Несущая способность сваи по грунту калькулятор – Несущая способность сваи по грунту в Excel V1.05 (все автоматизировано)

Содержание

правила определения, размещение свай и калькулятор

Сваи широко применяют в строительстве. Они позволяют устраивать фундамент на неустойчивых почвах, ограждать котлованы, возводить подпорные стенки и укреплять грунт.

Это экономичный, устойчивый вариант установки фундамента, применяемый практически в любых условиях.

В статье мы расскажем о видах свай, порядке и различных методах расчета фундамента.

Виды

Расчет свай начинается с выбора их типа.

По способу заглубления в грунт различают:

  • Забивные сваи. Самый популярный вид. Погружаются в грунт путем забивки пневматическим молотом на рассчитанную глубину;
  • Буронабивные сваи устанавливаются в самые короткие сроки. Сначала методом шнекового бурения разрабатывают скважину и уплотняют грунт вокруг нее. Потом одновременно с извлечением бура под давлением закачивают в скважину бетонную смесь. Сразу после этого в ней устанавливают армирующий каркас. Его изготавливают из металлических стержней на заводе или строительной площадке;
  • Вибропогружаемые опускаются в толщу пород под действием собственного веса. Специальная установка передает вибрацию через сваю на грунт, за счет этого уменьшается сила трения между конструкцией и частицами почвы и свая постепенно погружаются в породу. Метод применяется на площадках с песчаным или насыщенным влагой грунтом;
  • Винтовые конструкции имеют лопасти на концах, благодаря им конструкция погружается в землю. Хорошо работают на неустойчивых грунтах и плывунах при наличии недалеко от поверхности прочной породы. При монтаже не издают шума, не повреждают почву, могут устанавливаться на площадках с плотной застройкой. Монтаж осуществляется вручную или с применением легкой техники;
  • Вдавливаемые устанавливаются без сильных толчков и вибраций, создают минимальную нагрузку на почву и фундаменты расположенных вблизи сооружений. Подходят для строительства крупных объектов в местах с плотной застройкой и вблизи зданий с неустойчивыми или старыми фундаментами.

По виду материала:

  • Железобетон. Самый популярный материал для возведения крупных объектов. Металл, составляющий каркас обеспечивает стойкость к изгибающим нагрузкам, а бетон защищает металлоконструкцию от воздействия окружающей среды, обеспечивает стойкость к вертикальным нагрузкам и увеличивает силу трения с грунтом;
  • Дерево. Применяется в индивидуальном строительстве на сухих почвах. Дешевый и доступный материал, но требует дополнительной гидроизоляции;
  • Металл. Из этого материала выполняют винтовые сваи. После изготовления их покрывают специальным составом, защищающим их от коррозии.

Сваи отличаются по виду конструкции и форме. Это могут быть квадратные, прямоугольные, многоугольные и круглые сечения. Последний вид приобрел наибольшую популярность благодаря простоте изготовления и расчета нагрузки на такую конструкцию.

По характеру работы:

  • Сваи-стойки работают за счет установки их нижней части на прочную породу. Они передают нагрузку на устойчивое основание, миную другие, менее надежные слои;
  • Висячие сваи работают за счет силы трения между ними и сжатыми грунтами вокруг.

На выбор типа конструкции влияют условия работы, особенности грунтов, конструкция и вес здания. Для правильного расчета необходимо обратиться к специалистам, способным провести все необходимые измерения и изыскания.

Проектирование свайного фундамента

При проектировании свайного фундамента необходимо участь ряд факторов, влияющих на его устойчивость:

  • Глубина залегания толщина и надежность пород;
  • Масса здания;
  • Условия строительства и эксплуатации;
  • Конструктивные особенности здания.

При проектировании инженеры опираются на данные геологических изысканий и на их основе определяют возможность строительства, рассчитывают количество свай, выбирают их вид, форму и материал.

Второй важный фактор — это нагрузка от здания.

Она складывается из нескольких видов нагрузки:

  • Постоянная. Включает в себя вес самого здания;
  • Долгосрочная временная — это вес станков, оборудования и других тяжелых конструкций;
  • Краткосрочная временная складывается из веса мебели и людей в здании;
  • Снеговая и ветровая нагрузки рассчитываются отдельно для каждого здания на основании климатических данных региона согласно СП 131.13330.2012 «Строительная климатология».

Карта снеговых районов России

Вид сваи зависит от технико-экономических показателей строительства. Подбирается самый дешевый вариант, удовлетворяющий все требования и обеспечивающий надежность конструкции.

На этапе проектирования инженеры предусматривают запас прочности, обеспечивающий длительный срок эксплуатации фундамента даже при больших нагрузках.

Расчет ростверка

Важный показатель для строительства — количество свай в ростверке. Этот показатель напрямую влияет на способность конструкции правильно передавать нагрузку на основание и обеспечивать прочность фундамента.

Ростверк — это балка, соединяющая верхние части свай и равномерно распределяющая между ними нагрузку.

Крепление ростверка к разным видам свай

Количество свай в ростверке находят по формуле:

где:

  • dp — заглубление ростверка;
  • N0I — максимальное значение суммы нагрузок от веса здания;
  • Yk — коэффициент надежности;
  • F — максимальная нагрузка на одну сваю;
  • A — площадь ростверка;
  • Ymt — усредненный вес ростверков и грунта на его обрезах.

Полученное в результате вычислений число округляется всегда в большую сторону до целого значения.

Сваи распределяют согласно правилам:

  • В шахматном порядке, в два ряда или в одну линию с равными промежутками;
  • Расстояние между соседними сваями не менее трех их диаметров;
  • Минимальное расстояние от края ростверка до ближайшей сваи равно одному ее диаметру;
  • При возникновении только вертикальных нагрузок сваи заглубляют в ростверк всего на 5–10 см, в иных случаях соединение делают более надежным и дополнительно рассчитывают.

При расчетах ростверков инженеры работают, основываясь на СП 63.13330.2012 «Бетонные и железобетонные конструкции».

Алгоритм расчета свайного фундамента

Процесс расчета начинается с определения общего веса здания.

Он состоит из суммы массы всех конструкций:

  • Кровля;
  • Стены;
  • Перекрытия;
  • Железобетонный каркас.

При расчете толщина каждого слоя конструкции умножается на ее высоту и на плотность. В результате рассчитывается нагрузка на 1 м2 конструкции.

Кратковременные равномерно распределенные нагрузки (вес людей и мебели) берутся с расчетом 150 кг/м2. Сумма нагрузок вычисляется путем умножения значения на общую площадь здания. После этого определяется нагрузка от веса снега. Она будет зависеть от климатического района и форму крыши.

Чем больше угол наклона крыши, тем меньше будет снеговая нагрузка.

После этого определяется несущая способность каждой сваи и их количество в ростверках. Полученные значения дополнительно проверяют и только после этого приступают к дальнейшему проектированию и строительству здания.

Расчет несущей способности по грунту

Несущая способность — это значение, необходимое для выполнения правильных расчетов. Выполнить расчет можно с помощью нескольких методов.

Предварительный теоретический расчет по формуле Fd = Yc * (Ycr * R * A + U * ∑ Ycri * fi * li), где:

  • А — площадь опирания на грунт нижней части единицы конструкции;
  • Yc, Ycr, Ycri — коэффициенты, учитывающие условия работы фундамента, основания, сил трения;
  • U — периметр разреза сваи;
  • fi — сила трения на боковых стенках;
  • R — величина несущей способности грунта в месте опирания;
  • li — длина боковых частей.

Метод статических нагрузок — это комплекс полевых работ, связанных с практическим нахождением несущей способности.

Это наиболее точный метод:

  • На площадке устанавливают пробную сваю;
  • Дают конструкции набраться прочности в течение положенного срока;
  • Установленный на сваю ступенчатый домкрат передает на нее нагрузку;
  • Специальный прибор замеряет усадку сваи;
  • На основе полученных данных проводятся расчеты.

Метод динамической нагрузки -на уже установленный свайный фундамент передают ударную нагрузку и после каждого удара определяют усадку и проводят необходимые расчеты.

Метод зондирования — пробную сваю оснащают датчиками, погружают на расчетную глубину и определяют сопротивление грунтов.

После выполнения теоретического расчета необходимо дополнительно выполнить одно или несколько полевых испытаний и дополнительных расчетов на их основании. Это поможет проверить правильность расчетов и изысканий на практике.

Для упрощения расчетов инженерами был создан калькулятор несущей способности грунта с использованием макросов в Excel.

Он способен:

  • Построить график изменения несущей способности;
  • Разбить толщу пород на слои, основываясь на введенных данных;
  • Найти коэффициент работы всей поверхности сваи;
  • Учесть коэффициенты, уменьшающие несущую способность.

Расчет сваи-стойки, опирающейся на несжимаемое основание

Данные для расчета берут в СП 24.13330.2011 «Свайные фундаменты».

В таблице указаны значения расчетных сопротивлений свай:

Табличные значения сопротивлений для разных типов грунта

Формула для расчета сваи-стойки:

Fd=gcRA, где:

  • gc — коэффициент, учитывающий работу грунта;
  • R — взятое из таблицы сопротивление грунта;
  • А — площадь разреза сваи.

Результат расчета используется для дальнейшего нахождения количества свай в ростверке.

Заключение

Расчет несущей способности сваи по грунту — это непростой процесс, требующий опыта и внимания со стороны инженеров. Расчет выполняется в несколько этапов, теоретически полученные значения проверяют в ходе полевых испытаний, полностью исключая возможность ошибки.

Расчет свайного фундамента могут выполнять только профессионалы с инженерным образованием и разрешением на подобную деятельность.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

stroim-domik.org

Расчет несущей способности сваи, пример, методы, определение прочности буронабивных свайных элементов и ТИСЭ своими руками, устойчивость опор по грунту, инструкция, фото и видео-уроки, цена

Расчет несущей способности сваи – это одна из важнейших задач, которая стоит перед специалистом, занимающимся проектированием фундамента свайного типа. С одной стороны, использование недостаточно прочных элементов приведет к понижению механических характеристик основания. С другой же стороны, необходимо принимать во внимание экономический аспект, ведь за каждую сваю, установленную «про запас», нужно платить.

В нашей статье мы приведем краткий обзор методов, по которым провидится расчет механических характеристик опорных конструкций, а также продемонстрируем несколько примеров вычислений.

Несущая способность  — один из важнейших параметров

Общие положения

  Реклама


 

Сопротивление материала и грунта

Большинством инженеров несущая способность свай определяется наименьшим значением из двух параметров:

  • С одной стороны – сопротивление материала, из которого изготовлен стержень вертикальной или наклонной опоры.
  • С другой стороны – сопротивление грунта, в который погружена вертикальная или наклонная опора.

Поскольку оба эти фактора воздействуют на конструкцию одновременно, то именно наименьшая величина является той критической точкой, которая определяет предел нагрузки на отдельный элемент фундамента. Проще говоря, не важно, что первым начнет деформироваться – опора или грунт, в любом случае целостность конструкции будет под угрозой.

Сопротивление, воздействующее на вертикальную опору

Если говорить об идеальном соотношении, то несущая способность сваи по материалу должна быть равна этому же параметру по грунту. Естественно, реализовать это на практике практически нереально, потому при проектировке фундаментов стараются, чтобы указанные значения были максимально близкими.

Обратите внимание! Чем сильнее отличаются несущая способность сваи по грунту и по материалу, тем не менее, проект свайного фундамента является эффективным с экономической точки зрения.

Применяемые методы

На сегодняшний день существует несколько методик, позволяющих подобрать оптимальное соотношение механических характеристик опор для того или иного грунта.

В зависимости от сложности объекта и поставленных перед проектировщиками задач, методы определения несущей способности свай могут использоваться как по отдельности, так и в комплексе:

  • Расчетное определение несущей способности свай осуществляется согласно требованиям СНиП 2.02.03-85 «Свайные фундаменты». Данный метод является наименее точным, однако именно он дает возможность осуществить предварительную оценку ситуации. Именно на этом методе определения будут основаны примеры, приведенные ниже.
  • Пробные статические нагрузки.  Суть методики заключается в испытании погруженной до условной отметки сваи под различными вертикальными нагрузками. Регистрируемые показатели осадки и деформации дают возможность оценить, насколько данная конструкция пригодна к использованию. Методика весьма эффективна, а главными ее недостатками являются длительность испытаний и высокая цена.

Фото в процессе  испытания

  • Динамическое испытание. Установленная свая подвергается нескольким ударам свайного молота, после чего регистрируется ее осадка. Данный метод является мене точным, чем предыдущий, но зато позволяет провести тестирование прямо на объекте.
  • Зондирование (статическое и динамическое). Методика заключается в регистрации нагрузок на основание и боковую поверхность с помощью установленных датчиков.

Как правило, при масштабных строительных работах определение несущей способности сваи выполняется с помощью нескольких дублирующих методов.  Мы же попробуем воспользоваться расчетными технологиями, и проанализируем, как можно вычислить механические характеристики свай разного типа.

Устройство для зондирования грунта

Технология расчета

Буронабивные сваи

В качестве одного из примеров возьмем буронабивную конструкцию.

Конструкция буронабивных свайных фундаментов представляет собой заглубленную в грунт систему, основу которой составляет обсадная труба, заполненная бетоном. Сваи данного типа применяются при повышенных эксплуатационных нагрузках, потому их диаметр может доходить до 1,5 м, а глубина – до 40 м.

Создание буронабивной конструкции

Расчет несущей способности буронабивной сваи чаще всего приходится осуществлять на основании данных так называемого статистического зондирования – обязательного испытания для грунтов, на которых планируется возведение фундамента свайного типа.

Пример расчета несущей способности сваи в одной из точек зондирования приводится ниже.

Для расчета используется формула:

Fdu= R*А + u*Σ γcf∙fi∙hi, где:

  • R – сопротивление грунтового основания под подошвой сваи (табличное значение, выражается в кПа).
  • А – площадь основания сваи.
  • u – периметр сечения основания вертикальной опоры.
  • fi – усредненное значение сопротивлениябоковой поверхности опоры.
  • hi – толщина слоя грунта.

Обратите внимание! При сухой бетонировке свай коэффициент γcf принимается равным единице.

Начинаем расчет:

  • R для глинистого грунта – 794 кПа.
  • А = π∙d2/4 = 3,14 * 0,8/4 = 0,5 м2.
  • u = π∙d = 3,14 * 0,8 = 2,5 м.
  • Σ γcf∙fi∙hi  = 222 (определяем с помощью табличных значений fi и hi).

Подставив полученные данные в формулу, получаем:

Fdu = 794 * 0,5 + 2,5 * 222 = 952 кН = 95,2 т.

Именно такую нагрузку может выдержать буронабивная свая в данных условиях.

Данные статистического зондирования

Также несущая способность буронабивной сваи влияет на количество элементов в кусте под конкретной деталью конструкции.

Формула расчета имеет следующий вид:

n = N∙γn *  γk/(Fd∙ γ0), где:

  • n – минимально необходимое количество вертикальных опор.
  • N – расчетная масса элемента, опирающегося на фундамент (в нашем случае 250 т).
  • γn – показатель надежности сооружения (для 2го уровня ответственности составляет около 1,15).
  • ·         γk – показатель надежности грунта (1,25)
  • γ0 – условия работы сваи (1,15).

В результате:

n = 250 * 1,15 * 1,25 / (95,2 * 1,15) = 3,28 шт.

Следовательно, каждый куст должен содержать не менее четырех свай заданного типа.

Обратите внимание! Данная инструкция содержит условные табличные значения. Если вы будете осуществлять вычисления своими руками, то вам следует ориентироваться на результаты статистического зондирования именно вашего участка.

Сваи ТИСЭ

Отдельную категорию опор для капитального строительства составляют так называемые сваи ТИСЭ. Они представляют собой вертикальные столбы, в нижней части которых находится расширенная площадка.

Система ТИСЭ: конструкция и размеры

Глубина расположения опор определяется уровнем промерзания грунта. Для обеспечения сохранения формы опорной конструкции используются буры с оголовками особой формы, а также специальные опалубки.

Несущая способность сваи ТИСЭ рассчитывается с учетом массы возводимого здания, а также характеристик грунта, в который заглубляется фундамент. Поскольку наиболее часто в подобных основаниях используются опоры диаметром 600 мм, то именно они и будут рассматриваться в таблице ниже:

Особенности грунтового основания (тип почвы)

Расчетное сопротивление основания, кг/м2

Несущая способность опоры ТИСЭ диаметром 600 мм, т.

Глина

6,0

17,00

Суглинок средний и тяжелый

3,0

8,40

Супесчаный грунт

3,0

8,40

Песчаный грунт с примесями пылеватой фракции

2,0

5,60

Среднепесчаный грунт

5,0

14,00

Крупнопесчаный грунт

6,0

17,00

Приведенная  таблица может использоваться при проектировании любых жилых зданий и сооружений. При этом следует помнить, что ключевым моментом является верное определение гранулометрического состава грунта (т.е. соотношения в нем глинистых и песчаных частиц), а также – вычисление сопротивления грунтового основания.

Силы, воздействующие на расширенное основание

Рассчитав несущую способность одной опоры ТИСЭ, мы сможем без труда вычислить минимальное количество таких опор, необходимых для обеспечения максимальной надежности возводимой конструкции заданной массы.

Программы для расчета

Естественно, столь сложные вычисления под силу далеко не каждому, да и разобраться во всех тонкостях документов может исключительно специалист. Именно для этого и существуют программы, которые позволяют оптимизировать процесс вычисления механических характеристик опорных элементов для фундамента.

Пример использования программы

Данные программы обладают вполне доступным для понимания интерфейсом, что существенно облегчает работу даже неопытному пользователю компьютера. Но следует, все же, отметить, что по сложности они многократно превосходят широко распространенные в сети онлайн-калькуляторы, и для получения максимально объективной информации теоретическая подготовка, однако, понадобится.

Но если выбирать между «высшей математикой» формул СНиП и программой, облегчающей работу – то последняя находится вне всякой конкуренции»

Вывод

Выполненный по всем правилам расчет несущей способности свай, представляет собой достаточно сложную процедуру. Браться за нее «с наскока» не стоит, так как для полного понимания всех механизмов, влияющих на характеристику опор, нужно обладать солидным багажом знаний.

И все же время, которое потребуется на изучение данного материала, ни в коем случае не будет потрачено зря, ведь от правильного расчета зависит не только экономическая эффективность стройки, но и безопасность вашего дома.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме (узнайте также как делают фундамент на буронабивных сваях с монолитным ростверком).

ofundamentah.com

Расчет несущей способности одиночной сваи

По условиям работы сваи в грунте сваи делятся на сваи-стойки и висячие сваи.

Сваи-стойки передают нагрузку на практически несжимаемые породы (скальные и полускальные, сланцы, мергели, очень плотные грунты). Их вертикальные перемещения ничтожны, силы трения по боковой поверхности не развиваются и в расчете не учитываются. Несущая способность таких свай зависит от сопротивления грунтов, залегающих под нижним концом свай (Fd=Rs).

Рисунок6.10: Расчетная схема к определению несущей способности одиночной сваи

ziглубина до середины слоя грунта, для которого определяется сопротивление на боковой поверхности; hiтолщинаi-го слоя грунта;hполная глубина погружения сваи

Несущую способность Fd(кН) висячей забивной сваи, работающей на сжимающую нагрузку, следует определять как сумму сил расчетных сопротивлений грунтов оснований под нижним концом сваи и на ее боковой поверхности по формуле:

(6.27)

где с=1 – коэффициент условий работы сваи в грунте;

R– расчетное сопротивление грунта под нижним концом сваи, определяемое по Таблица 6 .20;

А– площадь опирания на грунт сваи, принимаемая по площади поперечного сечения сваи брутто;

u– наружный периметр поперечного сечения сваи, м;

fi– расчетное сопротивлениеi-го слоя грунта основания на боковой поверхности сваи, определяемое по Таблица 6 .21;

hi– толщинаi-го слоя грунта, соприкасающегося с боковой поверхностью, м;

cRиcf– коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения на расчетные сопротивления грунта, определяемые по Таблица 6 .22 и принимаемые независимо друг от друга.

Для того, чтобы воспользоваться предложенной формулой необходимо вычертить расчетную схему сваи на фоне геологического разреза (Рисунок 6 .10).

Грунтовую толщу в пределах сваи разбивают на элементарные однородные слои, мощность которых не должна превышать 2м. При этом на уровень грунтовых вод внимания не обращать, а растительный слой не учитывать. Рекомендуемая схема разбивки геологическогих слоев на элементарные: 2м+…+2м+остаток.

Таблица6.20

Расчетное сопротивление под нижним концом сваи

Глуби-на погру-жения нижне-го конца сваи, м

Расчетное сопротивление под нижним концом забивных свай и свай-оболочек, погруженных без выемки грунта, R, кПа

песчаных грунтов средней плотности

граве-листых

круп-ных

сред-ней круп-ности

мелких

пылеватых

пылевато-глинистых грунтов при показателе текучести IL, равном

0

0,1

0,2

0,3

0,4

0,5

0,6

3

7500

6000

4000

3000

3100

2000

2000

1200

1100

600

4

8300

6800

5100

3800

3200

2500

2100

1600

1250

700

5

8800

7000

6200

4000

3400

2800

2200

2000

1300

800

7

9700

7300

6900

4300

3700

3300

2400

2200

1400

850

10

10500

7700

7300

5000

4000

3500

2600

2400

1500

900

15

11700

8200

7500

5600

4400

4000

2900

1650

1000

20

12600

8500

6200

4800

4500

3200

1800

1100

25

13400

9000

6800

5200

3500

1950

1200

30

14200

9500

7400

5600

3800

2100

1300

35

15000

10000

8000

6000

4100

2250

1400

См. примечания к Таблица 6 .22

Таблица6.21

Расчетные сопротивления на боковой поверхности забивных свай.

Средняя глубина располо-жения слоя грунта ,м

Расчетные сопротивления на боковой поверхности забивных свай и свай-оболочек fi , кПа

песчаных грунтов средней плотности

круп-ных и средней круп-ности

мел-ких

пылеватых

пылевато-глинистые грунты с показателем текучести IL, равном

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1

2

3

4

5

6

8

10

15

20

25

30

35

35

42

48

53

56

58

62

65

72

79

86

93

100

23

30

35

38

40

42

44

46

51

56

61

66

70

15

21

25

27

29

31

33

34

38

41

44

47

50

12

17

20

22

24

25

26

27

28

30

32

34

36

8

12

14

16

17

18

19

19

20

20

20

21

22

4

7

8

9

10

10

10

10

11

12

12

12

13

4

5

7

8

8

8

8

8

8

8

8

9

9

3

4

6

7

7

7

7

7

7

7

7

8

8

2

4

5

5

6

6

6

6

6

6

6

7

7

См. примечания к Таблица 6 .22

Таблица6.22

Коэффициенты условий работы для расчета несущей способности забивных свай

Способы погружения забивных свай и свай-оболочек, погружаемых без выемки грунта

Коэффициенты условий работы грунта при расчете несущей способности свай

Под нижним концом сR

На боковой поверхности cf

1. Погружение сплошных и полых с закрытым нижним концом свай механическими (подвесными) паровоздушными и дизельными молотами

1,0

1,0

Погружение забивкой и вдавливанием в предварительно пробуренные лидерные скважины cзаглублением концов свай не менее 1м ниже забоя скважины при ее диаметре:

а) равной стороне квадратной сваи

б) на 0,05м менее стороны квадратной сваи

в) на 0,15м меньше стороны квадратной или диаметра круглой сваи

1,0

1,0

1,0

0,5

0,6

1,0

Погружение с подмывом в песчаные грунты при условии добивки свай на последнем метре погружения без применения подмыва

1,0

0,9

Вибропогружение свай-оболочек, вибропогружение и вибровдавливание свай в грунты:

а) песчаные средней плотности:

крупные и средней крупности

мелкие

пылеватые

б) пылевато-глинистые с показателем текучести IL=0,5:

супеси

суглинки

глины

в) пылевато-глинистые с показателем текучести IL0

1,2

1,1

1,0

0,9

0,8

0,7

1,0

1,0

1,0

1,0

0,9

0,9

0,9

1,0

Погружение вдавливанием сплошных свай:

а) в пески средней плотности, крупные, средней крупности и мелкие

б) в пески пылеватые

в) пылевато-глинистые грунты с показателем

текучести IL0

г) то же IL>0

1,1

1,1

1,1

1,0

1,0

0,8

1,0

1,0

Примечания:

  1. В случаях, когда в Таблица 6 .20 значения Rуказаны дробные, числитель относится к пескам, а знаменатель – к глинам.

  2. В Таблица 6 .20 и Таблица 6 .21 глубину погружения нижнего конца сваи и среднюю глубину расположения слоя грунта при планировке территории срезкой, подсыпкой, намывом до 3м следует принимать от уровня природного рельефа, а при срезке, подсыпке, намыве от 3 до 10м – от условной отметки, расположенной соответственно на 3м выше уровня срезки или на 3м ниже уровня подсыпки.

  3. Для промежуточных глубин погружения свай и свай-оболочек и промежуточных значений текучести ILпылевато-глинистых грунтов значенияRиfiопределяются интерполяцией.

  4. Для плотных песчаных грунтов, степень плотности которых определена по материалам статического зондирования, значения по Таблица 6 .20 для свай, погруженных без использования подмыва или лидерных скважин, следует увеличивать на 100%. При определении степени плотности грунта по материалам других видов инженерных изысканий и отсутствии данных статического зондирования для плотных песков по Таблица 6 .20 следует увеличить на 60%, но не более чем до 20МПа.

  5. Значения расчетных сопротивлений Rпо Таблица 6 .20 допускается использовать при условии, если заглубление сваи в неразмываемый и несмываемый грунт составляет не менее 3м.

  6. Значения расчетного сопротивления Rпод нижним концом забивных свай сечением 0,15х0,15м и менее, используемых в качестве фундаментов под внутренние перегородки одноэтажных производственных зданий, допускается повышать на 20%.

  7. Для забивных свай, опирающихся нижним концом на рыхлые песчаные грунты или на пылевато-глинистые грунты с показателем текучести IL>0,6, несущую способность следует определять по результатам статических испытаний свай.

  8. При определении по Таблица 6 .21 расчетных сопротивлений грунтов на боковой поверхности свай-оболочек и свай fiпласты грунтов следует расчленять на однородные слои толщиной не более 2м.

  9. Значения расчетного сопротивления плотных песчаных грунтов на боковой поверхности свай fiследует увеличивать на 30% против значений, приведенных в Таблица 6 .21.

  10. Расчетные сопротивления супесей и суглинков с коэффициентом пористости e<0,5 и глин с коэффициентом пористостиe<0,6 следует увеличивать на 15% против значений, приведенных в Таблица 6 .21 при любых значениях показателя текучести.

studfiles.net

Калькулятор расчета несущей способности винтовых свай

Если для строительства дома выбирается свайно-винтовой фундамент, то необходимо определиться и с типоразмером опор, и с их количеством, которое будет способно обеспечивать стабильность планируемой постройки. Так как многие владельцы загородных участков принимают решение о проведении самостоятельного строительства на таком фундаменте, есть смысл помочь им в проведении хотя бы предварительных расчетов.

Калькулятор расчета несущей способности винтовых свай

Наверное, понятно, что общее количество опор зависеть от суммарной нагрузки, которой здание оказывает на фундамент. Ее необходимо равномерно распределить по сваям, так, чтобы не превысить допустимую нагрузку на каждую из них, чтобы здание не начало «тонуть» в грунте. И вот для этого требуется узнать возможности такой точки опоры. А поможет нам в этом калькулятор расчета несущей способности винтовых свай.

Ниже будут приведены некоторые пояснения по порядку проведения вычислений.

Содержание статьи

Калькулятор расчета несущей способности винтовых свай

Перейти к расчётам

На чем основывается и как проводится расчет

Чаще всего в частном строительстве используются недорогие, но достаточно надежные сваи со сварными лопастями, модельного ряда СВС (свая винтовая сварная). Этот модельный ряд включает несколько типоразмеров, которые применятся в зависимости от вида планируемой постройки – от лёгких заборов до полноценных загородных домов.

Для возведения жилых и хозяйственных построек обычно применяются сваи от СВС-89 и крупнее (число показывает диаметр трубы). Соответственно, с повышением диаметра трубы увеличивается и размер лопастей винтовой части, то есть, про сути – площадь опоры сваи на грунт. Эти размерные параметры свай уже внесены в программу расчета.

Каждый тип грунта обладает собственным сопротивлением нагрузке, или, иначе говоря, несущей способностью, выражаемой в килограммах на квадратный сантиметр. Таким образом, определив тип грунта на планируемой глубине залегания лопастей сваи, и зная их площадь, несложно вычислить и несущую способность опоры.

Сопротивления грунтов на глубине залегания от 1.5 и ниже – уже внесены в программу расчета.

Безусловно, должен быть предусмотрен и эксплуатационный резерв несущей способности опоры. Для этого вводится поправочный коэффициент. И вот здесь есть нюансы:

  • Самый точный способ определения характеристик грунтов – это проведение геологического исследования участка. Поправочный коэффициент в этом случае – минимальный, всего 1,2, так как вероятность ошибки практически исключается. Но к этому способу прибегают нечасто, просто по причине высокой стоимости подобных работ.
  • Второй способ – это установка так называемой эталонной сваи. Опора ввинчивается в грунт на участке строительства, и после того, как она заглубится ниже уровня промерзания, с помощью специальных приборов оценивается крутящий момент, прикладываемый к свае. Это дает достаточно точную картину несущей способности грунта, но поправочный коэффициент уже выше – 1,25.
  • Наконец, многие владельцы участка полагаются на собственные силы, и оценивают грунт, выкапывая шурфы или пробуривая вручную скважины на требуемую глубину. Безусловно, степень точности такого анализа – далека от идеала, поэтому в расчет закладывается максимальный коэффициент надежности, доходящий до 1,7.

Итоговый результат несущей способности сваи будет получен в килограммах и тоннах. Определив этот параметр и располагая значение общей нагрузки от здания на фундамент, несложно определиться и с количеством свай.

Планирование свайного фундамента – как провести самостоятельно?

Чтобы не столкнуться в процессе эксплуатации здания с проблемами проседания или перекоса свайного фундамента, необходимо учитывать немало нюансов. Подробнее об этих важных вопросах – в специальной публикации портала, посвященной расчету количества свай.

stroyday.ru

Как рассчитывается несущая способность сваи

Глуби-на погру-жения нижне-го конца сваи, м

Расчетное сопротивление под нижним концом забивных свай и свай-оболочек, погруженных без выемки грунта, R, кПа

песчаных грунтов средней плотности

пылевато-глинистых грунтов при показателе текучести IL, равном

См. примечания к Таблица 6 .22

Расчетные сопротивления на боковой поверхности забивных свай.

Средняя глубина располо-жения слоя грунта ,м

Расчетные сопротивления на боковой поверхности забивных свай и свай-оболочек fi, кПа

песчаных грунтов средней плотности

круп-ных и средней круп-ности

пылевато-глинистые грунты с показателем текучести IL, равном

См. примечания к Таблица 6 .22

Коэффициенты условий работы для расчета несущей способности забивных свай

Способы погружения забивных свай и свай-оболочек, погружаемых без выемки грунта

Коэффициенты условий работы грунта при расчете несущей способности свай

1. Погружение сплошных и полых с закрытым нижним концом свай механическими (подвесными) паровоздушными и дизельными молотами

Погружение забивкой и вдавливанием в предварительно пробуренные лидерные скважины cзаглублением концов свай не менее 1м ниже забоя скважины при ее диаметре:

а) равной стороне квадратной сваи

б) на 0,05м менее стороны квадратной сваи

в) на 0,15м меньше стороны квадратной или диаметра круглой сваи

Погружение с подмывом в песчаные грунты при условии добивки свай на последнем метре погружения без применения подмыва

Вибропогружение свай-оболочек, вибропогружение и вибровдавливание свай в грунты:

а) песчаные средней плотности:

крупные и средней крупности

б) пылевато-глинистые с показателем текучести IL=0,5:

в) пылевато-глинистые с показателем текучести IL0

Погружение вдавливанием сплошных свай:

а) в пески средней плотности, крупные, средней крупности и мелкие

б) в пески пылеватые

в) пылевато-глинистые грунты с показателем

В случаях, когда в Таблица 6 .20 значения Rуказаны дробные, числитель относится к пескам, а знаменатель – к глинам.

В Таблица 6 .20 и Таблица 6 .21 глубину погружения нижнего конца сваи и среднюю глубину расположения слоя грунта при планировке территории срезкой, подсыпкой, намывом до 3м следует принимать от уровня природного рельефа, а при срезке, подсыпке, намыве от 3 до 10м – от условной отметки, расположенной соответственно на 3м выше уровня срезки или на 3м ниже уровня подсыпки.

Для промежуточных глубин погружения свай и свай-оболочек и промежуточных значений текучести ILпылевато-глинистых грунтов значенияRиfiопределяются интерполяцией.

Для плотных песчаных грунтов, степень плотности которых определена по материалам статического зондирования, значения по Таблица 6 .20 для свай, погруженных без использования подмыва или лидерных скважин, следует увеличивать на 100%. При определении степени плотности грунта по материалам других видов инженерных изысканий и отсутствии данных статического зондирования для плотных песков по Таблица 6 .20 следует увеличить на 60%, но не более чем до 20МПа.

Значения расчетных сопротивлений Rпо Таблица 6 .20 допускается использовать при условии, если заглубление сваи в неразмываемый и несмываемый грунт составляет не менее 3м.

Значения расчетного сопротивления Rпод нижним концом забивных свай сечением 0,15х0,15м и менее, используемых в качестве фундаментов под внутренние перегородки одноэтажных производственных зданий, допускается повышать на 20%.

Для забивных свай, опирающихся нижним концом на рыхлые песчаные грунты или на пылевато-глинистые грунты с показателем текучести IL>0,6, несущую способность следует определять по результатам статических испытаний свай.

При определении по Таблица 6 .21 расчетных сопротивлений грунтов на боковой поверхности свай-оболочек и свай fiпласты грунтов следует расчленять на однородные слои толщиной не более 2м.

Значения расчетного сопротивления плотных песчаных грунтов на боковой поверхности свай fiследует увеличивать на 30% против значений, приведенных в Таблица 6 .21.

Расчет несущей способности одиночной сваи
Расчет несущей способности сваи Глуби-на погру-жения нижне-го конца сваи, м Расчетное сопротивление под нижним концом забивных свай и свай-оболочек, погруженных без выемки грунта, R , кПа

Источник: studfiles.net

Несущая способность свай – это способность строительной конструкции уравновешивать нагрузку от веса строения и сопротивление грунта. Расчёт сопротивления опоры этим двум силам даёт определение несущей способности сваи. Когда опорные стержни в одном фундаменте расположены на отдалённом расстоянии друг от друга, несущая способность опорного стержня используется полностью. Современные методы расчётов определают нужное количество опорных стержней с оптимальной точностью.

Методы расчета несущей способности свай

Несущая способность свай рассчитывается с учетом следующих факторов:

  • Материал сваи (деревянный столб, железобетонный стержень, буронабивная конструкция и другие),
  • Одиночная опора или свайная группа,
  • Положение опор в грунте (висячая конструкция, кустовое расположение, свая на плотном грунтовом основании),
  • Характеристика свойств грунта (плотность, структура почвы, пучинистость, глубина промерзания, уровень грунтовых вод).

При подсчёте несущей способности свайного поля, суммируют показатели несущей способности отдельных опорных стержней.

Монтаж бетонных свай

Однако следует учитывать, что при чрезмерном количестве опорных стержней, общая несущая способность свай будет сокращаться за счёт уменьшения силы бокового трения грунта о свайный стержень. Может возникнуть ситуация, при которой опоры могут продавить слабое грунтовое основание.

При определении несущей способности опор используют три метода:

  • Теоретический метод, основанный на применении формул и таблиц СНиП 11-17-77,
  • Динамический метод получения результатов опытной забивки свай,
  • Пробный метод статической нагрузки опор и исследования грунта.

Рассмотрим все три метода исследования несущей способности опорных стержней.

Теоретический метод

Разрабатывая проектную документацию, специалисты часто применяют теоретический метод подбора конструкций опор. Он заключается в анализе вертикальной съёмки грунта по месту привязки генерального плана строительства объекта, общей нагрузки на свайное основание.

Учитывая равномерность залегания однородных грунтов, уровня грунтовых вод под стройплощадкой, с помощью формул и таблиц СНиП определяется несущая способность стержня. Определают материал опор, частоту распределения их по свайному ростверку.

Помимо этого выбирают способ забивки опор, вид механизма, массу его молота. Например, масса ударной части молота должна быть не менее общего веса сваи. Если длина сваи более 12 метров, то масса молота будет составлять 1,25 массы стержня. Когда опорный стержень забивают в плотный грунт, то используют сваебойную машину с массой ударной части молота равной 1,5 всей массы опорного стержня.

Зазор между боковой поверхностью конца сваи и стенкой оголовника не должен быть больше одного сантиметра.

Пример расчёта несущей способности буронабивной сваи

Буронабивная свая представляет собой обсадную трубу, погруженную на глубину до проектной отметки, Трубу заполняют бетоном. Такие трубы применяют при строительстве крупных промышленных объектов с повышенными эксплуатационными нагрузками. Максимальный диаметр трубы достигает 1,5 метра, а максимальная длина бывает около 40 метров.

Расчёт несущей способности сваи по материалу производят, используя результаты статического зондирования.

Согласно СНиП, несущая способность свай определяется по формуле:

R (сопротивление грунта под подошвой сваи) = 800 кПа,

А (площадь поперечного сечения обсадной трубы) = 0,6 м2,

u (периметр поперечного сечения опоры) = 2,7 м,

fi (среднее сопротивление боковой поверхности опоры),

hi (толщина слоя грунта),

Σ γcf ∙ fi ∙ hi (табличное значение СНиП) = 230

В итоге получим результат:

Несущая способность свай буронабивного вида в данных условиях будет равна 102,1 т.

Динамический метод

Это объясняется тем, что возникает ложный отказ и засасывание опорных стержней. После серии ударов по оголовнику, опора перестаёт погружаться в основание. Через несколько суток опора опять продолжает погружаться под ударами молота. Такое явление называют ложным отказом.

Ложный и истинный отказы свай

Происходит ложный отказ при погружении опор в грунтовое основание средней плотности из-за частых ударов молота. Вокруг конца опорного стержня образуется грушевидное уплотнение почвы, которое оказывает повышенное сопротивление продвижению сваи вглубь. За время остановки забивки опор на несколько суток, уплотнение вокруг свайного стержня рассасывается за счёт медленного отжима воды из этой области. При возобновлении забивки, свая продолжает погружаться. Весь процесс повторяют, пока опора не займёт своё проектное положение.

Пробный метод

Испытывая опоры статическими осевыми нагрузками, можно определить несущую способность свай. Применяют этот метод к монолитным, набивным сваям и сваям-оболочкам.

Нагружают опору испытательными грузами двумя способами:

  1. Ступенчатый. Постепенно увеличивают груз,
  2. Циклические нагрузки. Несколько раз опору нагружают и затем постепенно освобождают от груза.

Пробные нагрузки помещают на специальную площадку, установленную на оголовке опоры. По мере увеличения грузов, индикаторы фиксируют степень осадки опоры. Индикаторы отмечают осадку с точностью до 0,1 мм. Затем площадку разгружают и демонтируют. Через некоторое время всю операцию повторяют.

Испытание сваи гидравлическим молотом

Испытывают опоры также с помощью анкерных свай и гидравлических домкратов. Вокруг испытуемого образца погружают несколько анкерных свай, на которые устанавливают специальную конструкцию Конструкция, скреплённая с анкерными опорами, служит упором для гидравлического домкрата.

Домкрат, упираясь в площадку, создаёт нужное давление на оголовок сваи. Нагрузку увеличивают ступенчато, добавляя каждый раз 0,1 предельного сопротивления опоры. Загружать сваю продолжают, пока величина осадки не достигнет 40 мм. Очередной раз увеличивают давление лишь тогда, когда осадка прекращается от предыдущей нагрузки. Прекращение осадки наступает в том случае, когда в течение 2 часов индикаторы показывают погружение не более 0,2 мм в песчаной и 0,1 мм в глинистой почве.

На основе специальной расчётной методики и разных способов измерений, определают несущую способность опоры. Все изменения величины осадки во времени фиксируют в журнале. На основании материала исследований, строят график изменения величины осадки в зависимости от увеличения нагрузки.

Задача статьи состоит в том, чтобы донести до читателя в популярной форме суть методик определения несущей способности свайных конструкций. Поэтому статья не загружена сложными графиками и громоздкими формулами.

Испытания динамическим и пробным методами свай проводят в основном там, где на местности нет возможности произвести точные геолого-изыскательские работы.

В обжитых районах страны местность, как правило, тщательно обследована изыскательскими организациями. В местном управлении архитектуры всегда можно получить копию вертикальной съёмки грунта стройплощадки. Применяя метод теоретического расчёта, можно определить несущую способность свайного основания, не прибегая к испытательным методам.

Как рассчитывается несущая способность сваи
Устойчивость свайного фундамента зависит от несущей способности сваи. Рассмотрим динамическое определение несущей способности сваи по материалу и по грунту.

Источник: fundamentaya.ru

Расчет несущей способности сваи – это одна из важнейших задач, которая стоит перед специалистом, занимающимся проектированием фундамента свайного типа. С одной стороны, использование недостаточно прочных элементов приведет к понижению механических характеристик основания. С другой же стороны, необходимо принимать во внимание экономический аспект, ведь за каждую сваю, установленную «про запас», нужно платить.

В нашей статье мы приведем краткий обзор методов, по которым провидится расчет механических характеристик опорных конструкций, а также продемонстрируем несколько примеров вычислений.

Несущая способность — один из важнейших параметров

Общие положения

Сопротивление материала и грунта

Большинством инженеров несущая способность свай определяется наименьшим значением из двух параметров:

  • С одной стороны – сопротивление материала , из которого изготовлен стержень вертикальной или наклонной опоры.
  • С другой стороны – сопротивление грунта , в который погружена вертикальная или наклонная опора.

Поскольку оба эти фактора воздействуют на конструкцию одновременно, то именно наименьшая величина является той критической точкой, которая определяет предел нагрузки на отдельный элемент фундамента. Проще говоря, не важно, что первым начнет деформироваться – опора или грунт, в любом случае целостность конструкции будет под угрозой.

Сопротивление, воздействующее на вертикальную опору

Если говорить об идеальном соотношении, то несущая способность сваи по материалу должна быть равна этому же параметру по грунту. Естественно, реализовать это на практике практически нереально, потому при проектировке фундаментов стараются, чтобы указанные значения были максимально близкими.

Обратите внимание! Чем сильнее отличаются несущая способность сваи по грунту и по материалу, тем не менее, проект свайного фундамента является эффективным с экономической точки зрения.

Применяемые методы

На сегодняшний день существует несколько методик, позволяющих подобрать оптимальное соотношение механических характеристик опор для того или иного грунта.

В зависимости от сложности объекта и поставленных перед проектировщиками задач, методы определения несущей способности свай могут использоваться как по отдельности, так и в комплексе:

  • Расчетное определение несущей способности свай осуществляется согласно требованиям СНиП 2.02.03-85 «Свайные фундаменты». Данный метод является наименее точным, однако именно он дает возможность осуществить предварительную оценку ситуации. Именно на этом методе определения будут основаны примеры, приведенные ниже.
  • Пробные статические нагрузки. Суть методики заключается в испытании погруженной до условной отметки сваи под различными вертикальными нагрузками. Регистрируемые показатели осадки и деформации дают возможность оценить, насколько данная конструкция пригодна к использованию. Методика весьма эффективна, а главными ее недостатками являются длительность испытаний и высокая цена.

Фото в процессе испытания

  • Динамическое испытание. Установленная свая подвергается нескольким ударам свайного молота, после чего регистрируется ее осадка. Данный метод является мене точным, чем предыдущий, но зато позволяет провести тестирование прямо на объекте.
  • Зондирование (статическое и динамическое). Методика заключается в регистрации нагрузок на основание и боковую поверхность с помощью установленных датчиков.

Как правило, при масштабных строительных работах определение несущей способности сваи выполняется с помощью нескольких дублирующих методов. Мы же попробуем воспользоваться расчетными технологиями, и проанализируем, как можно вычислить механические характеристики свай разного типа.

Устройство для зондирования грунта

Технология расчета

Буронабивные сваи

В качестве одного из примеров возьмем буронабивную конструкцию.

Конструкция буронабивных свайных фундаментов представляет собой заглубленную в грунт систему, основу которой составляет обсадная труба, заполненная бетоном. Сваи данного типа применяются при повышенных эксплуатационных нагрузках, потому их диаметр может доходить до 1,5 м , а глубина – до 40 м .

Создание буронабивной конструкции

Расчет несущей способности буронабивной сваи чаще всего приходится осуществлять на основании данных так называемого статистического зондирования – обязательного испытания для грунтов, на которых планируется возведение фундамента свайного типа.

Пример расчета несущей способности сваи в одной из точек зондирования приводится ниже.

Для расчета используется формула:

  • R – сопротивление грунтового основания под подошвой сваи (табличное значение, выражается в кПа).
  • А – площадь основания сваи.
  • u – периметр сечения основания вертикальной опоры.
  • fi – усредненное значение сопротивлениябоковой поверхности опоры.
  • h i – толщина слоя грунта.

Обратите внимание! При сухой бетонировке свай коэффициент γcf принимается равным единице.

  • R для глинистого грунта – 794 кПа.
  • А = π∙d 2 /4 = 3,14 * 0,8/4 = 0,5 м 2 .
  • u = π∙d = 3,14 * 0,8 = 2,5 м.
  • Σ γcf∙fi∙hi = 222 (определяем с помощью табличных значений fi и hi).

Подставив полученные данные в формулу, получаем:

Fdu = 794 * 0,5 + 2,5 * 222 = 952 кН = 95,2 т.

Именно такую нагрузку может выдержать буронабивная свая в данных условиях.

Данные статистического зондирования

Также несущая способность буронабивной сваи влияет на количество элементов в кусте под конкретной деталью конструкции.

Формула расчета имеет следующий вид:

  • n – минимально необходимое количество вертикальных опор.
  • N – расчетная масса элемента, опирающегося на фундамент (в нашем случае 250 т).
  • γn – показатель надежности сооружения (для 2го уровня ответственности составляет около 1,15).
  • · γk – показатель надежности грунта (1,25)
  • γ – условия работы сваи (1,15).

n = 250 * 1,15 * 1,25 / (95,2 * 1,15) = 3,28 шт.

Следовательно, каждый куст должен содержать не менее четырех свай заданного типа.

Обратите внимание! Данная инструкция содержит условные табличные значения. Если вы будете осуществлять вычисления своими руками, то вам следует ориентироваться на результаты статистического зондирования именно вашего участка.

Отдельную категорию опор для капитального строительства составляют так называемые сваи ТИСЭ. Они представляют собой вертикальные столбы, в нижней части которых находится расширенная площадка.

Система ТИСЭ: конструкция и размеры

Глубина расположения опор определяется уровнем промерзания грунта. Для обеспечения сохранения формы опорной конструкции используются буры с оголовками особой формы, а также специальные опалубки.

Несущая способность сваи ТИСЭ рассчитывается с учетом массы возводимого здания, а также характеристик грунта, в который заглубляется фундамент. Поскольку наиболее часто в подобных основаниях используются опоры диаметром 600 мм, то именно они и будут рассматриваться в таблице ниже:

Особенности грунтового основания (тип почвы)

Расчетное сопротивление основания, кг/м2

Несущая способность опоры ТИСЭ диаметром 600 мм, т.

Расчет несущей способности сваи
Расчет несущей способности сваи, пример, методы, определение прочности буронабивных свайных элементов и ТИСЭ своими руками, устойчивость опор по грунту, инструкция, фото и видео-уроки, цена

Источник: ofundamentah.com

Несущая способность определяется по материалу и грунту. Из двух значений принимается меньшее для расчета. Расчет сваи по прочности производится в соответствии с методами проектирования железобетонных конструкций (ЖБК). Для висячих свай несущая способность по грунту всегда меньше несущей способности по материалу. Для свай-стоек несущая способность по грунту и по материалу примерно одинакова.

Для свай-стоек несущая способность по грунту в соответствии со СНиПом 2.02.03-85 «Свайные фундаменты» определяется по формуле:

— коэффициент условий работы сваи в грунте,

— расчетное сопротивление грунта,

— площадь поперечного сечения.

Несущая способность висячих свай определяется четырьмя методами:

1) практический – с использованием таблиц СНиПа «Свайные фундаменты»,

3) статического зондирования,

4) испытание свай статической нагрузкой.

5.1.1. Практический метод. Несущая способность несущих свай определяется как сумма двух слагаемых расчетного сопротивления по боковой поверхности и сопротивления под нижним концом сваи:

γc – коэффициент условий работы,

γcR – коэффициент, зависящий от вида грунта под нижним концом сваи,

R – расчетное сопротивление грунта под нижним концом сваи,

A – площадь поперечного сечения сваи под нижним концом,

U – периметр сваи,

γcRi – коэффициент условий работы грунта по боковой поверхности сваи,

fi – сопротивление грунта по боковой поверхности,

li – длина боковой поверхности сваи (li 2 м).

5.1.2. Динамический метод заключается в определении несущей способности сваи по величине отказа сваи после отдыха.

Отказ – это величина, на которую погружается свая за один удар после отдыха. Висячим сваям, не добивая до проектной отметки, дают отдых (пески – одна неделя, супеси – 2 недели, глина — 3). После отдыха производят добивку сваи до проектной отметки и измеряют отказ сваи. По величине отказа по формуле Герсиванова определяется несущая способность сваи.

Динамический метод испытывается для контроля фактической несущей способности сваи на строительной площадке. Зная параметры сваебойного оборудования, определяется проектный отказ. Если фактический отказ оказывается больше проектного, то фактическая несущая способность сваи меньше проектной и, соответственно, в проект вносятся изменения.

5.1.3. Метод статического зондирования позволяет раздельно определять сопротивление сваи под пятой и сопротивление сваи по боковой поверхности. При статическом зондировании зонд при помощи домкрата вдавливается с постоянной скоростью 0,5 м/мин и измеряется величина сопротивления грунта погружению конуса и величина трения грунта по боковой поверхности. Замеры производят каждые 20 см. затем строят график.

Бывают следующие виды зондов:

Удельное сопротивление грунта под нижним концом сваи:

— переходный коэффициент от сопротивления грунта под зондом при его погружении к сопротивлению грунта под забивной сваей,

— среднее значение сопротивления грунта под наконечником зонда на 1 d выше и 4 d ниже нижнего конца сваи.

Среднее удельное сопротивление грунта по боковой поверхности сваи:

(участки первого типа).

(участки второго и третьего типа).

Частное значение предельного сопротивления в месте зондирования:

Несущая способность сваи:

5.1.4. Метод испытания свай статической нагрузкой. Несущая способность сваи определяется путем испытания ее аналога статической нагрузкой.

На свая при помощи домкрата прикладывается ступенями нагрузка. Каждая ступень выдерживается до стабилизирующей осадки, затем строят график зависимости осадки от давления. За несущую способность принимается та, при которой осадка составляет 0,2 от предельно допустимой величины осадки.

Проектирование свайных фундаментов ведется в следующей последовательности:

1) определяется глубина заложения подошвы ростверка. Она не зависти от глубины промерзания грунтов, и определяется исключительно конструктивными потребностями,

2) производится выбор типа сваи, длины сваи и поперечного сечения. Тип и вид сваи выбирается исходя из инженерно-геологических условий в зависимости от сваебойного оборудования. Длина сваи выбирается в зависимости от геологических условий так, чтобы свая прорезала слабые грунты и заглублялась в слой прочных грунтов не менее 1 м. в зависимости от длины сваи выбираются размеры поперечного сечения сваи, выбирается тип и вид сваи,

3) определяется несущая способность сваи. Она определяется одним из четырех методов. Расчетная допустимая нагрузка на сваи определяется по формуле:

Fd — несущая способность сваи,

γn — коэффициент надежности, зависит от метода определения несущей способности сваи:

γn=1,4 при практическом методе,

γn=1,25 при зондировании,

γn=1,1 при статическом методе,

4) определяется количество свай в фундаменте по формуле:

N I — нагрузка по первой группе предельных состояний,

Р – расчетная нагрузка,

5) определяются размеры ростверка и производится его конструирование.

Размеры свай в плане:

Если n получилось 3, 1, то принимаем количество свай 4.

Железобетонные ростверки рассчитываются на продавливание колонной, сваей, на изгиб,

6) производится проверка сваи по несущей способности.

Проверка фактической нагрузки, приходящую на сваю:

— при центрально нагруженных свайных фундаментах фактическая нагрузка на сваю определяется по формуле:

— для внецентренно нагруженных фундаментов:

— сумма квадратов расстояний свайного фундамента до оси каждой сваи.

Если условия (*) не выполняются, то увеличивается количество свай.

7) определение осадки свайного фундамента.

Рассматривается условный фундамент, причем считается, что давление, действующее по подошве свайного фундамента, распределяется равномерно.

(для внецентренно нагруженных).

Если условие не выполняется, то увеличивают длину сваи или расстояние между сваями.

Определение несущей способности сваи
Определение несущей способности сваи Несущая способность определяется по материалу и грунту. Из двух значений принимается меньшее для расчета. Расчет сваи по прочности производится в

Источник: studopedia.ru

Грамотно проведенный расчет несущей способности забивной сваи при проектировании здания – залог надежности, долговечности и целостности постройки. Также это поможет заранее спланировать бюджет.

Несущая способность забивных свай – предельный объем нагрузки, которую может вынести железобетонная опора, находящаяся в почве, не поддаваясь изменению формы. Ее тип различают по материалу производства и характеристикам земли. Первое можно измерить в процессе теоретических расчетов. Классифицировать грунт реально при практическом анализе участка.

Испытание забивных свай статической нагрузкой.

Существует несколько методов определения несущей способности основания. Самый действенный из них – практическое испытание забивных свай статической нагрузкой. После установки опоры, её оставляют в покое на 2 – 3 суток. Затем ступенчатым домкратом оказывается нагрузка, сравнимая с давлением веса будущего сооружения. Прогибометром вычисляется степень усадки конструкции.

Несущая способность забивной сваи – таблица и формула расчета.

Практические опорные характеристики вычисляются, отталкиваясь от сочетания противодействия грунта под нижним фрагментом конструкции и боковыми частями.

Помогает формула: Fd=Ycr ×(Fdf+Fdr), где:

  • Fdf = u * ∑Ycf * Fi * Hi
  • u — внешний периметр сечения ЖБ столба,
  • Ycr — коэффициент условий работы конструкции в почве (=1),
  • Fi — сопротивление слоев почвы на боковой стенке столба,
  • Hi — общая толщина слоев грунта, контактирующих с боковой гранью основания,
  • Fdr = Ycr * R * A
  • R — нормативное сопротивление почвы под нижним концом опоры
  • А — площадь опорной подошвы.

Поможет в подсчетах следующая таблица:

Если эти знания не пригодятся для самостоятельного расчета, то точно помогут проконтролировать ход работы подрядчиков и убедиться в соответствии цены и качества услуги.

Расчет несущей способности забивной сваи
Правильный расчет несущей способности забивной сваи при проектировании здания – залог надежности и долговечности постройки. Испытание забивных свай статической нагрузкой.

Источник: zabivniesvai.ru

postroifundament.ru

Калькулятор расчета несущей способности винтовых свай

Винтовой фундамент в наше время стал довольно распространенным видом устройства основания для той или иной постройки. Но основной проблемой для домашнего мастера становится необходимость расчета нагрузки на каждую из свай. Ведь если она превышена, здание будет медленно уходить вниз, что повлечет за собой его перекос и последующее разрушение. Именно по этой причине очень важно понять, какое давление будет оказываться на основание и подойдут ли выбранные сваи для строения. В необходимых вычислениях поможет представленный калькулятор расчета несущей способности винтовых свай.

Варианты фундаментов на винтовых опорах

Калькулятор расчета несущей способности винтовых свай

Порядок работы с программой – какие параметры необходимо учитывать

Обычно для частных построек используют изделия моделей СВС. Типоразмер их может отличаться. Выбирается он в зависимости от веса строения. Для строительства жилых построек наиболее оптимальным будет выбор СВС-89 (числовое обозначение является диаметром трубы). Этот показатель может меняться в зависимости от веса строения или сооружения. Именно его необходимо выбрать в соответствующем поле онлайн-калькулятора. Далее нужно выбрать тип преобладающего грунта именно на той глубине, где будут располагаться опоры фундамента. После этого вносятся данные, на каком основании сделаны выводы о типе грунта. От этого тоже зависит конечный результат. Если были проведены профессиональные геологические изыскания, результат будет точнее, а погрешности меньше.

Таким образом они располагаются

В итоге остается лишь нажать на кнопку «Рассчитать) и сразу будет известен результат, который выражается в килограммах и тоннах нагрузки на каждую из опор.

Допуски и советы по работе с программой

Никаких допусков делать не нужно – в онлайн-калькулятор уже заложен необходимый запас надежности. Для того, чтобы понять общую нагрузку, необходимо умножить количество свай на допустимую для каждой. В этом случае можно понять, какой вес смогут выдержать опоры.

Помните, что самостоятельные расчеты могут быть ошибочными. Если произойдет подобное, возможен перекос и разрушение постройки, что не только сведет на нет все усилия по строительству и финансовые затраты на него, но и создаст угрозу жизни и здоровью домочадцев. Калькулятор же исключит возможность ошибки. К тому же работа с ним сэкономит довольно много времени.

А ввернуть их можно и самостоятельно

В заключение предлагаем вам просмотреть небольшой видеоролик по расчету свайного фундамента:

housechief.ru

Несущая способность сваи – определение и схема расчета

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Фундаменты от А до Я.
  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      Устройство фундамента из блоков ФБС

      Заливка фундамента под дом

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтепление

      Устранение трещин в стенах фундамента

      Как армировать ростверк

      Необходимость устройства опалубки

      Как сделать гидроизоляцию цоколя

  • Цоколь
    • ВсеКакой выбратьОтделкаУстройство

      Отделка фундамента камнем

      Выбор цокольной плитки для фасада

      Что такое цоколь

      Как закрыть винтовые сваи

  • Сваи

fundamentaya.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *