Стабилизатор для ламп дневного света – Стабилизатор для ламп дневного света | Купить стабилизатор для ламп дневного света | Цена

Содержание

Стабилизатор напряжения для люстры и ламп

Перепады напряжения электрического тока в сети влекут за собой неприятные последствия: моргание света, сокращение срока эксплуатации ламп и даже поломку осветительных приборов и прочей техники. Во избежание этого при установке освещения рекомендуется использовать стабилизатор напряжения для люстры.

Стабилизатором напряжения называется устройство, которое при подключении в сеть выравнивает напряжение и подаёт его к приборам со стабильными характеристиками, вне зависимости от его скачков и прочих факторов. Для обеспечения качественного электропитания стоит разобраться, какие бывают стабилизаторы. Кроме того, для правильного выбора потребителю следует знать, какие параметры имеют первостепенное значение в работе устройства.

Виды стабилизаторов

По принципу действия стабилизаторы напряжения подразделяются на три вида:

  1. Симисторные. Самый распространённый вид, оборудованы микроконтроллером для отслеживания всех процессов. После измерения величины напряжения на входе, посредством симисторов(полупроводников) производится перераспределение напряжения между обмотками трансформатора. Отличаются низким уровнем шума, высоким коэффициентом полезной деятельности, высокой скоростью реакций.
  2. Релейные. Регулируют напряжение посредством ступеней — силовых реле. Работают даже при отсутствии подключенных приборов, обладают высоким уровнем стойкости к сетевым перегрузкам.
  3. Сервоприводные. Посредством сервопривода производится контроль движения бегунка вдоль трансформаторных витков, обеспечивая стабильный уровень напряжения. Данный вид отличает низкая стоимость, однако большое количество механических узлов делает их ненадёжными.

Ввиду того, что требования разных производителей электроприборов могут значительно различаться, точных параметров выбора стабилизатора для определённого типа прибора не существует, однако есть среднее значение. Так для защиты люстры и прочих осветительных приборов необходимо выбирать стабилизатор с точностью от трёх процентов и плавным регулированием (сервоприводные или симисторные).

Такую осветительную аппаратуру, как прожекторы,софиты, люстры — рекомендуется подключать через стабилизатор, обладающий точностью 3 %. Чем выше точность стабилизации, тем меньшим будет разброс выходного напряжения и видимое изменение интенсивности света при резких перепадах напряжения на входе.

Количество фаз

Стабилизаторы напряжения бывают однофазные, либо трёхфазные. Первые устанавливаются в помещениях, оборудованных однофазной сетью, вторые — при подключении дома к электрической сети с напряжением 380 В. Однофазное устройство подойдёт и для трёхфазной сети, если соблюдать условие установки отдельного устройства на каждую фазу.

Выбирая стабилизатор отдельно для люстры, можно остановиться на однофазном. В таком случае достаточно знать схему подсоединения в сеть и показатели мощностей: пиковой и номинальной (данные имеются в паспорте прибора).

Важные параметры

Правильно подобрать стабилизатор для люстры можно, ориентируясь на следующие параметры:

  • Выходное напряжение, его точность — измеряется в процентах. Диапазон напряжения на выходе для каждого стабилизатора строго определён, а максимально возможные его отклонения характеризуются точностью. Наиболее высокий процент точности является отличной характеристикой этого параметра.
  • Входное напряжение — определяется в двух диапазонах (рабочий и предельный). Значение рабочего диапазона указывает на то, какое напряжение необходимо для исправного функционирования устройства. Предельный диапазон характеризует значение напряжения на входе, при котором устройство сможет функционировать, используя максимум своих возможностей. Стоит учитывать, что подобный режим работы не сможет качественно защитить подключенные устройства от перепадов напряжения в электрической сети.

Также в настоящее время производится разработка моделей со смещённым диапазоном, предназначенных для использования в отдельных местностях со стабильно повышенными или пониженными показателями данного параметра.

Мощность

Расчёт мощности потребления можно произвести, опираясь на несколько значений:

  • Мощность потребления определённого устройства. Может быть указана в паспорте, инструкции, либо определяется по амперажу счётчика или вводного защитного автомата.
  • Полная мощность. Весь объём мощности, потребляемой электроприбором, состоит из активной и реактивной мощностей, определяющихся типом нагрузки. Приборы-потребители энергии зачастую обладают обеими составляющими. Что касается люстр и прочих осветительных приборов — потребляемую энергию они преобразуют в излучение, что является активной нагрузкой;
  • Пусковой ток. Поскольку потребители, обладающие электродвигателем или компрессором, в момент запуска двигателя требуют большее количество энергии, чем при работе в обычном режиме, необходимо учитывать соотношение величины потребляемой энергии в момент подключения к сети к потреблению электричества во время работы в обычном режиме. Величина называется кратностью и определяется типом двигателя, его конструкцией, наличием, либо отсутствием плавного пуска, и колеблется в пределах значений от трёх до семи.

Помимо этого, при подборе модели стабилизатора рекомендуется прибавлять к потребляемой мощности двадцать процентов — это не только обеспечит щадящие условия для работы устройства, тем самым увеличивая его ресурс, но и создаст запас для подключения дополнительных потребителей при необходимости.

Дополнительные функции

Помимо выполнения базовых функций (стабилизация выходного напряжения, защита приборов от повышения или понижения значений напряжения, а также от перегрузок и вероятных коротких замыканий в электрической сети), производятся модели стабилизаторов, обладающие дополнительным функционалом:

  • самостоятельное внесение изменений в настройки пользователем — установка предельных значений защитного порога, изменение номинального значения напряжения, подаваемого на выход;
  • система звукового оповещения — возможность контроля работы устройства с личного компьютера, удалённое управление, а также подача звуковых сигналов;
  • дополнительная защита — наличие устройства самостоятельной диагностики, а также защита от перегрева силовых реле;
  • дополнительные индикаторы — наличие цифрового экрана, ЖКИ дисплея.

Цена на устройства, оснащённые дополнительным функционалом, выше, поэтому выбирать их стоит, исходя из своих возможностей. Защитить сеть и приборы от перегрузок сумеет и самое простое устройство с соответствующими параметрами.

Прочие моменты

Также, выбирая стабилизатор напряжения для люстры, стоит обратить внимание на такой показатель, как уровень шума. Зависит он от системы охлаждения прибора: при активном охлаждении используется вентилятор, что производит много шума. Также существуют системы пассивного охлаждения с применением изготовленного из специального материала радиатора — в таком случае уровень шума будет минимален.

Итак, если внимательно разобраться, к чему относятся те или иные характеристики устройства, можно выбрать наиболее подходящую модель стабилизатора напряжения для люстры и избежать при этом лишних затрат на функции, не влияющие на работу осветительного прибора. Также не следует забывать, что стабилизатор не может полностью исключить эффект моргания света, но может максимально сгладить его, а также защитить осветительные приборы и лампы, и продлить срок их службы.

ostabilizatore.ru

Преобразователь для лампы дневного света

Бывают случаи в жизни, когда позарез необходим низковольтный источник питания для люминесцентных ламп. Такой светильник может питаться от аккумуляторной батареи в походе или на даче, а также с легкостью может найти свое применение в гараже и в быту, способен запустить даже сгоревшую люминесцентную лампу.

Энергосберегающая лампа от низковольтного источника питания – схема

Преобразователь напряжения для для лампы дневного света условно состоит из трех частей.

  • Задающий генератор прямоугольных импульсов на микросхеме К155ЛА3 или К555ЛА3 (можно брать и любой другой аналог). Наш генератор собран на К555ЛА3.
  • Полевой транзистор IFRZ44N, управляемый генератором, в нагрузке которого включена обмотка трансформатора
  • Повышающий трансформатор

Генератор прямоугольных импульсов на микросхеме К155ЛА3 управляется с помощью построечного резистора R1. На выход генератора подключен транзистор

Т1 КТ315 со светодиодом, который визуально поможет контролировать частоту и работу генератора.

При разной частоте будут меняться режимы работы транзистора и трансформатора, соответственно с разной яркостью будет светиться люминесцентная лампа. Построечным резистором необходимо выбрать ту частоту, при которой будет оптимальный баланс между током, протекающим через транзистор Т2 и яркостью свечения лампы дневного света. Частота составит примерно 70 – 120 Гц.

Преобразователь для лампы дневного света – сборка

Для демонстрации работоспособности схемы она была собрана на макетной плате. Питается схема от блока питания макетной платы – 5В. Трансформатор снят с блока питания и включен наоборот, т.е. обмотка с большим количеством витков отходит к контактам люминесцентной лампы. Транзистор в процессе работы греется, желательно установить его хоть на небольшой радиатор. За час работы с радиатором он стал просто теплым.

Самой первой нашей испытуемой лампой стала лампа на 8 ВТ. Свечение вполне яркое, ее яркость немного отличается, от включения стандартным способом.

Вторая лампа на 18 Вт, загорелась, но очень тускло. Мощности, которую выдает этот преобразователь напряжения для такой люминесцентной лампы явно недостаточно.

В общем, учитывая простоту этой схемы ее можно смело рекомендовать для сборки. При необходимости схему можно питать и от 12 В, но в таком случае обязательно необходим стабилизатор на 5 В для питания микросхемы.

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

diodnik.com

виды устройств и принцип работы

Дневное освещение—это экономичный вариант, вследствие чего является альтернативой традиционному освещению. Использование люминесцентных ламп сосредоточено практически во всех отраслях, не исключено и применение в бытовых условиях. На сегодняшний день такой источник света классифицируют по яркости и оттенку излучения света: холодный белый, теплый белый и желтоватый тон. Однако, для безопасности и нормализации работы принято использовать дроссель для ламп дневного света.

Внимание! Приобретайте люминесцентный светильник исключительно в специализированных магазинах, спрашивайте гарантию на прибор.

Что такое дроссель и для чего он нужен?

В первую очередь дроссель обеспечивает стабильную работу ламп дневного света. Если вы случайно заметили почернение на концах светильника, обратите внимание, возможно неисправность именно в стабилизаторе.

Дроссель—это деталь, которой оснащена энергосберегающая лампа. Функцией этого устройства считается контроль напряжения на выходных контактах источника света. Чтобы свет в люминесцентной лампе не погасал, необходимо создать балласт, он сможет поддержать ток в контактах светильника на оптимальном уровне. По стандартам производства балласт подключается последовательно, далее к нему параллельным путем подсоединяют стартер (он отвечает за зажигание лампы).

Дроссель для лам дневного света

Важно! Перегоревшая лампа способна работать без дросселя, нужен лишь правильный алгоритм работы.

Включение осветительного прибора в электрическую сеть влечет за собой вход высокого напряжения, которого слишком много для работы, а дроссель служит, как оптимизатор и пропускает лишь нужное количество тока для свечения люминесцентных ламп. Но, иногда, в целях перестраховки нужно знать, как проверить дроссель лампы дневного света мультиметром, и оценить качество, а также норму работы приспособления. Также для этой цели можно использовать лампочку с патроном и двумя свободными проводами. Их подсоединяют к контактам устройства, если они зажгутся, следовательно, дроссель находится в рабочем состоянии.

Как подключить дневную лампу без дросселя?

Устройство, обеспечивающее длительную работу люминесцентной лампы положительно влияет на внутренний механизм, кроме того, есть отдельная схема подключения дневной лампы без дросселя.

Подобный эксперимент можно проводить даже с перегоревшими элементами и используя различные детали.

  • Если лампочка сгорела, вскрываем ее и вынимаем из нее схему. Обратите внимание, колба при демонтаже устройства должна остаться целой и неповрежденной.
  • Эту же схему подсоединяем к обычной лампе дневного света. То есть делаем подключение проводников к обеим сторонам лампы, затем от схемы создаём провод для вилки и втыкаем в розетку.
  • Если люминесцентный источник заработал, значит, опыт удался.

Как мы видим опыт довольно простой и рабочий. К тому же, встречаются еще более простые варианты решения подобной проблемы, например, подключение балласта к общему механизму энергосберегающей лампы.

Лампа дневного света

Важно! При подключении лампы дневного освещения без дросселя, нить накала не используется!

Наверняка вам пригодится схема подсоединения лампы дневного света с дросселем. Этот вариант подойдет при исправной и работоспособной схеме механизма. На самом деле данный вариант доступен в двух вариантах, но более доступным и легко реализуемым считается способ, при котором используются все содержимые детали люминесцентной лампы, а именно, стартер, дроссель и емкость, в которую поступает стандартное напряжение домашней сети.

Для новичков не рекомендуется проводить ремонт дросселя самостоятельно, а иногда это сделать невозможно, идеальный способ—это произвести полную замену стабилизатора. Если у вас в планах бездроссельное включение люминесцентных ламп, важно придерживаться единой схемы для всех устройств подобного действия.

Рабочий механизм дроссельной платы

По внешнему виду устройство представляет собой цилиндр в металлическом корпусе. Его мощность обязательно совпадает с предельно допустимой рабочей мощностью энергосберегающей лампы. В способности дросселя входит ограничение подачи электрического тока, что предотвращает перегорание электродов лампочки.

Работа дросселя происходит в паре со стартером, по отдельности они не способны обеспечить нужные функции.

Схема подключения дросселя

Рассмотрим, как они действуют при включении дневного освещения:

  • происходит запуск стартера;
  • электроды разогреваются и происходит подача электрического тока к действующему механизму прибора;
  • за счет этого выполняется, нагрев биметаллической пластины стартера;
  • после прогрева контактов, ток приходит к дросселю;
  • дроссель скапливает ток, происходит пробивание газа, и лампа начинает светиться.

В процессе работы экономной лампы с работоспособным стартером и стабилизатором, происходит равномерное распределение напряжения, если наблюдается приход сверхтоков либо утечки тока.

Важно! Подключение лампы дневного света без дросселя не может давать гарантии на длительное функционирование прибора.

Виды дросселей люминесцентного освещения

На сегодняшний день электриками признаны только два вида устройств, которые отлично работают с механизмом энергосберегающих светильников.

  1. Электромагнитный дроссель—этот тип прибора включается последовательно с люминесцентной лампой. Данный вариант не работает от холодного старта и требует установки стартера.
  2. Электронный дроссель—это элемент, который изобретен не так давно. Преимущественной чертой считается простая схема подключения устройства. С подобной установкой снижается мерцание лампы и ее пульсация.

Срок эксплуатации подобных приспособлений чаще всего зависит от обеспеченных условий для работы. Стоит отметить, что диапазон температур не должен варьироваться не на один градус от значений +5—+55°С.

Электрическая схема подключения нескольких ламп дневного света с дросселем

Правила выбора дросселя

Выбор любого устройства для полноценной работы приборов следует делать внимательно. Приходится обращать внимание не только на технические качества оборудования, но еще и на марку производителя, ценовой эквивалент, а также учесть плюсы и минусы данного выбора.

Самые качественные изобретения предоставляют фирмы Chilisin, Luxe и Vossloh schwabe. Зачастую в комплекте с дневной лампой поставляется и запасной комплект необходимых элементов.

Посмотрите видео о том, как подключить 2 люминесцентные лампы к одному дросселю:

Вас могут заинтересовать:

prokommunikacii.ru

5. Источники питания ламп дневного света и других газоразрядных приборов.

Современные газоразрядные приборы

Примерно 25% электроэнергии, вырабатываемой в мире, расходуется системами искусственного освещения, чтo делает эту область чрезвычайно привлекательной для приложения сил в области повышения эффективности использования и сокращения потребления электроэнергии.

В настоящее время наиболее распространенными экономичными источниками света являются газоразрядные лампы, которые все чаще применяются вместо обычных ламп накаливания. Принцип действия таких ламп заключается в люминесцентном свечении заключенного внутри лампы газа при протекании через него тока (осуществлении высоковольтного пробоя), что обеспечивается подачей высокого напряжения на электроды лампы. Газоразрядные лампы можно разделить на два вида, первый — это лампы высокой интенсивности свечения, среди которых наиболее распространены: ртутные лампы, натриевые лампы высокого давления и металлогалогенные лампы, второй вид — это люминесцентные лампы низкого давления.

Лампы низкого давления используются для освещения в большинстве случаев повседневной жизни — в административных зданиях, офисах, жилых домах: их отличает насыщенный белый свет. близкий к дневному (отсюда название — "лампы дневного света"). Лампы высокого давления используются для внешнего освещения — в уличных фонарях, прожекторах и т.п.

Если обычная лампа накаливания, когда она включена, представляет собой постоянную резистивную нагрузку, то все газоразрядные лампы имеют отрицательные импедансные характеристики. которые требуют стабилизации тока. Кроме того, необходимо учитывать такие моменты как: резонансный режим работы, защита при выходе лампы из строя; высоковольтное зажигание, специальное управление силовой шиной. Основной режим, соблюдение которого необходимо люминисцентной лампе на протяжении всего срока эксплуатации — это токовый режим (в идеале, необходима стабилизация мощности на протяжении всего периода эксплуата-

ции лампы). Как правило, лампы питаются от переменного напряжения для уравнивания износа электродов (в случае питания постоянным напряжением, срок службы короче на 50%).

Магнитный и электронный балласты

Для управления газоразрядными лампами традиционно использовался т.н. магнитный балласт (см. схему на рис. 3.5-1), однако ввиду его неэффективности и ненадежности, в последнее время


все большее распространение получают схемы электронного управления — электронный балласт, который позволяет значительно повысить КПД и срок службы осветительных систем, сделать свет более ровным и естественным для глаз.

Базовая схема электронного балласта с последовательным резонансом приведена на рис. 3.5-2. Применяя электронные бал-ласты, можно управлять лампами любой мощности, в схему можно встраивать любые дополнительные устройства (например, фотореле, включающее освещение в сумерках и выключающее на рассвете).

Схема управления для лампы дневного света мощностью до 40Вт

Для управления лампой дневного света (ЛДС) мощностью до 40 Вт предназначена схема, приведенная на рис. 3.5-3.

Напряжение питания ~220 В подается на входы L1 и L2. Выпрямленное диодами VD1 -VD4 постоянное напряжение составляет порядка 320 В. Конденсаторы С1 и С2 работают как емкостный входной фильтр. Возможно использование и сети ~110В, в этом случае питание подается на входы L1 (L2) и N. а диоды VD1. VD3 (VD2, VD4) с конденсаторами С1 и С2 работают как однопо лупериодный удвоитель напряжения.

DA1 (IR2151) — это схема управления МДП-транзистора ми с внутренним генератором, который работает прямо от шины питания через R1. Внутренний стабилизатор фиксирует напряжение питания на уровне 15 В. Предусмотрена блокировка затворов при падении напряжения питания ниже 9 В.

При номинальном постоянном напряжении шины питания 230 В выходной прямоугольный импульс имеет эффективное напряжение 160 В, а частота устанавливается подбором R2 и С4 для приближения к резонансной частоте лампы. Лампа работает в своей последовательной резонансной схеме, состоящей из последовательно включенной катушки индуктивности L1 и шунтирующего конденсатора С6, который стоит параллельно термистору с положительным температурным коэффициентом.

Термистор (для этих целей может также использоваться неоновая лампочка) имеет малое сопротивление в холодном состоянии и очень высокое в горячем, когда нагревается благодаря протекающему через него току. Назначение термистора — обеспечить плавное нарастание напряжения на электродах лампы при включении. В случаях, когда лампа горит постоянно или очень редко

включается/выключается, термистор можно убрать. В этом случае лампа включается мгновенно, что может привести к ее быстрому износу.

Сверхминиатюрная схема управления для лампы дневного света мощностью до 26Вт

Следующая принципиальная схема, приведенная на рис. 3.5-4, позволяет управлять лампой дневного света (ЛДС), имея при этом сверхминиатюрные размеры, так как в ней не применяются силовые инверторы (ИС IR51h520 объединяет в одном корпусе ИС IR2151 и МДП-ключи). Максимальная мощность лампы в этом случае не должна превышать 26 Вт, чего вполне достаточно для освещения одного рабочего места.


 

lib.qrz.ru

Преобразователь для лампы дневного света

Бывают случаи в жизни, когда позарез необходим низковольтный источник питания для люминесцентных ламп. Такой светильник может питаться от аккумуляторной батареи в походе или на даче, а также с легкостью может найти свое применение в гараже и в быту, способен запустить даже сгоревшую люминесцентную лампу.

Энергосберегающая лампа от низковольтного источника питания – схема

Преобразователь напряжения для для лампы дневного света условно состоит из трех частей.

  • Задающий генератор прямоугольных импульсов на микросхеме К155ЛА3 или К555ЛА3 (можно брать и любой другой аналог). Наш генератор собран на К555ЛА3.
  • Полевой транзистор IFRZ44N, управляемый генератором, в нагрузке которого включена обмотка трансформатора
  • Повышающий трансформатор

Генератор прямоугольных импульсов на микросхеме К155ЛА3 управляется с помощью построечного резистора R1. На выход генератора подключен транзистор Т1 КТ315 со светодиодом, который визуально поможет контролировать частоту и работу генератора.

При разной частоте будут меняться режимы работы транзистора и трансформатора, соответственно с разной яркостью будет светиться люминесцентная лампа. Построечным резистором необходимо выбрать ту частоту, при которой будет оптимальный баланс между током, протекающим через транзистор Т2 и яркостью свечения лампы дневного света. Частота составит примерно 70 — 120 Гц.

Преобразователь для лампы дневного света — сборка

Для демонстрации работоспособности схемы она была собрана на макетной плате. Питается схема от блока питания макетной платы — 5В. Трансформатор снят с блока питания и включен наоборот, т.е. обмотка с большим количеством витков отходит к контактам люминесцентной лампы. Транзистор в процессе работы греется, желательно установить его хоть на небольшой радиатор. За час работы с радиатором он стал просто теплым.

Самой первой нашей испытуемой лампой стала лампа на 8 ВТ. Свечение вполне яркое, ее яркость немного отличается, от включения стандартным способом.

Вторая лампа на 18 Вт, загорелась, но очень тускло. Мощности, которую выдает этот преобразователь напряжения для такой люминесцентной лампы явно недостаточно.

В общем, учитывая простоту этой схемы ее можно смело рекомендовать для сборки. При необходимости схему можно питать и от 12 В, но в таком случае обязательно необходим стабилизатор на 5 В для питания микросхемы.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Какой стабилизатор напряжения выбрать для дачи

1. Зачем выбирать стабилизатор напряжения?

В результате скачков напряжения, которые в сельской местности происходят регулярно, электрическое оборудование и бытовая техника на даче подвергаются критическим нагрузкам, поэтому могут быстро выйти из строя. Особенно критично стабильное напряжение для газовых котлов, холодильников, компьютеров, освещения.

Стабилизатор напряжения предназначен для автоматического регулирования напряжения, защиты оборудования от бросков напряжения, сглаживания импульсных помех, чтобы скачки напряжения в сети не сказывались на работе электрооборудования и техники. Очень часто стабилизатор используется в частных домах и на дачах.

2. Как быстро выбрать стабилизатор напряжения для дачи?

Обратите внимание на 4 момента:

  1. Вес стабилизатора напряжения. Чем он тяжелее – тем лучше. В нем больше меди.
  2. Защита от короткого замыкания на корпус стабилизатора. У хорошего стабилизатора должна быть гальваническая развязка. Тогда Вас никогда не ударит током от корпуса.
  3. Принудительное охлаждение стабилизатора. На качественном стабилизаторе напряжения обязательно стоит вентилятор.
  4. Качественный стабилизатор напряжения не может постоянно показывать на выходе 220 Вольт. В реальности напряжение все равно отклоняется в каких-то пределах, в зависимости от точности работы стабилизатора.

Теперь давайте постараемся определить, какой стабилизатор напряжения выбрать лучше, по техническим характеристикам:

3. Выбрать трёхфазный, или однофазный?

Если Вы используете электроэнергию исключительно в бытовых целях, то у Вас однозначно однофазная сеть, под которую необходимо купить стабилизатор напряжения однофазный.
Если сеть - трёхфазная: При наличии хотя бы одного трёхфазного потребителя потребуется трёхфазный стабилизатор. При условии, что вся нагрузка однофазная можно использовать три однофазных стабилизатора или один трехфазный стабилизатор с независимой регулировкой по каждой фазе. Преимущества такого варианта заключаются в меньшей стоимости, и позволяет обойти особенность трёхфазных стабилизаторов, а именно отключение всего устройства при исчезновении напряжения на одной из фаз (по любым причинам).

4. Как выбрать стабилизатор напряжения по мощности?

Стабилизатор напряжения можно устанавливать для стабилизации напряжения, как отдельного взятого оборудования, так и всего объекта в целом. Это зависит от конкретных требований и возможностей. Для правильного выбора стабилизатора по мощности необходимо определить сумму мощностей всех потребителей, нуждающихся одновременно в снабжении электроэнергией (Вт), для которых критичны перепады напряжения. В первую очередь обратите внимание на котельное оборудование и бытовую технику.

Как правило, потребляемая мощность прибора указана на задней стенке прибора или устройства, рядом с напряжением питания и частотой сети.

Примерная потребляемая мощность различных электроприборов (Вт):

  • электролампы 20-250
  • радио 50-250
  • телевизор 100-400
  • компьютер 400-750
  • холодильник 150-600
  • утюг 500-2000
  • тостер 600-1500
  • кофеварка 800-1500
  • электроплита 1100-6000
  • гриль 1200-2000
  • духовка 1000-2000
  • СВЧ-печь 1200-2000
  • электрочайник 1000-2500
  • стиральные машины 2500-5000
  • кондиционер 1000-3000
  • обогреватель 1000-2500
  • фен для волос 450-2000
  • бойлер 1200-1500
  • проточный нагреватель воды 3000-6000
  • дрель 400-800
  • перфоратор 600-1400
  • электроточило 300-1100
  • дисковая пила 750-1600
  • циркулярная пила 1800-2100
  • электрорубанок 400-1000
  • электролобзик 250-700
  • компрессор 750-2800
  • водяной насос 500-900
  • электродвигатели 550-3000
  • вентиляторы 750-1700
  • насос выcокого давления 2000-3000
  • сварочный агрегат 1500-3000

Необходимо также учитывать, что электродвигатели в момент запуска потребляют более высокую мощность. Мощность стабилизатора при использовании асинхронных электродвигателей, компрессоров, насосов должна превышать в 3-4 раза мощность потребителей.

При этом очень желательно заложить не менее 25% на превышение потребляемой мощности, поскольку очень немногие стабилизаторы напряжения, существующие сейчас на рынке способны проработать длительное время на максимальном декларируемом пределе их возможностей.

Пример, как выбрать стабилизатор напряжения:

В стационарном режиме работают холодильник (мощностью 200 Вт (при пуске 600 Вт)), телевизор (400 Вт), кондиционер (1000 Вт (при пуске 3000 Вт)), радио (100 Вт), электрические лампы (200 Вт). Суммарная мощность составляет: 600+400+3000+100+200 = 4300 (Вт). 

Одновременно со стационарными электроприборами могут подключаться утюг (1000 Вт), пылесос (800 Вт (при пуске 2400 Вт)), электрочайник (1000 Вт). В этом случае общая нагрузка может увеличиваться на 1000-4400 Вт. Максимальная суммарная мощность составит 4300+4400 = 8700 (Вт). 

Добавляем еще 25% резерв.

Таким образом, при одновременном включении вышеперечисленных приборов, вам необходимо приобрести стабилизатор напряжения мощностью не менее 11 кВт.

При подсчете мощности, потребляемой устройством, необходимо учесть так называемую полную мощность. Полная мощность - это вся мощность, потребляемая электроприбором, она состоит из активной мощности и реактивной мощности, в зависимости от типа нагрузки. Активная мощность всегда указывается в ваттах (Вт), полная - в вольт-амперах (ВА). Устройства - потребители электроэнергии зачастую имеют как активную, так и реактивную составляющие нагрузки. 

Активная нагрузка. У этого вида нагрузки вся потребляемая электроэнергия преобразуется в другие виды энергии (тепловую, световую и т. п.). У некоторых устройств данная составляющая является основной. Примеры - лампы накаливания, обогреватели, электроплиты, утюги и т. п. Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью 1кВА.

Реактивные нагрузки. Все остальные. Они, в свою очередь, подразделяются на индуктивные и емкостные. 

Пример - устройства, содержащие электродвигатель, электронная, бытовая техника. Полная мощность в вольт-амперах и активная мощность в ваттах связаны между собой коэффициентом COS фи. На приборах, имеющих реактивную составляющую нагрузки, часто указывают их активную потребляемую мощность в ваттах и COS фи. Чтобы подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на COS фи. Например: если на дрели написано "600 Вт" и "COS фи = 0,6", это означает, что на самом деле потребляемая инструментом полная мощность будет равна 600 / 0,6=1000 ВА. Если COSф не указан, для грубого расчета активную мощность можно  разделить на 0,7. 

При подключении через стабилизатор нагрузки типа сварочный аппарат или электродвигатель расчетный номинал мощности стабилизатора УДВАИВАЕТСЯ или даже УТРАИВАЕТСЯ. 

Высокие пусковые токи. Любой электродвигатель в момент включения потребляет энергии в несколько раз больше, чем в штатном режиме. В случае, когда в состав нагрузки входит электродвигатель, который является основным потребителем в данном устройстве (например, погружной насос, холодильник), его паспортную потребляемую мощность необходимо умножить на 3, во избежание перегрузки стабилизатора в момент включения устройства. 

5. Как подобрать стабилизатор напряжения для дачи, по способу установки? 

Стабилизаторы напряжения могут быть:

Настольные - установка на стол, как правило, небольшой мощности.

6. Как выбрать стабилизатор для дома, по точности стабилизации?

Для выбора точности стабилизации необходимо определить диапазон напряжений, допустимых для питания защищаемой стабилизатором напряжения аппаратуры. Чтобы узнать параметры электропитания Вашей аппаратуры, обратитесь к инструкции по эксплуатации или в сервисный центр ее производителя. Ниже приведены примерные рекомендации по подбору стабилизатора для типовой аппаратуры. 

Для питания сложной медицинской аппаратуры и точных измерительных приборов желателен стабилизатор напряжения с точностью до 3%.

Осветительную аппаратуру (люстры, прожекторы, софиты и т.п.) рекомендуется подключать через стабилизатор с точностью не менее 3%. Чем выше точность стабилизации, тем меньше разброс выходного напряжения, и соответственно, меньше видимое изменение интенсивности света при резких скачках входного напряжения.

Электропитание большинства бытовых приборов и аппаратуры можно осуществлять напряжением 220±5-7%. 

7. Какой стабилизатор напряжения лучше: электронный или электромеханический?

Электромеханические (сервоприводные) стабилизаторы рекомендованы для применения там, где нет резкого скачкообразного изменения напряжения (20-30 В и более) в электрической сети. 

При эксплуатации электромеханических стабилизаторов в подобных сетях возможно кратковременное отключение нагрузки (срабатывает защита относительно выходного напряжения) с последующим автоматическим включением.

Электромеханические стабилизаторы имеют небольшую стоимость, но требуют периодического сервисного обслуживания. При непрерывной работе раз в 2 года, а то и раз в год нужно вызывать специалиста для чистки рабочих контактов. При стирании трущихся частей - менять их. 

Электронные (симисторные и релейные) стабилизаторы напряжения - более быстродействующие и успевают среагировать на резкие изменения питающего напряжения. Но они дороже, поэтому стабилизаторы напряжения на электронных ключах следует устанавливать на дорогостоящие потребители или там, где требуется непрерывная работа и качественная защита потребителей. 

8. Что выбрать, если Вам подходят стабилизаторы различных моделей?

Разные модели отличаются друг от друга помимо основных характеристик множеством других параметров:

  • Принципом действия
  • Конструктивными особенностями
  • Быстродействием
  • Степенью защищённости
  • Набором функций и т.д. 

Рекомендуем также почитать: 

Cos фи или коэффициент реактивной мощности – что это? 

Напряжение в сети 

Как найти скрытую проводку в стене? 

Классы защиты от поражения электрическим током 

Климатическое исполнение 

Ассортимент стабилизаторов в нашем интернет магазине

7207971.ru

Как зажечь лампу дневного света без дросселя: практические нюансы

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принцип действия лампы дневного света

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Газ.
  9. Нити накала лампы.
  10. Ультрафиолетовое излучение.
  11. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Принцип действия ЭПРА

Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.

Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.

Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины:
1) Из строя вышел стартер. В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) Из строя вышла сама ЛДС. Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.

Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.

Рис. 6. Структурная схема подключения ЛДС без дросселя

Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.

Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Заключение

При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.

electry.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *