседают, а во взвешенное состояние приводятся только посредством турбулентности или размешивания. Именно поэтому, большинство шламовых насосов оснащается специальными мешалками. Песок, сильно насыщенный водой, можно отнести к шламу оседающего типа.

Горизонтальный насос для перекачки шлама

  • Довольно часто, для перекачки шлама используют насосы центробежной конструкции, одноступенчатые (см. Центробежный одноступенчатый насос: как выбрать), с открытым рабочим колесом. Вообще, название «шламовые» используется для того, чтобы не путать данное оборудование с обычными насосами, предназначенными для чистой воды.
  • Их характеристики, как и цена, сильно отличаются, и это естественно. Особенно это касается механического износа напорного патрубка, корпуса, и, конечно же, рабочего колеса. Поэтому изготавливают их из наиболее прочных металлов, их сплавов, а так же полимеров.
  • Существует три основных варианта исполнения шламовых насосов: горизонтальные, вертикальные и погружные. Первые составляют основную группу, и являются поверхностными. Широчайший диапазон напорных характеристик и производительности, позволяет подобрать вариант, как говорится, на все случаи жизни.

Вертикальный шламовый насос

  • Но иногда условия эксплуатации диктуют необходимость использования насоса, корпус которого имеет вертикальное исполнение. Так сказать, агрегаты полусухой установки. Они, как правило, делятся на две группы.
  • К первой относятся насосы с ёмкостью, которая является частью насоса. Они тоже устанавливаются на поверхности. Вторая группа — это консольные насосы. Их в основном используют для водоотлива, с погружением в траншею, или котлован.
  • Что касается погружных насосов, то название говорит само за себя. Он может не только стоять «по колено в луже», как предыдущий вариант, но и полностью погружаться в толщу шлама. В этом есть свои преимущества: при монтаже для него не требуется сооружать раму-основание. Он компактен, занимает мало места, и значительно меньше шумит во время заботы.

Насосы гидравлические лепестковые

  • Погружные агрегаты охлаждаются жидкостью, содержащейся в перекачиваемом содержимом. Поверхностные и полупогружные насосы, для этой цели обычно оборудуют охлаждающим кожухом, внутри которого циркулирует гликолевая смесь.
  • Сферы применения насосного оборудования для перекачки шлама необычайно разнообразны. Кроме дренажа и строительного водопонижения, это: металлургия; угольная, нефтегазовая, горнодобывающая и горнообогатительная, целлюлозно-бумажная промышленности.

С помощью гидравлического насоса, можно легко переместить, например песок или гравий в другое место. На многих производствах, по ходу технологического процесса требуется откачивать конечный продукт. Так что, без шламовых насосов в промышленности не обойтись.

Грунтовые насосы

Так как различные виды шлама ведут себя по-разному, да и фракция твёрдых частиц совершенно разная, производители ориентируют насосы на тот или иной вариант. Грунтовой насос может быть предназначен для крупнофракционного шлама, песка и пульпы (однородной массы со взвешенными частицами).

Кстати, пульпа нередко содержит примеси химических веществ, что учитывается и в производстве насосов для неё:

  • Отличительной особенностью грунтовых насосов является тот факт, что они всегда оснащаются системой промывки – она способствует удалению засоров. Так как эти насосы используются, в основном, в промышленности, то и производительность у них соответствующая. В среднем, такой агрегат перекачивает 2000м3 разжиженного грунта в час.
Дноуглубительный агрегат
  • Взгляните на фото сверху – на нём изображён погружной агрегат, который может не только откачивать шлам из котлована или шахты, но и способен углубить дно. Как видите, он оснащён лапками, которые, вращаясь, разрыхляют грунт, после чего он поступает к всасывающей части насоса. Такие механизмы используют так же при добыче полезных ископаемых.
  • Благодаря высокой мощности, грунтовые насосы способны не только извлекать грунт, но и транспортировать его на значительные расстояния. При необходимости, к такому агрегату может быть подключена дополнительная насосная станция. В этом случае, перекачиваемое содержимое может проделать путь по трассе трубопровода до 5км.

Конечно, рабочие органы насоса при этом используют колоссальные нагрузки. Их основной защитой являются бронированные диски.

Напор грунтового насоса в среднем составляет 65м, мощность двигателя 700 кВт. При таких, достаточно высоких характеристиках, они вполне компакты, и легко транспортируются на новое место работы.

Песковые насосы

Оборудование для перекачки песка можно отнести в отдельную категорию, так как у песка, в отличие от грунта, достаточно мелкая фракция – зато уровень абразивности более высок. В основном, это насосы горизонтального или вертикального исполнения, с боковым или осевым входом, оснащённые асинхронным двигателем.

В отличие от скважинных насосов, которые могут перекачивать воду с содержанием песка не более чем 200г/м3, песковые насосы качают гидросмеси плотностью до 1300кг/м3. Чувствуете разницу?

Маркируются они так:

Вариант расположения вала Маркировка Расшифровка обозначения
Горизонтальный П Песковый (центробежный, одноступенчатый)
ПК Песковый, консольный
ПБ Песковый, консольный, с боковым входом
ПР Песковый, консольный, с осевым входом
Вертикальный ПВП Песковый, вертикальный, полупогружной
ПКВП Песковый, консольный, полупогружной, с осевым входом
ПРВП Песковый, вертикальный, полупогружной, с опорами вне перекачиваемого содержимого.
  • Такое оборудование используется в глинозёмном производстве, горнообогатительной промышленности, в песчаных карьерах, именуемых гидронамывами. И, конечно же, нельзя не упомянуть и о строительстве. Существует способ укрепления грунтов основания по технологии «песконасос». Что это такое?

Песковый насос

  • Цель данной технологии – предотвращение неравномерной осадки грунта, вследствие чего под подошвой ленточного фундамента возникает напряжение. С помощью неё повышается так же прочность свайных фундаментов. Такой подход позволяет вести массовое строительство на слабых грунтах.
  • Грунт может быть неустойчивым как по своей природе, так и ослабленным в результате техногенного воздействия. Корректировку можно производить не только на стадии строительства, но и в процессе эксплуатации объекта.
  • Выглядит это примерно так: в проблемном грунте бурят скважину и обсаживают её трубой. После этого, в её ствол устанавливается другая труба – технологическая. По диаметру она меньше: пространство между двумя трубами заполняется песком и щебнем. Без пескового насоса сделать это невозможно.
  • Затем, обсадная труба поднимается. В технологической трубе находится рабочий орган, который вдавливает фракционный материал в стенки скважины. В конечном итоге, с помощью инъекторов туда закачивается вяжущий раствор, и получается очень прочная монолитная свая.

Поскольку песковые насосы эксплуатируются в тяжёлых условиях, те детали, которые непосредственно соприкасаются с абразивной средой, покрывают либо армированной резиной, либо корундом на органической связке. Все они съёмные, и при необходимости могут быть быстро заменены.

В некоторых моделях насосов, запасные детали даже идут в комплекте. Это — борьба производителя за потребительский рынок.

moikolodets.ru

Пластинчатые насосы принцип действия

Что такое пластичный насос? Какие типы пластинчатых насосов применяются на производстве? Какова конструкция пластинчатых насосов?

Обычно применяются два типа пластинчатых насосов:

  • одинарного действия
  • двойного действия

Обе конструкции имеют одинаковые основные узлы, они состоят из ротора и пластин.

Пластины в роторе могут перемещаться в радиальном направлении. Различие между двумя указанными типами заключается в форме внутренней поверхности статора, которая ограничивает перемещение пластин.

Рис. 1. Основной комплект пластинчатого насоса, содержащий ротор и пластины

Пластинчатые насосы двойного действия

Рис. 2. Пластинчатый насос двойного действия

Кольцо или статор имеет внутреннюю поверхность овальной формы. Благодаря этому каждая пластина за один оборот вала осуществляет два такта. Камеры вытеснения образуются ротором, двумя соседними пластинами, внутренней поверхностью статора и боковыми распределительными дисками.

Рис. 3.

В зоне с наименьшим зазором между ротором и статором (Рис. 3) объем камеры вытеснения (рабочей камеры) минимальный. Поскольку пластины постоянно прижимаются к внутренней поверхности статора, обеспечивается достаточная герметизация каждой из камер. При дальнейшем повороте объем камеры увеличивается и в ней возникает разрежение. В этот момент рабочая камера через прорези бокового распределительного диска соединена с всасывающей линией, и жидкость поступает в рабочую камеру.

Рис. 4

Максимальный объем рабочей камеры достигнут (Рис. 4), и ее соединение с всасывающей линией прерывается.

Рис.5

При дальнейшем повороте ротора объем рабочей камеры уменьшается (Рис. 5). Через прорезь бокового распределительного диска рабочая жидкость направляется в напорную линию.

Этот процесс реализуется дважды на каждый оборот вала.

Рис. 6 Пластинчатый насос двойного действия

Рис. 7

Для обеспечения гарантированного прижима пластин к статору задние торцовые поверхности пластин в зоне нагнетания нагружаются полным рабочим давлением.

Усилие прижима пластины к статору определяется произведением рабочего давления на площадь торцовой поверхности. При определенном давлении в зависимости от смазывающих свойств жидкости возможно нарушение масляной пленки между пластиной и статором, что ведет к ускоренному износу. Для снижения прижимной силы пластинчатые насосы, работающие при давлении свыше 150 бар, комплектуются двойными пластинами.

Рис. 8

Рис. 9

Через фаску или канавку находящаяся под давлением жидкость из задних торцовых камер подводится в пространство между кончиками пластин, причем площадь РА1 меньше, чем FA.
В результате прижимная сила в значительной степени компенсируется.

Пластинчатые насосы одинарного действия

Здесь движение пластин ограничивается статором с цилиндрической внутренней поверхностью. За счет эксцентричного расположения статора по отношению к ротору обеспечивается изменение объемов рабочих камер. Процесс заполнения рабочей камеры (всасывание) и вытеснения (нагнетание) в принципе идентичен процессу для пластинчатых насосов двойного действия.

Рис. 10. Пластинчатый насос

Рис. 11 Пластинчатый насос одинарного действия. Принцип действия

Регулируемые пластинчатые насосы

Регулируемые пластинчатые насосы прямого управления (Рис. 12)

Для данных насосов положение статорного кольца можно изменять тремя регулирующими устройствами:

  • Регулировочным винтом (1) ограничения максимальной подачи.

    Эксцентриситет статора напрямую определяет подачу насоса.

  • Винтом (2) регулирования вертикального положения опоры.

    Изменение положения статора в вертикальном направлении напрямую определяет уровень шума и динамику насоса.

  • Винтом (3) регулирования максимального давления.

    Величина предварительного натяжения пружины определяет максимальное значение рабочего давления.

Процесс подачи этого насоса уже был описан в разделе «Пластинчатые насосы одинарного действия»

В зависимости от сопротивления в гидросистеме создается определенное давление, которое действует в насосе (красная зона) и нагружает внутреннюю поверхность статора (см. вектор силы Fp). Если разложить вектор силы на вертикальную и горизонтальную составляющие, то в результате получится сравнительно большая сила Fv, нагружающая винт (2), и небольшая сила (Fh), противодействующая пружине. Пока усилие пружины Ff больше, чем сила Fh, статор остается в указанном положении максимального эксцентриситета.

Если давление в гидросистеме возрастает, сила Fp увеличивается, и соответственно возрастают силы Fv и Fh.

Если сила Fh превосходит усилие пружины Ff, статор смещается из эксцентричного положения практически в концентричное. Уменьшение объема рабочих камер происходит до тех пор, пока подача насоса не станет практически равной нулю. При этом подача насоса равна величине внутренних утечек, а давление поддерживается на заданном уровне. Величина давления может изменяться напрямую путем регулирования натяжения пружины.

Регулируемые пластинчатые насосы с функцией нулевого хода (Q = 0) при достижении максимального давления всегда имеют дренажную линию из корпуса. Через эту линию отводятся внутренние утечки из зоны высокого давления (отмечена красным цветом) в корпус (синий цвет).

Сливающееся в дренажную линию масло отводит тепло, выделяющееся из-за трения, а также обеспечивает смазку внутренних частей.

Рис. 12 Регулиремый пластинчатый насос прямого управления

Регулируемый пластинчатый насос непрямого управления с настраиваемой подачей

Основной принцип действия насосов идентичен насосам прямого управления; отличие заключается лишь в механизмах регулирования.

Вместо одной или двух нажимных пружин движением статора здесь управляют находящиеся под давлением установочные поршни.

Два установочных поршня имеют различные диаметры (отношение площадей 2:1).

Рис. 13. Пластинчатый насос

На установочный поршень большего диаметра воздействует пружина, которая устанавливает максимальный эксцентриситет при запуске насоса. Давление из напорной линии постоянно подводится к поршню меньшего диаметра и через регулятор R — к поршню большего диаметра. Если давления, действующие на оба поршня, равны, статор находится в положении максимального эксцентриситета из-за разности площадей установочных поршней.

Рис. 14. Регулируемые насосы: слева — прямого управления; справа — непрямого

Принцип работы регулятора давления

Регулятор давления определяет максимальное значение давления в гидросистеме.

Требования, предъявляемые к регулятору давления:

  • Высокое быстродействие.

    Процессы регулирования должны происходить как можно быстрее ( от 50 до 500 мс) в зависимости от конструктивного исполнения насоса, регулятора и гидросистемы.

  • Устойчивость.

    Все гидросистемы с регулируемым давлением склонны в той или иной мере к колебательности, поэтому регулятор доджен являться хорошим компромиссом между быстродействием и устойчивостью.

  • Высокий коэффициент полезного действия.

    В процессе регулирования некоторая часть подачи насоса отводится через регулятор в бак. Эта потерянная мощность должна быть минимальной и в то же время должна гарантировать достаточную динамику и устойчивость регулятора.

Конструкция регулятора давления

Регулятор давления состоит из регулирующего золотника (7), корпуса (2), пружины (3) и механизма настройки (4).

В исходном положении пружина устанавливает золотник в крайнее (левое на Рис. 15) положение.

Рабочая жидкость через каналы в корпусе подводится к золотнику, который имеет одно продольное отверстие и два поперечных. Специальный демпфер ограничивает поток жидкости через регулирующий золотник. В показанном положении рабочая жидкость через осевое и поперечное отверстия поступает в камеру большого установочного поршня.

Сливная линия перекрыта пояском распределительного золотника.

Рабочее давление гидросистемы воздействует на левую торцовую поверхность распределительного золотника с усилием Fp. Пока это усилие меньше, чем противодействующее усилие пружины FF, давления в камерах установочных поршней равны, и насос остается в положении максимального эксцентриситета.

Рис. 15. Регулятор давления в состоянии, при котором насос обеспечивает максимальную подачу. Рабочее давление ниже, чем давление настройки регулятора давления.

При увеличении давления в гидросистеме увеличивается усилие Fp и регулирующий золотник смещается вправо, сжимая пружину.

Регулятор частично соединяет с баком камеру большого установочного поршня, в результате чего давление в этой камере уменьшается. Поскольку малый установочный поршень постоянно соединен с напорной линией, он смещает статор практически в концентричное относительно ротора положение.

Устанавливается равновесие сил: Малая площадь установочного поршня х высокое давление = большая площадь установочного поршня х низкое давление. В результате подача насоса стремится к нулю, а рабочее давление в гидросистеме поддерживается на заданном уровне. Таким образом, потери мощности в гидросистеме при достижении максимального установленного давления незначительны, нагрев рабочей жидкости невелик и энергопотребление — минимально.

Если давление в гидросистеме снова понижается, пружина смещает регулирующий золотник регулятора давления. При этом перекрывается сливная линия, и в камере большого установочного поршня вновь появляется полное рабочее давление.

Равновесие сил, действующих на установочные поршни, нарушается, и большой установочный поршень смещает статор в эксцентричное положение.

Насос снова подает рабочую жидкость в гидросистему.

Регулируемые пластинчатые насосы, работающие по описанному принципу, могут дополнительно оснащаться целым рядом других типов регуляторов, например:

— регулятором расхода

— регулятором давления / расхода

— регулятором мощности.

Рис. 16. Регулятор давления в состоянии, при котором подача насоса равна нулю. Рабочее давление соответствует давлению настройки регулятора давления

Регулятор расхода

При регулировании расхода подача насоса регулируется до заранее заданного значения. Для этого в потоке рабочей жидкости, подаваемой насосом, устанавливается измерительная диафрагма (например дроссель, пропорциональный гидрораспределитель и т.д.), перепад давлений на которой принимается как параметр регулирования.

Давление на входе в диафрагму подводится в левую торцовую полость регулирующего золотника и одновременно — в рабочую камеру малого установочного поршня.

Давление на выходе из диафрагмы, которое меньше, чем давление на входе, подводится с помощью трубопровода в правую торцовую полость регулирующего золотника (в пружинную полость регулятора).

На регулирующем золотнике, так же как и на установочных поршнях устанавливается равновесие сил.

В указанном на Рис. 17 положении разность давлений (перепад давлений) на измерительной диафрагме соответствует усилию пружины регулятора.

Через дросселирующую кромку (X) регулятора постоянно сливается поток управления, поэтому в камере большого поршня создается определенное давление.

Статор удерживается в стабильном положении. Если, например, увеличить проходное сечение диафрагмы, перепад давлений уменьшается. Следовательно, пружина смещает регулирующий золотник в направлении закрытия дросселирующей кромки (X), и давление в камере большого поршня увеличивается.

Рис. 17. Регулятор расхода

Статор смещается в направлении увеличения эксцентриситета, и подача насоса возрастает.

Из-за увеличения потока в напорной линии увеличивается перепад давлений Δр на измерительной диафрагме вплоть до момента нового стабильного состояния.

Перепад давлений на измерительной диафрагме соответствует настраиваемому усилию пружины регулятора.

Регулятор давления и регулятор расхода могут иметь различные установочные механизмы (механический, гидравлический или электрический).

Комбинация из регуляторов давления и расхода позволяет создавать особо экономичные гидроприводы (Load-Sensing — чувствительные к нагрузке).

 

 

Теги: гидравлика, насосы

web-mechanic.ru

Пластинчатая гидромашина — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2013; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2013; проверки требуют 3 правки.

Пластинчатая гидромашина (шиберная, коловратная гидромашина) — роторная объёмная гидромашина, вытеснителями в которой являются две и более пластин (шиберов). Термин «пластинчатые гидромашины» не следует путать с термином «лопастные гидромашины», поскольку, согласно принятой в настоящее время терминологии, термин «лопастные гидромашины» закреплён за машинами гидродинамического типа[1].

Пластинчатая гидромашина с двумя пластинами. Такая гидромашина может быть только нерегулируемой, поскольку ротор обязательно должен быть прижат к статору для изоляции друг от друга полостей высокого и низкого давления Пластинчатый насос двукратного действия. Пластины направлены немного вперёд по направлению вращения ротора для уменьшения изгибающих моментов, действующих на пластины; такая конструктивная особенность позволяет уменьшить вероятность заклинивания пластин и увеличить их максимальный ход, а значит и рабочий объём

ru.wikipedia.org

Пластинчатый насос (Шиберный): устройство, принцип работы

Пластинчатый насос – это роторная объемная гидромашина вытеснителями в которой являются две и более лопасти (шиберов). Его часто называют шиберным или роторно-пластинчатым. Имея не плохие характеристики и практичную конструкцию, он завоевал большой спектр применения в различных промышленных секторах. Его конструкция используется в пищевой, фармацевтической и косметической промышленности.

Пластинчатый насос

Технические данные:

  • Используются в различных станках и гидравлических усилителях рулевого управления;
  • Номинальное давление на выходе до 12,5 МПа;
  • КПД до 85 %;
  • Вращающий момент 30 оборотов в секунду;

Устройство

Существуют два вида гидравлических пластинчатых насосов:

  1. Однократного действия – за одно полное вращение вала совершается одно событие забора рабочей жидкости и одно нагнетание. Регулируемые, за счет смещения центра вращения ротора на величину e, относительно центра статора.
  2. Двукратного действия – за полное вращение совершается два события забора жидкости и два нагнетания. Не регулируемы так как центры ротора и статора объединены и не могут быть смещены.

Схема устройства однотактного и двухтактного насосов.

1 – Ротор; 2 – Вал, передающий вращение привода; 3 – Пластины; 4 – Статор (неподвижный корпус насоса) 5 – Распределитель; 6 – Отверстие всасывания в распределителе; 7 – Подвод рабочей жидкости; 8 – Отверстие нагнетания в распределителе; 9 – Линия выдавливания рабочей жидкости;

Как видно на рисунке, в строение пластинчатого насоса входит вращающийся ротор (1), который в свою очередь закреплен на валу (2). Ротор обеспечен специальными выемками – пазами, расположение которых радиально. В пазах располагаются специальные пластины (3). В однотактных роторах происходит смещение центра ротора и статора на величину e. Это делается чтобы при событии вращения основного вала (2) пластины могли вдвигаться и выдвигаться. В двухтактных машинах этот эффект достигается за счет изменения формы статора.  К торцевой области ротора, а также и статора прикрепляются распределители (5) с отверстиями в виде серпа. Отверстие (6) соединено с каналом всасывания (7), а отверстие (8) с гидролинией нагнетания (9). Между отверстиями в распределителе присутствуют специальные перемычки (10), задачей которых является обеспечение герметичности частей, отвечающих за втягивание рабочей жидкости и ее нагнетание. Угол ξ > β что обеспечивает изоляцию зон всасывания и нагнетания.

Принцип работы гидравлического пластинчатого насоса

Принцип работы пластинчатого насоса

Понять принцип работы пластинчатого насоса можно используя рисунок выше. Вращаясь ротор перемещает пластины. Они в свою очередь под действием центробежной силы или пружины начинают выходить из пазов, плотно жмется к внутренней стенке статора. Благодаря тому, что центр ротора смещен относительно статора, объем рабочей камеры по мере движения растет – это событие всасывания (а). Ротор продолжая движение переходит в фазу уменьшения рабочей камеры – это событие нагнетания (с). Итак жидкость переносится между лопастями из системы всасывания в систему нагнетания.

Теоретическая производительность

Есть два типа насосов однократного и двукратного действия как мы уже определили ранее, по этому и формул по вычислению производительности будет две.

Производительность шиберного насоса однократного действия

Производительность роторно-пластинчатого агрегата однократного действия определяется по формуле:

Как видно из формулы производительность зависит от величины e, которая определяет отклонение оси ротора от оси статора. Из чего следует что, если поместить ротор внутрь кольца, перемещением которого мы сможем управлять, мы получим регулируемый роторно-пластинчатый насос.

Производительность шиберного насоса двукратного действия

Производительность роторно-пластичного устройства определяется по следующей формуле:

Исходя из формулы можно сделать некоторый вывод. Мощность насоса невозможно повысить кроме как увеличением вращений ротора (n). Из чего следует вывод что агрегаты двукратного действия являются не регулируемыми.

Достоинства и недостатки

Сравнение с другими типами насосов:

  • В отличии от шестеренных, роторно-пластинчатые агрегаты производят наиболее равномерную подачу рабочей жидкости;
  • У роторно-поршневых типов пластичные устройства выигрывают тем что требования к загрязнению рабочей жидкости весьма низкие, а конструкция самого агрегата проще и дешевле;

Общие достоинства:

  1. Относительно низкая пульсация выходного потока;
  2. Низкий уровень шума
  3. Регулируемый рабочий объем

Общие недостатки:

  1. Устройство насоса достаточно сложное и плохо ремонтопригодное;
  2. Не большие рабочие давления;
  3. Залипание пластин, случается при низких температурах;
  4. Заклинивание пластин при высоких температурах;

То что вам предлагает Яндекс

То что вам предлагает Google



gidropnevm.ru

Шиберный насос: принцип работы

Шиберный насос больше известен как насос пластинчатый, так как его рабочие органы имеют вид плоских или фигурных пластин – шиберов. В 1899 году учёный из США Роберт Блэкмер разработал конструкцию роторного насоса с шиберами. Именно это устройство явилось прототипом современных выдвижных шиберных насосов, имеющих смещённый центр вращения.

В СССР такой насос был запатентован группой учёных Татарского ГНИИПИ Нефтяной промышленности в 1974 году. А в мае 2016 года российский изобретатель Борис Григорьев оформил патент в 29 странах мира на усовершенствованную конструкцию внутреннего элемента пластинчатого насоса. В новом устройстве российскому инженеру удалось повысить объёмный, гидравлический и механический КПД шиберного насоса.

Устройство пластинчатого насоса

Основу простой и уникальной конструкции шиберного насоса составляет ротор с пропиленными по кругу через равные промежутки пазами. Вставленные в них пластинки оснащаются выдвижной пружиной. Ротор устанавливается в статор (корпус, гильзу, стакан), имеющий два отверстия: впускное и выпускное. Некоторые конструкции имеют по два таких отверстия, через которые жидкость подаётся в насос и выводится из него.

Принцип работы шиберного насоса

Увеличенное давление на выходе создаётся «вихревым эффектом». То есть смещение оси вращения ротора относительно оси корпуса позволяет пластинам выдвигаться в месте большего просвета и прижиматься к статору центробежной силой.

В момент запуска насоса во всасывающем отверстии образуется разряжение. Транспортируемая масса засасывается в пространство между пластинками и выталкивается через выходной патрубок.

Насосы с изменяющейся осью смещения используются для регулировки объёма перекачиваемой жидкости.

Преимущества

  • Относительно винтовых или шестерёнчатых насосов КПД пластинчатых значительно выше.
  • Максимально упрощённая конструкция прочна и долговечна. Прочность механизма сводит вероятность сбоев в работе к минимуму.
  • Шиберные насосы позволяют перекачивать абразивные и кристаллизующиеся жидкости: с мягкими включениями до 1 см, с твёрдыми не более 500 микрон.
  • Простая замена пластин при поломке. Для ремонта шиберного насоса не требуется привлечение профессиональных ремонтников, что значительно экономит средства.
  • Корпус (гильза, стакан) насоса и пластины (лопатки) подбираются под перекачиваемое вещество.
  • Для создания вакуума, возможен «сухой» запуск.
  • Некоторые модели предусматривают реверсивный режим, что значительно расширяет область применения шиберных насосов и даёт возможность производству быть многопрофильным.
  • Почти бесшумная работа компактного оборудования не доставляет неудобств работникам. Вибрация пластинчатых насосов относительно других приспособлений ниже примерно на 50%.
  • Экономичное энергопотребление сокращает материальные затраты на обслуживание примерно на 20-30 %. Как следствие снижается себестоимость транспортируемой продукции.
  • Возможно использование в качестве дозатора.
  • Устройство пластинчатых насосов допускает изготовление рабочих деталей из разных материалов для получения определённой устойчивости к химическим веществам, исключения искрообразования, повышения износостойкости, применения в пищевой промышленности и так далее.

Не рекомендуется длительное использование шиберного насоса на сухом ходу. Повышает производительность устройства функция электрообогрева, специальная теплообменная рубашка, уплотнительные кольца из тефлона.

Применение

Насосы шиберного типа активно применяются в большом и малом производстве, предполагающем транспортировку продуктов с жидкой или вязкой текстурой. Популярность этих приспособлений обусловлена возможностью полного сохранения рабочей массы: пластинчатый механизм исключает возникновение потерь. Использование насосов шиберного типа значительно повышает объёмы производства или переработки суспензий и вязких масс, при этом являясь максимально безопасным процессом для обслуживающего персонала.

Самовсасывающий эффект пластинчатых насосов нашёл широкое применение в химической, фармацевтической и нефтеперерабатывающей отраслях промышленности, в косметологии и пищевом производстве.

Использование шиберных насосных систем

Шиберные насосы используются для перекачивания различных продуктов:

  • Сырой нефти, битума, мазута, парафина, нефтешлама, консистентных смазок и минеральных масел.
  • Клея, лаков, шпаклёвок, красок, латексных эмульсий, эпоксидных смол и мастик.
  • Кислот, растворителей, чёрного щёлока, жидкого стекла, креозота, каустика, едкого натра.
  • Жира, глицерина, эмульгаторов, жидкого мыла, чернил.
  • Мёда, майонеза, патоки, шоколада, сгущённого молока, растительного масла, кетчупа, сиропов.

И многих других жидких и тягучих масс.

В автомобилестроении эти насосы используются для усилителя руля, наддува, в системе подачи воздуха при дожигании выхлопных газов, в усилителе тормозной системы больших грузовиков и в автоматической коробке передач. У дизельных легковых автомобилей впускной вакуум двигателей создаётся шиберным насосом.

В бытовой технике подобное устройство насыщает газировку углекислым газом и используется в кофемашинах.

У большинства лёгких самолётов привод гироскопических приборов осуществляется этим видом насоса.

Устройство пожарного шиберного насоса

Чтобы повысить технические и эксплуатационные характеристики центробежных насосов, в вакуумных системах пожарных машин устанавливают шиберные насосы. Их автономная работа не вмешивается в конструкцию выхлопной системы автомобиля и может иметь как ручной, так и электрический привод. Более надёжно работают аппараты, изготовленные из устойчивых к коррозии материалов. Так как в рабочем процессе не исключается попадание воды в полость, шиберы могут заедать из-за скопления ржавчины в роторных пазах. Также необходимо тщательно следить за масляной смазкой трущихся элементов, так как используемое масло в процессе работы постепенно выбрасывается наружу, смешиваясь с водой.

Вакуумный пластинчатый агрегат создаёт необходимое при заполнении водой разрежение во всасывающих рукавах и полости пожарного насоса, создавая напор 16-18 мПа.

Ручной насос

Ручные шиберные насосы используются для перекачивания небольших объёмов жидкости из одной ёмкости в другую. Чаще всего ручные приспособления используются для обеспечения питьевой или технической водой в загородных домах. Ручной насос помогает перекачивать воду из колодца или водоёма при помощи механической силы по разным причинам:

  • При отсутствии электропроводки до места забора воды, а, следовательно, нет возможности пользоваться электрическим насосом.
  • Необходимо небольшое количество воды и непостоянно.

К преимуществам ручных насосов относится их большой срок использования, невысокая стоимость, независимость от наличия электричества, простой монтаж и обслуживание, возможность применения в любом месте. Однако их использование не обеспечивает постоянной подачей воды и требует физических усилий.

Устройство и применение ручных насосов

Пластинчатые ручные насосы являются маломощной конструкцией, состоящей из длинной трубы с установленным на ней роторно-шиберным насосом. Вода или другая жидкость всасывается из источника (бочки, бака или колодца) путём вращения ручки насоса и передаётся потребителю через кран. Мобильный шиберный насос легко устанавливается и переносится на новое место. Для его использования требуется только шланг.

Ручной шиберный насос может также применяться для перекачивания из бочек различных жидкостей, например, моторных и трансмиссионных масел, дизельного топлива и прочих, чтобы заправлять технику или разливать масла по канистрам.

Как выбрать ручной насос?

Выбирая ручной насос, следует понимать, что такое приспособление способно накачать за минуту около 30-40 литров жидкости. Он незаменим в отдалённых местах при отсутствии возможности пользоваться автоматическими насосами. Шиберный насос пригодится для периодического полива овощных грядок на даче. Но не подходит для долгосрочного применения, например, при подъёме большого количества воды из глубокого колодца. Приобретая ручной насос, следует обращать внимание на его внешний вид: на корпусе не должно быть трещин сколов, некачественных швов. Дольше прослужит более дорогой насос из проверенного временем чугуна. Пользуются популярностью модели из нержавеющей стали и пластика. Быстрее сотрутся клапаны из резины. А латунные или бронзовые прослужат дольше в разы. Поршневые кольца также могут быть чугунными или из кожи и резины, что влияет на срок использования насоса и его цену.

Таким образом, выбор ручного насоса основывается, прежде всего, на предполагаемом объёме потребления воды или перекачиваемой жидкости и целесообразности его использования. А также на прочих его характеристиках.

fb.ru

Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.

Если вы хотите сказать спасибо автору, просто нажмите кнопку: 

2. Гидронасосы. Типы. Характеристики преимущества и недостатки различных конструкций.

Гидравлические насосы предназначены для преобразования механический энергии (крутящий момент, частоту вращения)  в гидравлическую (подача, давление). Существует большое разнообразие типов и конструкций гидравлических насосов, но всех их объединяет единый принцип действия – вытеснение жидкости. Насосы использующие принцип вытеснения называются объемными. Во время работы внутри насоса образуются изолированные камеры, в которых рабочая жидкость перемещается из полости всасывания в полость нагнетания. Поскольку между полостями всасывания и нагнетания не существует прямого соединения, объемные насосы очень хорошо приспособлены для работы в условиях высокого давления в гидросистеме.

Основными параметрами гидронасосов являются:

• Рабочий объем (удельная подача) [см3/об] – это объем жидкости вытесняемый насосом за 1 оборот вала.

• Максимальное рабочее давлени [МПа, bar]

• Максимальная частота вращения [об/мин]

Классификация объемных насосов по типу вытесняющего элемента показана на Схеме 1.


Схема 1.

При выборе типа насоса для гидросистемы необходимо учитывать ряд факторов свойственных определенным типам насосов и особенности разрабатываемой гидросистемы. Основными критериями выбора насоса являются:

  • Диапазон рабочих давлений
  • Интервал частот вращения
  • Диапазон значений вязкости рабочей жидкости
  • Габаритные размеры
  • Доступность конструкции для обслуживания
  • Стоимость

Далее будут рассмотрены различные типы насосов с описанием их конструктивных преимуществ и недостатков.

1.Поршневые Насосы

1.1 Ручные насосы

Простейшим насосом использующим принцип вытеснения жидкости является ручной насос. Данный вид насосов используется в современной технике для обеспечения гидравлической энергией  исполнительных гидродвигателей (в основном линейного перемещения) вспомогательных механизмов. Вторым, часто встречающимся, назначением ручных насосов в гидросистемах является использование его как аварийного источника гидравлической энергии.Давления развиваемые этими насосами лежат в диапазоне до 50МПа, но чаще всего данные насосы используют на давлениях не более 10-15МПа. Рабочий объем до 70 см3. Рабочий объем для ручного насоса это суммарный объем жидкости вытесняемый им за прямой и обратный ход рукоятки. Обычно насосы с малым рабочим объемом способны достигать больших величин рабочего давления, это связано с ограничением силы прикладываемой к рычагу пользователем.

Принцип действия ручного насоса одностороннего действия изображен на рис.1. При ходе поршня вверх через обратный клапан КО2 происходит всасывание жидкости из бака, клапан КО1 при этом закрыт. При ходе поршня вниз происходит вытеснение жидкости через клапан КО1 в напорный трубопровод, клапан КО2 – закрыт.

На рис. 2 показан  ручной насос двустороннего действия. При ходе поршня вверх через обратный клапан КО4 происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости внапорный трубопровод через клапан КО1. Клапана КО2 и КО3 при этом закрыты. При ходе поршня вниз через обратный клапан КО2происходит всасывание жидкости из бака в нижнюю полость. Одновременно происходит вытеснение рабочей жидкости в напорный трубопровод через клапан КО3. Клапана КО1 и КО4 при этом закрыты.

Внешний вид ручного насоса показан на рис. 3.


Рис. 1


Рис. 2


Рис. 3

Достоинства и недостатки:

Достоинства

  • простота конструкции.
  • высокая надежность.
  • отсутствие приводного двигателя.

Недостатки

  • Низкая производительность

1.2Радиально-поршневые насосы

Радиально-поршневые насосы это разновидность роторно-поршневыхгидромашин. Эти насосы применяются для гидросистем с высоким давлением (свыше 40МПа). Эти насосы способны длительно создавать давления до 100МПа.Отличительной особенностью насосов данного типа является их тихоходность, частота вращения насосов данного типакак правило не превышает 1500-2000 об/мин. Частоты вращения до 3000 об/мин можно встретить только для насосов рабочим объемом не более 2-3 см3/об.

Радиально-поршневые насосы бывают двух типов:

  • С эксцентричным ротором
  • С эксцентричным валом

Радиально-поршневой насос с эксцентричным ротором изображен на рис. 4. Конструктивно поршневая группа насоса установлена в роторе насоса. Ось вращения ротора и ось неподвижного статора смещены на величину эксцентриситета e. При вращении ротора поршни совершают поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет золотниковое распределение. При вращении цилиндры поочередно соединяются с полостями слива и нагнетания разделенными перегородкой золотника, расположенного в центре.


Рис.4

Радиально-поршневой насос с эксцентричным валом изображен на рис. 5. Конструктивно поршневая группа насоса установлена в статоре насоса. Ось вращения вала и ось неподвижного статора совпадают, но на валу имеется кулачок, который смещен на величину е относительно центра вращения вала. При вращении вала, кулачок заставляет поршни совершать поступательное движение. Величина хода составит 2e.  Насос данной конструкции имеет клапанное распределение.  При вращении вала поршни выдвигаясь из цилиндров наполняются жидкостью через клапана всасывания. Нагнетание жидкости происходит через клапана нагнетания  при вхождении поршней в цилиндры.

Данная конструкция редко используется как насосная и намного чаще используется в гидромоторах, о которых будет рассказано в одной из следующих статей.


Рис.5

Рабочий объем гидромашин данного типа можно рассчитать по формуле:


где       z – число поршней

dп – диаметр поршня

е – эксцентриситет

Радиально поршневые насосы могут иметь конструкцию с переменным рабочим объемом. Регулировка рабочего объема происходит за счет изменения величины эксцентриситета е.

Из двух описанных конструкций большее распостранение получили радиально-поршневые насосы с эксцентричным валом. Это явилось следствием более простой конструкции. Фотографии радиально-поршневых насосов с эксцентричным валом представлены на рис. 6.


Рис. 6(а)


Рис. 6(б)

Достоинства и недостатки насосов радиально-поршневого:

Достоинства

  • простота конструкции.
  • высокая надежность.
  • Работа на давлениях до 100МПа.
  • Относительно малый осевой размер.

Недостатки

  • Высокая пульсация давления
  • Малые частоты вращения вала
  • Больший вес конструкции по отношению к аксиально-поршневым машинам.

1.3Аксиально-поршневые насосы

Аксиально-поршневые насосы – это разновидность роторно-поршневых гидромашин с аксиальным расположением цилиндров (т.е. располагаются вокруг оси вращения блока цилиндров, параллельны или располагаются под небольшим углом к оси).Существует деление по типу вытеснителя на аксиально-плунжерные и аксиально-поршневые гидромашины. Отличаются они тем, что в первых в качестве вытеснителей используются плунжеры, а во вторых — поршни см. рис. 7.


Рис. 7

Насосы данного типа являются самыми распространёнными в современных гидроприводах. По количеству конструктивных исполнений они во много раз превосходят прочие типы гидронасосов. Эти насосы обладают наилучшими габаритно-весовыми характеристики (иными словами имеют высокую удельную мощность), обладают высоким КПД.Насосы этого типа способны даватьдавление до 40МПа и работать на высоких частотах вращения (насосы общего применения имеют частоты до 4000 об/мин, но существуют специализированные насосы этого типа с частотами вращения до 20000 об/мин).

Все аксиально поршневые насосы можно разделить на 2 типа:

  • Снаклонным блоком (ось вращения блока цилиндров располагается по углом к оси вращения вала)
  • С наклоннымдиском (ось вращения блока цилиндров совпадает с осью вращения вала)

На рис. 8 показана конструктивная схема аксиально поршневого насоса с наклонным блоком. При вращении вала насоса, вращается шарнирно соединенный с ним блок цилиндров. При этом поршни совершают поступательные движения. Блок цилиндров прилегает к распределителю  который имеет два паза: один паз соединен с линией всасывания, а другой с линией нагнетания. При выдвижении поршня цилиндр движется над пазом всасывания (см. вид А рис.8) и наполняется жидкостью. После прохождения нижней мертвой точки (точки в которой поршень находится в максимально выдвинутом состоянии) цилиндр соединяется с пазом нагнетания в распределителе и начинает вытеснять жидкость из цилиндра пока не достигнет верхней мертвой точки (точки в которой поршень находится в максимально утоленном в цилиндр состоянии). Далее Цилиндр снова соединяется с пазом всасывания и цикл повторяется. Система распределения используемая в данной конструкции насоса называется золотниковой.


Рис.8

Утечки из цилиндров во время нагнетания скапливаются в корпусе насоса. Чтобы не допустить роста давления в корпусе, на насосах данной конструкции имеется линия дренажа. Если ее заглушить, то это приведет к выходу из строя манжеты вала и нарушению герметичности насоса, а в некоторых случаях – к разрушению корпуса насоса.

На рис.9 показана конструкция насоса с наклонным диском.


Принцип работы насоса с наклонным диском аналогичен работе насоса с наклонным блоком. Насос данной конструкции так-же имеет золотниковое распределение.  Отличие конструкций состоит в соосности осей вала и блока цилиндров.

Рабочий объем аксиально-поршневых насосов можно рассчитать из следующего выражения:


где       z – число поршней

dп – диаметр поршня

Dц– диаметр расположения цилиндров

γ – угол наклона диска(блока)

Для насосов конструкций рис. 8,9возможны исполнения с изменяемым рабочим объемом. Изменение рабочего объема происходит за чет изменения угла наклона диска или блока (в зависимости от конструкции).

Для аксиально-поршневых насосов необходим механизм синхронизации вращения приводного вала и блока цилиндров. Существует четыре основных способа такой синхронизации:

  • Синхронизация одинарным (силовым) карданом
  • Синхронизация двойным (несиловым) карданом
  • Синхронизация шатунами поршней (бескарданная схема)
  • Синхронизация коническим зубчатым зацеплением.

Аксиально-поршневой насос с наклонным блоком представлен на рис. 10. В данной конструкции синхронизация вращения вала и блока цилиндров осуществлена посредством конической зубчатой передачи.

Регулируемый аксиально-поршневой насос с наклонным диском  представлен на рис. 11.



Рис. 11

Рассмотрим еще одну довольно распространённую конструкцию  насоса с наклонным диском. Это конструкция аксиально-плунжерного насоса с неподвижным блоком, клапанным распределением и приводом плунжеровкулачкового типа (вращающейся наклонной шайбой). По ГОСТ  17398-72 этот тип насоса классифицируется как аксиально-кулачковый. Схема такого насоса показана на рис. 12.


Рис. 12

Эта конструкция имеет принципиальные отличия от конструкции изображенной на рис. 9. Насос на рис. 12 в отличие от предыдущей конструкции на рис. 9 имеет неподвижный блок цилиндров, совмещенный с корпусом, наклонный диск объединенный с валом и клапанное распределение рабочей жидкости. Ход плунжера определяется вращением наклонного диска. Система распределения работает следующим образом: выдвигаясь из цилиндра поршень создает в камере разряжение и через клапан всасывания камера наполняется жидкостью из полости корпуса, объединенной со всасыванием. При вхождении в цилиндр клапан всасывания находится в закрытом состоянии, происходит вытеснение рабочей жидкости из рабочей камеры через клапан нагнетания в линию нагнетания.

Некоторые конструкции аксиально-кулачковых насосов могут работать на давлениях до 70МПа.

Примечательным является факт отсутствия в данной конструкции линии дренажа так как всасывание осуществляется непосредственно из корпуса насоса. При этом в корпусе насоса абсолютное давления ниже атмосферного. По этой причине в данной конструкции повышенные требования предъявляются к уплотнению вала, при выходе из строя которого насос подсасывает воздух и подает гидросистему смесь воздуха и рабочей жидкости. Такой «воздушный коктейль» приводит к вибрациям в гидросистеме и выходу из строя ее элементов, включая насос.

Рабочий объем рассчитывается по той-же зависимости что и для описанных выше конструкций аксиально-поршневых насосов. Следует отметить что насос данной конструкции не имеет исполнения с регулируемым рабочим объемом.

Фотография насоса сконструктивным вырезом показана на рис. 13.


Достоинства и недостатки насосов аксиально-поршневого типа:

Достоинства

  • простота конструкции.
  • Работа на давлениях до 70МПа.
  • Высокий КПД.
  • Частоты вращения до 4000 об/мин
  • Высокая удельная мощность.

Недостатки

  • Высокая пульсация давления
  • Высокая стоимость по сравнению с другими типами гидронасосов.

2. Шестеренные насосы

Шестеренные насосы относятся к типу роторныхгидромашин.  Рабочими элементами (вытеснителями) являются две вращающиеся шестерни. Различают два основных типа таких насосов:

  • Насосы внешнего зацепления
  • Насосы внутреннего зацепления.

Частным случаем шестеренных насосов с внутренним зацеплением являются героторные насосы.

Шестеренные насосы широко распространены в гидросистемах с невысокими (до 20 МПа) давлениями.  Они широко применяются в сельскохозяйственной, дорожной технике, мобильной гидравлике, системах смазки. Используются для обеспечения гидравлической энергией гидроприводов вспомогательных механизмов в сложных гидросистемах. Столь широкое распространение шестеренные насосы получили за простоту конструкции, компактность и малый вес. Платой за простоту конструкции стало довольно низкое значение КПД (не более 0,85), низкое рабочее давление, и небольшой ресурс (особенно на давлениях ≈20МПа). Шестеренные насосы могут работать на частотах вращения до 5000об/мин.

Существуют образцы шестеренных насосов на давления до 30МПа однако ресурс таких насосов на порядок ниже.

2.1Шестеренные насосы внешнего зацепления

Основными элементами шестеренных насосов внешнего зацепления являются шестерни. При вращении шестерен жидкость, заключенная во впадинах зубьев переносится из линии всасывания в линию нагнетания (рис.14).   Поверхности зубьев А1 и А2 вытесняют при вращении шестерен больше жидкости чем может поместиться в пространстве освобождаемом  зацепляющимися зубьями B1 и B2. Разность объемов, высвобождаемых двумя парами зубьев вытесняется в линию нагнетания. В месте зацепления шестерен при работе насоса образуются области «запертого» объема, что вызывает пульсации давления в линии нагнетания.

Рабочий объем шестеренного насоса можно определить из зависимости:


Где     m – модуль зубьев

z – число зубьев

b – ширина зуба

h – высота зуба

Шестерни насосов внешнего зацепления в большинстве конструкций имеют прямой зуб, однако встречаются конструкции таких насосов с косым и шевронным зубом. Преимущество применения косого зуба состоит в меньшем уровне пульсаций за счет того что в месте зацепления «запертые» объемы не образуются. Недостатком конструкций с косым зубом является возникающая осевая сила, для восприятия которой нужно включать в конструкцию упорные подшипники. Этот недостаток отсутствует в насосах с шевронным зубом, где осевая сила компенсируется формой зуба. У насосов с шевронным зубом также малый уровень пульсаций.


Рис. 14

Конструктивный разрез шестеренного насоса с внешним зацеплением показан на рис. 15.


Рис. 15

Достоинства и недостатки шестеренных насосов внешнего зацепления:

Достоинства

  • простота конструкции.
  • Частоты вращения до 5000 об/мин
  • Низкая стоимость

Недостатки

  • Высокая пульсация давления
  • Низкий КПД
  • Сравнительно низкие давления

2.2   Шестеренные насосы внутреннего зацепления

Отличительной особенностью шестеренных насосов внутреннего зацепления является меньший уровень пульсаций и как следствие малый уровень шума. В связи с этим они находят широкое в стационарных машинах и механизмах, а так-же на мобильной технике работающей в закрытых помещениях.

Принцип работы шестеренного насоса с внутренним зацеплением  состоит, как и у насосов внешнего зацепления, в переносе жидкости во впадинах шестерен от линии всасывания в линию нагнетания. В зоне всасывания при вращении шестерен объем камеры, образованной зубьями шестерен и серпообразным разделителем, увеличивается(см. рис. 16). При этом происходит наполнение рабочей камеры жидкостью из линии всасывания. В зоне нагнетания происходит процесс вытеснения рабочей жидкости в линию нагнетания, т.к. объем камеры в этой зоне при вращении шестерен уменьшается.


Рабочий объем шестеренного насоса с внутренним можно определить из зависимости:


Где     m – модуль зубьев

z – число зубьев внутренней шестерни

b – ширина зуба

h – высота зуба

Конструктивный разрез шестеренного насоса с внутренним зацеплением показан на рис. 17.


Рис.17

Достоинства и недостатки шестеренных насосов внутреннего зацепления:

Достоинства

  • простота конструкции.
  • Частоты вращения до 4000 об/мин
  • Низкий уровень шума
  • Низкая стоимость

Недостатки

  • Низкий КПД
  • Сравнительно низкие давления

2.3 Героторные насосы.

Героторные насосы это разновидность шестеренных насосов с внутренним зацеплением. Отличие от классической конструкции шестеренного насоса с внутренним зацеплением состоит в отсутствии серпообразного разделителя. Разделение полостей всасывания и нагнетания реализовано за счет применения специального профиля. Его форма такова что в зоне где должен находиться серпообразный разделитель обеспечен постоянный контакт шестерен. (рис.18). Принцип работы насоса данной конструкции точно такой же как и шестеренного насоса с внутренним зацеплением.Героторные насосы обычно используют при невысоких давлениях (до 15МПа) и подачах до 120 л/мин. При этом частоты вращения составляют не более 1500 об/мин.

Изображение героторногопоказано насосана рис. 19.


Рис.18

Рабочий объем героторного насоса можно определить из выражения:


Где     Аmin,Аmin – минимальная и максимальная площадь межзубьевой камеры

z – число зубьев внутренней шестерни

b – ширина зуба

\

Рис.19

Достоинства и недостатки героторных насосов:

Достоинства

  • Простота конструкции
  • Низкий уровень шума

Недостатки

  • Невысокий КПД
  • Высокая по сравнению с шестеренными насосами стоимость

2.4 Роторно-винтовые насосы.

Еще одной разновидностью шестеренного насоса можно считать винтовые насосы. Их рабочие элементы можно представить как косозубые шестерни с количеством зубьев равному числу заходов винтовой нарезки. Главным преимуществом этих насосов является равномерность подачи и как следствие низкий уровень шума. Достоинством насоса также является его способность перекачивать жидкости с твердыми включениями. Давление развиваемое насосом может составлять до 20МПа. Частоты вращения до 1500 об/мин.

Ввиду сложности изготовления данного типа насосов, они не получили широкого распространения и применяются лишь в специфических гидросистемах. Существуют двух (рис. 20) и трехвинтовые (рис. 21) конструкции насосов.



Достоинства и недостаткироторно-винтовых насосов:

Достоинства

  • Низкий уровень шума
  • Низкий уровень пульсаций

Недостатки

  • Невысокий КПД
  • Высокая стоимость

3.  Пластинчатые насосы.

Плас

www.rg-gidro.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *