Почему важно знать коэффициент теплопроводности полиуретана и как это влияет на качество теплоизоляции?
Зачем знать коэффициент теплопроводности при выборе утеплителя, как он влияет на качество теплоизоляции и как рассчитать толщину слоя утепления. Читайте в статье.
ППУ для теплоизоляции в сравнении с другими утеплителями
Пенополиуретан (ППУ) — газонаполненная пластмасса, которая получается в результате смешивания полиола и полиизоцианата. После химической реакции вещество увеличивается в объеме от 5 до 25 раз в зависимости от формулы.
В строительстве ППУ применяют для теплоизоляции. Его теплопроводность позволяет защитить от холода кирпичные и деревянные дома, строения из газобетона и камня, блочные и бетонные конструкции. Материал не пропускает влагу и может защищать от воды. Имеет высокую адгезию, легко заполняет щели и пустоты, устойчив к растворам щелочей, кислот, осадкам. При длительной эксплуатации пенополиуретан не плесневеет. Он не восприимчив к грибкам, защищает от насекомых и грызунов. Служит дольше 30 лет.
Пенополиуретан не горит и не выделяет в атмосферу вредные вещества. Компания «Химтраст» предлагает материалы с разным классом горючести: от «Химтраст СКН-60 Г1» (трудногорючий) до «Химтраст СКН-30 Г3» (самозатухающий).
В строительстве для теплоизоляции используют базальтовое волокно, стекловату, полиуретан, пенопласт, пенополистирол. Коэффициент теплопроводности полиуретана один из самых низких среди утеплителей. Чем ниже коэффициент, тем тоньше нужен слой утеплителя.
Средний коэффициент теплопроводности полиуретана — 0,028 Вт/(м·К). У открытоячеистого ППУ, который используют для тепло- и шумоизоляции закрытых помещений — 0,037 Вт/(м·К). У закрытоячеистого для наружных стен — 0,022 Вт/(м·К). Этот показатель говорит о том, насколько сильно материал сопротивляется проникновению холода извне и отдаче тепла наружу. Сравнение теплопроводности ППУ приведено в Приложении 3 СНиП 2-3-79.
Базальтовый утеплитель, стекловата и эковата
Базальтовым утеплителем (каменной ватой) часто укрывают здания. Он не горит и способен к самозатуханию. Теплопроводность материала — 0,04 Вт/(м·К), это тоже хороший показатель, но, в отличие от ППУ, слой базальтового утеплителя должен быть в два раза толще, чтобы защитить конструкцию. Такой же коэффициент у стекловаты и эковаты.
Экструдированный пенополистирол
Плитами из экструдированного пенополистирола защищают жилые дома от холодов. Теплопроводность материала — 0,032 Вт/(м·К), этого достаточно для утепления, однако нужно учитывать и другие свойства пенополистирола. Его класс горючести Г4, он легко воспламеняется и выделяет токсины.
Пенопласт
Пенопласт по плотности схож с пенополистиролом, только менее устойчив к механическому воздействию и держит тепло хуже. Коэффициент теплопроводности — 0,038 Вт/(м·К). Значит, его слой при утеплении должен быть на 30 % толще, чем ППУ.
За тепло в помещении отвечает не только теплопроводность ППУ при изоляции, но и другие материалы: кирпичная кладка, облицовочные панели, слой штукатурки, гидроизоляция. Все они имеют плотность и влияют на защиту здания от холода.
Теплопроводность ППУ в сухом и влажном состоянии
При намокании любой материал впитывает влагу и расширяется. Разбухание приводит к частичной или полной потере теплоизоляционных свойств. Поэтому важно обращать внимание на водопоглощение по объему, которое измеряется в процентах.
У закрытоячеистого ППУ типа «Химтраст СКН-40 Г2» этот показатель — 2 %, а у базальтовых утеплителей — 35 %. Это значит, что при попадании влаги большая часть теплоизоляционных свойств минеральной ваты, эковаты и стекловаты будет утрачена. С коэффициентом водопоглощения пенополиуретана сравнимы показатели пенополистирола и пенопласта: 1 % и 4 %. Однако при утеплении эти материалы нужно укладывать плитами и не допускать зазоров между ними, иначе тепло будет уходить сквозь щели. ППУ для теплоизоляции наносят на поверхность установками безвоздушного напыления единым слоем без швов и зазоров. Подробнее прочитать о напылении ППУ можно в этой статье.
Как рассчитать толщину слоя ППУ для теплоизоляции
Толщина слоя утеплителя зависит от коэффициента теплопроводности полиуретана. Но также на нее влияют климатическая зона, влажность внутри помещения, температура, влагопоглощение и свойства материала.
Расчет теплоизоляционного слоя регламентируется нормативными документами: СНиП 23-02-2002, СП 23-101-2004 «Проектирование тепловой защиты зданий», ГОСТ Р 54851-2011.
Один из основных показателей для расчета толщины — суммарное сопротивление теплопередаче конструкций или термическое сопротивление. Оно обозначает необходимую разницу температур снаружи и внутри материала для прохождения энергии. Измеряется в (м²·K)/Вт. Чем выше величина показателя, тем надежнее утеплитель.
Чтобы рассчитать сопротивление, нужно толщину материала в метрах разделить на коэффициент теплопроводности пенополиуретана.
dппу = (Rтреб — Rконстр) • ʎппу = (Rтреб — dконстр / ʎконстр) • ʎппу,
где dппу — требуемый слой ППУ в метрах,
Rтреб — требуемое сопротивление теплопередаче в (м²·K)/Вт,
Rконстр — сопротивление теплопередаче существующей ограждающей конструкции в (м²·K)/Вт,
ʎппу — коэффициент теплопроводности ППУ в Вт/(м•K),
ʎконстр — коэффициент теплопроводности существующей ограждающей конструкции в Вт/(м•K).
Подробнее о том, как найти оптимальную толщину слоя утеплителя, читайте в статье.
Для утепления помещения необходимо учитывать коэффициент теплопроводности материала. В зависимости от его физико-химических свойств определяется способность удерживать тепло. Чем ниже коэффициент теплопроводности, тем лучше защищает от холода. Также важно учитывать другие особенности теплоизоляторов: способность отталкивать влагу, горючесть, экологичность и срок эксплуатации.
Теплопроводность ппу, таблица
На современном строительном производстве широко применяются теплоизоляционные материалы. Их использование позволяет значительно сократить сметную стоимость объекта, не потеряв при этом в качестве. Один из самых востребованных материалов на рынке утеплителей – пенополиуретан.
Пенополиуретан относится к группе искусственных газонаполненных пластмасс. Он состоит из полиуретана, между которым находятся пузырьки воздуха. Теплопроводность пенополиуретана практически равна нулю, что делает его незаменимым материалом на стройке и в быту. Различают несколько его видов:
- Жёсткий пенополиуретан – новый и перспективный материал, который ещё не прошел проверку временем. На сегодняшний день учёным только предстоит изучить поведение этого материала через 30-40 лет эксплуатации. Его производят прямо на строительной площадке. Он наносится на поверхность методом напыления. Жёсткий ППУ используется для утепления и звукоизоляции цокольных и подвальных этажей, фундаментов.
- Мягкий пенополиуретан – широко используется в качестве набивочной теплоизоляции и для изготовления различных предметов обихода. Его плотность 5-35 кг/м/.
Немного истории
Первые образцы пенополиуретана были получены в лаборатории города Леверкузен в 1937 году. Сначала не использовали как утеплитель. Из него изготавливали лепнину. Вторая мировая война внесла свои коррективы в динамику развития пенополиуретана. Его производство было приостановлено до начала 60-х годов. Для восстановления разрушенной инфраструктуры понадобилось много строительного материала. Пенополиуретан занял в этом списке достойное место.
Анализ технических характеристик ППУ
В этой статье будет рассмотрен жёсткий пенополиуретан. Его всё чаще используют на строительных площадках. У него низкая теплопроводимость и гидрофобность. ППУ не пропускает пары воды, не гниёт. На его поверхности не образуется грибок и плесень. Он не вступает в реакции с большинством реагентов.
Для всестороннего изучения этого теплоизоляционного материала рассматриваются его основные свойства:
- Теплоизолирующие свойства.
- Шумоизолирующие свойства.
- Влагостойкость.
- Паропроницаемость.
- Поведение в различных химических средах.
- Сопротивление открытому огню.
- Плотность.
- Срок эксплуатации.
- Экологичность.
Теплоизолирующие свойства
Этот параметр напрямую зависит от величины ячейки и колеблется в диапазоне 0,019-0,035 Вт/мºС. Теплопроводность ячеистого ППУ хуже, чем у пенополистирола, керамзитового гравия и минеральной ваты. При одинаковой толщине слоя утеплителей – пенополиуретан сохраняет тепло намного эффективнее, чем вышеперечисленные материалы. Схема сравнения теплоизолирующих свойств различных строительных материалов
Шумоизолирующие свойства
Его пористая и ячеистая структура обеспечивает удовлетворительную звукоизоляцию, но не от всех видов шума.
Важно! Нет универсального вида шума. Поэтому один материал может эффективно защищать от ударных шумов, но совершенно не сопротивляться другим их видам.
Пенополиуретан эффективно защищает внутренние помещения от различных ударных шумов. Это значит, что он заглушит звуки громких шагов или танцев соседей сверху. С другой стороны, по многочисленным отзывам потребителей, ППУ практически не защищает внутреннее пространство от звуков с улицы, громких разговоров иди музыки.
Этому есть простое объяснение. Ячеистые материалы (пенополиуретан, пенопласт) благодаря своей структуре плохо гасят звуковые волны. Для этих целей лучше использовать утеплители с волокнистой структурой (минеральная вата). У них волны гасятся за счёт колебаний внутренних волокон.
Влагостойкость
Для правильного использования теплоизоляционных материалов надо знать, какой процент влаги он сможет впитать. У пенополиуретана этот показатель равен 1-3 процентам от объёма материала в сутки. Этот показатель значительно выше, чем у пенопласта и минеральной ваты. Для улучшения защиты от влаги в состав ППУ добавляют присадки. Например, обычное касторовое масло уменьшает его гидрофобность в 4 раза. Пример защиты фундамента ППУ ниже уровня земли (во влажной среде)
Паропроницаемость
По этому параметру у ячеистого пенополиуретана высокие показатели. Коэффициент его паропроницаемости µ=50. Для сравнения, у тяжелого бетона этот показатель в 40-50 раз ниже. ППУ подходит для обработки внешних поверхностей стен и фундаментов. Он может полностью остановить всасывание бетоном влаги. С другой стороны его не рекомендуется применять в воде. Есть вероятность возникновения химической реакции гидратации. Схема работы стенового «пирога» на отвод влаги
Важно! Не вся пенополиуретановая пена хорошо защищает. Есть несколько видов ячеистой пены без защитной оболочки. Для них нужна дополнительная пароизоляция.
Поведение в различных химических средах
Реагенты | Концентрация, % | Стойкость |
Вода водопроводная | – | Ст |
Морская вода | – | Ст |
Соляная кислота | 36 | Нт |
Серная кислота | 45 | Ст |
Фосфорная кислота | 40 | Ст |
Едкий натр | 40 | Ст |
Аммиачная вода | 25 | Ст |
Азотная кислота | 68 | Ст |
Ацетон | – | Нт |
Кетоны | – | Нт |
Четырёххлористый углерод | – | Нт |
Толуол | – | Ст |
Бензин, нефтепродукты | – | Ст |
Сода | – | Ст |
Этил ацетат | – | Нт |
Метиловый спирт | 96 | Ст |
Этиловый спирт | 96 | Ст |
Эфиры | – | Нт |
Уксусная кислота | – | Ст |
Минеральные масла | – | Ст |
Растительное масло | – | Ст |
Муравьиная кислота | – | Нт |
*Ст- стоек, Нт – нестоек
Пенополиуретан зарекомендовал себя, как стойкий к основным химическим раздражителям материал. Он лучше, чем пенопласт сопротивляется испарениям многих химических элементов, если их концентрация не превышает норму. ППУ нельзя растворить с помощью бензина, солярки или различных масел. Многие концентрированные кислоты не способны разрушить его структуру.
Пенополиуретан можно использовать для защиты металлических поверхностей. Во время его нанесение на металл образуется два слоя плёнки. Первый плотно прилегает к поверхности, а второй защищает от химических реагентов.
Сопротивление открытому огню
Это важный параметр при выборе утеплителя. Не секрет, что при пожаре интенсивность распространения огня в значительной степени зависит от горючести теплоизоляционного материала. Согласно ГОСТ 12.1.044-89 ППУ относится к группам горючести Г2 и Г3. Согласно этой классификации пенополиуретан не является активным источником горения. Он сам не поддерживает огонь, а только может воспламениться от других источников.
Важно! Пенополиуретан сразу погаснет, если от него убрать огонь. Самозатухание – это важное свойство, которое относится ко всем его видам.
Плотность
Важный параметр, влияющий на несущую способность утеплителя. Для различных целей предусмотрен материал со своей плотностью. Диапазон значений плотности ППУ 8-80 кг/м3. Материал с открытыми ячейками обладает более низкой плотностью, чем с закрытыми ячейками.
Плотность различных видов пенополиуретанаСрок эксплуатации
Большая часть производителей указывают срок эксплуатации 20-30 лет. Это гарантийное время, в течение которого полезные свойства материала находятся в допустимых рамках. Последние исследования европейских учёных показали удивительные и обнадеживающие результаты. При сносе домов, построенных 40-50 лет назад с использованием пенополиуретана, учённые обнаружили, что его свойства практически не изменились. Структура и фактура остались теми же, что и изначально. Дальнейшие лабораторные исследования только подтвердили долговечность этого материала.
Экологичность
Важный параметр, на который всё больше и больше обращают внимание современные строители. В процессе производства пенополиуретан переходит из жидкого в твёрдое состояние за 30 секунд. После этого вредные испарения с его поверхности прекращаются. Если его нагреть до 450 Сº, то начнут выделяться углекислый и угарный газы. Впрочем, то же самое можно наблюдать и во время нагревания дерева. Пенополиуретан не выделяет вредных для организма человека соединений
Положительные и отрицательные свойства ППУ
Для более удобного понимания сути, свойств и области применения материала надо иметь представление не только о физических и химических свойствах, но и знать его положительные и отрицательные стороны.
Положительные
- У пенополиуретана хорошая адгезия. Он без проблем пристаёт к деревянной, металлической, бетонной поверхностям. Для него не нужны дополнительные крепёжные элементы. Благодаря своей эластичной структуре и способу нанесения пенополиуретан хорошо ложится на неровные основания. Перед его нанесением поверхность не нуждается в дополнительной обработке грунтом или краской.
- У ППУ низкая стоимость. Он производится прямо на строительной площадке путём смешивания двух компонентов. Отсутствуют затраты на дополнительную транспортировку и изготовление.
- Пенополиуретан – это лёгкий материал, который не нагружает строительные конструкции.
- Кроме тепло- и звукоизоляции пенополиуретан укрепляет несущие стены, делая конструкцию более прочной и долговечной.
- На него практически не оказывают влияние экстремально низкие и высокие температуры. ППУ не разрушается от цикличного замораживания и размораживания.
- У покрытия из пенополиуретана монолитная структура. Нет щелей для появления мостиков холода. Ветер его не продувает.
Отрицательные
- ППУ быстро разрушается под действием ультрафиолетовых лучей. Поэтому он не остаётся в открытом состоянии, а требует защиты. Его можно покрыть слоем краски или оштукатурить. Также подойдет использование различных облицовочных панелей.
- Пенополиуретан – это негорючий материал. Всё равно его не рекомендуется использовать в местах возможного соприкосновения с открытым огнём. Если это технически невозможно, то ППУ закрывается огнестойким гипсокартоном.
Технология нанесения
Два компонента подаются в смесительный бачок. Там под давлением они смешиваются и с помощью пистолета распыляются на обрабатываемую поверхность. Через несколько секунд смесь резко увеличивается в объёме и быстро застывает. Способ нанесения пенополиуретана
Важно! Для нанесения ППУ необходимо специальное оборудование и средства индивидуальной защиты. Поэтому лучше доверить этот процесс профессиональным строительным организациям.
Пенополиуретан во всех отношениях качественный материал. Экономия времени и средств может составлять 50-70% в сравнение с использованием традиционных утеплителей. Работы можно проводить круглый год. Технологии не стоят на месте, поэтому утепление строительных конструкций с помощью пенополиуретан будет становиться всё дешевле и надёжнее.
таблица сравнения с другими материалами и расчет толщины слоя утеплителя в зависимости от теплопроводности
В технической литературе пенополиуретан описывается как материал с самой низкой теплопроводностью в списке стандартных термоизоляционных материалов. Пенополистирол и жесткий пенополиуретан с низкой плотностью (от 20 до 50 кг/м3) по праву стали самыми используемыми материалами для промышленных холодильных и морозильных камер и других систем, где требуется повышенная термоизоляция. В этом заслуга низкой теплопередачи. Для сравнения теплопроводность жесткого пенополиуретана в разы ниже теплопроводности минеральной ваты и всех других популярных утеплителей.
Коэффициент теплопроводности жесткого пенополиуретана и других материалов
Именно низкая теплопроводность делает ППУ оптимальным материалом для термоизоляции. Коэффициент теплопроводности жесткого пенополиуретана составляет 0,019 – 0,028 Вт/м*К. Этот показатель определяет количество теплоты, которая проходит сквозь куб материала со стороной в 1 м за 1 секунду при единичном изменении температуры в 1 Кельвин. Низкая теплопроводность позволяет обеспечить необходимую теплоизоляцию при минимальном слое покрытия. Например, теплопроводность пенопласта составляет 0,04 – 0,06 Вт/м*К, т.е. понадобится в 2-3 раза более толстый слой пенопласта, чем пенополиуретана. В видео ниже поясняется понятие теплопроводности и его применение в строительстве:
Совет от профессионала
Если вы хотите сравнить теплопроводность различных строительных материалов, необходимо поделить их коэффициенты теплопроводности. К примеру, теплопроводность минваты и ППУ соотносятся как 0,052/0,019=2,74. Это означает, что слой пенополиуретана в 10 см равен 27,4 см слою минеральной ваты по своим утепляющим свойствам. Если брать теплопроводность керамзита и ППУ, то соотношение будет 0,18/0,019=9,47. То есть слой керамзита должен быть почти в 10 раз толще.
Ниже приведена теплопроводность строительных материалов в таблице
Материал |
Коэффициент теплопроводности (Вт/м*К) |
Жесткий пенополиуретан |
0.019 – 0.028 |
Пенополистирол (пенопласт) |
0.04 – 0.06 |
Минеральная вата |
0.052 – 0.058 |
Пенобетон |
0.145 – 0.160 |
Пробковая плита |
0.5 – 0.6 |
*Цифры могут изменяться в зависимости от производителя, погодных условий, точного состава.
Как рассчитать необходимую толщину слоя ППУ-утеплителя?
Для расчета необходимого количества материалов для утепления дома или другой постройки необходимо обратиться к нормативам СНиП 23-02-2003 и рассчитать следующие параметры:
Rreq = a*Dd + b
Dd = (Tint – Tht)*Zht
Δ=Rreq*λ
Rreq – сопротивление теплопередачи
a и b – коэффициенты из таблиц СНиП
Dd – градусо-сутки отопительного сезона
Tint – внутренняя температура помещения, которую необходимо поддерживать
Tht – средняя температура воздуха снаружи помещения
Zht – длительность периода отопления
Δ – искомая толщина слоя ППУ-утеплителя
Λ — теплопроводность
Сопротивление теплопередачи рассчитывается для цельной конструкции, поэтому для расчета сопротивления теплопередачи ППУ необходимо вычесть из общего показателя сопротивления теплопередачи других составных материалов покрытия (например, для стены нужно также учитывать теплопроводность штукатурки и кирпича).
Для примера, возьмем минимальную теплопроводность ППУ, равную 0,019. Используя данные из СНиП для стандартных стен жилого дома – Rreq=3,279 рассчитаем толщину теплоизоляционного покрытия из ППУ – Δ = 3,279*0,019= 0,0623 м (т.е. 6,23 см). Если вам посчастливится приобрести самый термостойкий пенополиуретан с таким низким коэффициентом теплопроводности, достаточная толщина термоизоляционного слоя всего 6 см.
В сравнении с другими утеплителями наиболее тонкий слой утепления дает именно пенополиуретан, теплопроводность которого ниже, чем у любого другого материала. Поэтому нередко утепление ППУ обходится дешевле, чем использование менее совершенных вариантов теплоизоляции.
Характеристики и свойства пенополиуретана — теплопроводность, толщина слоя ППУ, срок службы
Благодаря своим отменным техническим характеристикам и длительному сроку службы ППУ считается эталоном среди утеплителей и широко используется для обработки самых разных поверхностей – от стен и кровли домов до трубопроводов и промышленных емкостей. Рассмотрим основные преимущества пенополиуретана.
Теплопроводность и гигроскопичность
Пенополиуретан, по сравнению с такими популярными утеплителями, как минеральная вата и пенопласт, обладает самым низким коэффициентом теплопроводности — 0,025 Вт/м*К. У ближайшего «конкурента» — минеральной ваты — этот коэффициент выше — 0,052 Вт/м*К. При этом ППУ обладает закрытой пористостью, а следовательно, в массу утеплителя не проникает вода, не теряются рабочие свойства материала.
Легкость в нанесении ППУ
Пенополиуретан не нуждается в крепежных элементах за счет того, что ППУ имеет высокую адгезионную прочность, т. е. «прилипает» к любой поверхности, заполняя собой поры, полости и трещины. В таком случае возможность скопления конденсата и образования «мостиков холода» исключена. Фактические тепловые потери ППУ в 1.7 раза ниже нормативных (СниП 2.04.14-88 Энергосбережение, №1,1999 г.).
Утеплители из ППУ могут быть изготовлены разными способами — как напылением, так и с использованием пресс-форм (например, изготовление «скорлупок» для утепления трубопроводов, сэндвич-панелей и т.д.).
Толщина пенополиуретанового покрытия — обычно от 3 до 7 см. За одну смену одна бригада рабочих в состоянии нанести от 200 до 400 кв.м. ППУ. Бригада, работающая с минеральной ватой, уложит максимум 100 кв.м.
Также в пользу ППУ говорит то, что составляющие материала хранятся отдельно друг от друга, а смешиваются они непосредственно перед началом работ. Из 5 кубометров смеси получается 100 кубометров ППУ, а следовательно, снижаются расходы на хранение и транспорт.
Срок службы
Одно из самых главных свойств ППУ — долговечность. Данные лабораторных исследований на ускоренное старение показывают, что время службы пенополиуретана — не менее 30 лет. В том случае, если ППУ напрямую не контактирует с окружающей средой, этот срок увеличивается вдвое, до 60 лет. Например, завод-холодильник в Лондоне, построенный с использованием ППУ в 1968 г., успешно функционирует до сих пор. Жизненная практика показывает, что во всех случаях неудовлетворительного «поведения» пенополиуретана виновато либо низкое качество изделия, либо нарушение условий эксплуатации, например, температура выше 100 градусов по Цельсию, или постоянный контакт с жидкостью или газом под высоким давлением.
Безопасность
В отношении безопасности использования ППУ также «на высоте» — пенополиуретан в процессе эксплуатации не выделяет токсичных веществ, а также практически не горюч.
Сравнение теплоизоляции из пенополиуретана с другими утеплителями
Самыми популярными теплоизоляционными материалами на российском строительном рынке являются минеральная вата, пенополистирол (ППС) и пенополиуретан (ППУ). На самом деле утеплителей гораздо больше, но на долю вышеперечисленных материалов приходится более 95% рынка. Каждый из этих материалов по-своему хорош, и поэтому для более осмысленного выбора необходимо знать их основные характеристики. С этой целью проведем сравнение теплоизоляции по четырем основным эксплуатационным характеристикам: теплопроводности, влагопроницаемости, сроку эксплуатации и экологичности.
На фото показаны самые распространенные виды теплоизоляционных материалов. Их основными характеристиками является коэффициент теплопроводности, влагопоглощение, срок эксплуатации и безопасность.
Теплопроводность пенополиуретана в сравнении с другими утеплителями Теплопроводность — основной показатель, оценивающий, сколько тепла материал проводит за единицу времени при изменении температуры на его поверхности на 1°С. Теплопроводность пенополиуретана — 0,02 Вт/м·С. По этому показателю ППУ значительно опережает своих конкурентов. Для сравнения теплопроводность ППС и минваты составляет соответственно 0,035 и 0,045 Вт/м·С.
Таким образом, слою ППУ в 50 мм соответствуют:
- ППС – 80 мм;
- минеральная вата – 120 мм.
Принципиальное отличие ППУ от других плитных и рулонных материалов заключается в том, что в утепленных им поверхностях со временем не образуются мостики холода, чего, к сожалению, не скажешь о других материалах, которые со временем стареют и меняют свои эксплуатационные характеристики.
На картинке показан график эквивалентной теплопроводности различных теплоизоляционных материалов. Слою утеплителя толщиной 80 мм из полиуретана по теплопроводности соответствует кирпичная стена толщиной 1,5 метра.
Влагопроницаемость теплоизоляции
Сравнение теплоизоляционных материалов по этому показателю в большей степени указывает на их эффективность. Даже если материал имеет прекрасный показатель по теплопроводности, но с течением времени накапливает влагу, он малоэффективен. Меньше всего поглощает влагу ППУ и ППС. А что касается минваты, то ее способность поглощать воду в 12-15 раз выше. Именно по этой причине минеральную вату защищают паро- и влагозащитными пленками.
Срок эксплуатации
Этот критерий оценивает время эксплуатации теплоизоляционного материала, в течение которого он не меняет свои эксплуатационные характеристики. По этому показателю пенополиуретану нет равных. Заявленный срок службы у этого материала равен 50 годам. При этом он не теряет свои качества при экстремально низких и при экстремально высоких температурах. Кроме этого с течением времени он не дает усадку в отличие от той же минваты. Гарантированный срок эксплуатации ППС – 12-15 лет, минеральной ваты – 3-8 лет.
Пенополиуретан выпускают толщиной от 20 до 100 мм. В отличие от других теплоизоляционных материалов срок службы пенополиуретана составляет более 50 лет.
Экологичность Для гражданского строительства экологичность — очень важный показатель. По санитарным нормам и правилам теплоизоляционные материалы, применяемые в строительстве, должны быть абсолютно безвредны. Тем не менее, практически все материалы излучают какое-то количество химических веществ, но оно настолько мизерное, что не оказывает вредного воздействия на здоровье человека. Пенополистирол и пенополиуретан в сравнении с минеральной ватой выигрывают, так как абсолютно безопасны. В состав минваты входят фенолы и формальдегиды, поэтому ее следует надежно изолировать. Для минимизации вредного влияния утеплителей на здоровье человека их лучше монтировать с наружной стороны здания. Стоит отметить еще одну особенность: если ППУ абсолютно не интересует грызунов, то пенопласт и минеральная вата для них — излюбленная среда обитания.
Таблица теплоизоляционных материалов
Для большей наглядности сведем теплоизоляционные свойства материалов в таблицу:
Утеплитель |
Плотность, кг/м³ |
Коэффициент теплопроводности, Вт/м С |
Толщина, мм |
Срок эксплуатации, лет |
Пенополиуретан | 35-160 | 0,02-0,025 | 50 | > 50 |
Пенополистирол | 15-45 | 0,035 | 80 | 15 |
Минеральная вата | 15-150 | 0,04-0,045 | 120 | 3-8 |
Проанализировав технические характеристики наиболее популярных утеплителей, и проведя сравнение пенополиуретана с другими утеплителями, становится понятно, что ППУ лучше по многим основным показателям. Благодаря своей универсальности, а утеплять им можно все конструктивные элементы зданий, трубопроводы и запорную арматуру, его доля на рынке с каждым годом увеличивается, и он по праву заслуживает репутацию одного из самых доступных и эффективных материалов.
Наша продукция Как заказать трубы ППУ Размещая заявку на поставку тепловой трубы ППУ в нашей компании каждому Заказчику гарантируется индивидуальный подход, оперативность, точность и четкость исполнения контрактных обязательств. Поскольку этапы строительства трубопроводов жестко взаимосвязаны с текущей комплектацией, наш клиент должен получить свой заказ с гарантией по качеству, очередности, количеству и точно в срок. Отправить спецификацию заказа Наименования номенклатуры изделий, маркировка и иные условные обозначения у разных проектных организаций и производителей могут отличаться, что может потребовать дополнительных уточнений и согласований содержания спецификации заказа между потребителем и офисом продаж. Предлагаем краткие требования к условным обозначениям номенклатуры изделий, используемым на нашем предприятии. Наши преимущества Мы исповедуем индивидуальный подход в работе с каждым клиентом, стараясь максимально удовлетворить требования по его заявке на поставку продукции нашего предприятия. Калькулятор Специализация компании СТС Изоляция Наша продукция: Производим энергоэффективные стальные трубы в ППУ изоляции по технологии вспенивая полиуретана в сборной трехуровневой конструкции «сталь + жесткий пенополиуретан + полиэтилен/оцинкованная сталь» по ГОСТ 30732-2020. На поточных заводских линиях осуществляем нанесение теплоизоляции на прямые участки трубопроводов, фасонные изделия, шаровые краны и компенсаторы. Осуществляем комплексное снабжение расходными материалами для монтажа стыковых соединений и приборами электронной системы контроля протечек ОДК. Наши потребители: Заказчиками нашей продукции являются строительные, монтажные и сервисные компании коммунальной энергетики, ЖКХ, нефтехимии, а также предприятия нефтегазового сектора и промышленности. Параметры применения пенополиуретановой теплоизоляции: Инженерные сети с рабочим давлением до 1,6 МПа и температурой транспортируемого вещества до 140С Цельсия. Сфера применения нашей продукции:
Наши услуги:
География поставок Продукция предприятия имеет обширную географию поставок и за более чем десятилетнюю историю работы нами была произведена отгрузка широкой номенклатуры изделий на более, чем тысячу предприятий в десятки городов и населенных пунктов РФ. В числе приобретавших трубы в ППУ изоляции нашего производства множество предприятий из таких городов, как Москва (а также Московской области), Ярославль, Рязань, Калуга, Владимир, Тверь, Тула, Вологда, Кострома, Нижний Новгород, Волгоград и потребителей из Казахстана. Специальное предложение Новости | Телефон: +7 (495) 979-54-48, тел./факс: +7 (495) 660-11-08 Работа склада: 8:00 — 17:00 (пн — пт) Работа офиса: 9:00 — 18:00 (пн — пт) |
Характеристики ППУ — Группа компаний «Скиф»
Сегодня, когда все пытаются уменьшить потерю тепла при его подаче потребителю, постоянно требуется теплоизоляторы для трубных магистралей. Самыми популярными и универсальными на сегодняшний день, считаются скорлупы ппу.
ППУ — Пенополиуретан, является одним из самых эффективных материалов используемых в современном строительстве для теплоизоляции трубопроводов отопления, нефти и газа, стен, полов, перекрытий, ограждающих конструкций, покрытий энергетического оборудования, кумулятивных емкостей, холодильных камер и других строительных конструкций.
Теплоизоляционные скорлупы из пенополиуретана обеспечивают:
- Низкую трудоемкость;
- Сокращение времени монтажа теплоизоляции;
- Возможность многоразового использования;
- Быстрый доступ к поврежденным участкам труб;
- Значительное увеличение срока службы теплоизоляционного покрытия;
- Применим при температурах от-100°С до +130°С.
- Высокую производительность: 2 человека изолируют до 150 метров трубопровода за смену.
Пенополиуретан
Физико-механические и теплотехнические свойства ППУ: Пенополиуретан среди теплоизолирующих материалов обладает наиболее низким коэффициентом теплопроводности О,019-0,022 Вт/мК , высокими гидроизолирующими свойствами (до 95% закрытых пор), широким диапазоном плотности (от 40 до 200кг/м куб.), что позволяет использовать его в качестве теплоизоляции пола. ППУ химически нейтрален к кислотным и щелочным средам, может работать в грунте и служить антикоррозийной защитой металла. Должен быть защищен от прямых солнечных лучей бумагой, краской или фольгой. Класс горючести — самозатухающий.
- Плотность — 55 кг/м куб.
- Коэффициент теплопроводности — 0,019Вт/мК
- Водопоглощение за 24 ч. — 0,1-0,2 кг/м куб.
- Содержание закрытых пор — 95%
- Пожаростойкость — ГЗ, самозатухающий
- Долговечность — не менее 30 лет.
Сравнительные Технические характеристики скорлуп ппу с другими теплоизоляцторами:
Теплоизолятор |
Степерь плотности (кг/м.куб) |
Коэф. теплопроводности (Вт/м*К) |
Пористость |
Срок эксплуатации (лет) |
Диапазон рабочих температур |
скорлупа ппу |
40-200 |
0,019 |
Закрытая |
15-30 |
-110…+130 |
Минеральная вата |
55-150 |
0,052-0,058 |
Открытая |
5 |
-40…+120 |
Пробковая плита |
220-240 |
0,050-0,060 |
Закрытая |
3 |
-30…+90 |
Пенобетон |
250-400 |
0,145-0,160 |
Открытая |
10 |
-30…+120 |
Пенопласт |
30-60 |
0,040-0,050 |
Закрытая |
5-7 |
-50…+110 |
Сравнительный анализ технико-экономической эффективности при использовании пенополиуретана и традиционной минеральной ваты:
Показатели |
Пенополиуретан |
Минеральная вата |
Коэффициент теплопроводности |
0,019-0,022 |
0,050-0,070 |
Толщина покрытия |
40-140 мм |
120-220 мм |
Эффективный срок службы |
15-30лет |
5 лет |
Производство работ |
Круглогодично |
Теплое время года, сухая погода |
Влага, агрессивные среды |
Устойчив |
Теплоизоляционные свойства теряются, восстановлению не подлежит |
Экологическая чистота |
Безопасен! Разрешено применение в жилых зданиях |
Аллерген |
Фактические тепловые потери |
В 1,7 раза ниже нормативных |
Превышение нормативных после 12 месяцев эксплуатации |
Приведем некоторые факты:
1. Скорлупы ппу имеют низкую теплопроводность, поэтому коэффициент теплопроводности составляет — 0,022 Вт/мК. Намного лучше, чем аналогические изделия из других материалов. При проведении исследований, доказано, что использование в качестве теплоизолятора скорлупы ппу есть выгодным и окупаемым решением.
2. Срок эксплуатации. Скорлупы ппу выдерживают около 1 тыс. циклов разморозки/заморозки. если скорлупа ппу используется без защитного слоя покрытия, то свои технические характеристики она не теряет примерно 10-15 лет. если она эксплуатируется в условиях закрытого помещения или имеет поверхностный панцирь для защиты, то в этом случае срок ее службы увеличивается до 25-30 лет.
3. Защита от влаги. Так как пенополиуретан имеет закрытую структуру пор, с помощью которой сохраняется тепло, в то же время эта особенность не позволяет влаге просочиться влаге. И если скорлупа ппу установлена без технических нарушений, она надолго защитит трубу от воздействия влаги.
4. Воздействие биологической активности. Скорлупы ппу не подвергаются атакам вредоносной плесени и разных грибков. также, ппу нестрашны грызуны.
5. Температурный режим. скорлупа ппу имеет особенность сохранять свои технические характеристики при перепадах температуры от минимальной -180 до максимальной +200. Поэтому ее можно использовать в разных сферах промышленного хозяйства.
6. Безопасность для экологии. Подтверждено эксперементами, что скорлупа ппу не имеет никокого влияния на здоровье человека и является безопасной.
Экспериментальное исследование теплопроводности пенополиуретана
Основные моменты
- •
Теплопроводность пенополиуретана измеряется в различных средах методом TPS.
- •
Спектральный коэффициент экстинкции пенополиуретана измеряется методом FTIR.
- •
Теплопроводность пенополиуретана немонотонно увеличивается с температурой.
- •
Теплопроводность пенополиуретана увеличивается на 10–18% во влажном воздухе.
- •
Радиационная теплопроводность пенополиуретана может быть рассчитана по модели Росселанда.
Реферат
Пенополиуретаны широко используются в области энергосбережения, а теплопроводность является одним из важнейших свойств. Чтобы выявить и оптимизировать теплоизоляционные характеристики пенополиуретана, теплопроводность пяти образцов пенополиуретана, образованных вспенивающими агентами CP, CP + IP, CP + 245fa и CP + 245fa + LBA, измеряется с использованием метода источника переходной плоскости в различных средах. .Всесторонне исследовано влияние температуры, влажности, водопоглощения, попеременной высокой и низкой температуры, длительного хранения при высокой температуре и атмосферного давления газа на теплопроводность форм ПУ. Обсуждается температурный механизм, влияющий на теплопроводность пенополиуретана. Инфракрасная спектроскопия с преобразованием Фурье применяется для измерения спектральных коэффициентов экстинкции этих пяти образцов. Со спектральным коэффициентом экстинкции радиационная теплопроводность рассчитывается по модели Росселанда.Затем разлагаются вклады лучистой теплопроводности в эффективную теплопроводность. Теплопроводность пяти пен немонотонно увеличивается с температурой. При хранении во влажном воздухе теплопроводность может увеличиваться до 10–18%. Излучательная теплопроводность составляет 3,6–4,1% при –40 ° C, 7,3–9,0% при 20 ° C и 9,1–11,8% при 70 ° C в эффективную теплопроводность.
Ключевые слова
Пенополиуритан
Теплопроводность
Пенообразователь
Метод источника переходной плоскости
Коэффициент ослабления
Излучательная теплопроводность
Рекомендуемые статьи Цитирующие статьи (0)
Просмотреть полный текст 9vier Ltd. © 2017 ElseВсе права защищены.Рекомендуемые статьи
Ссылки на статьи
Теплопроводность пенополиуретана
Теплопередача:- Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
- Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
- Министерство энергетики США, термодинамики, теплопередачи и потока жидкости.Справочник DOE по основам, Том 2 от 3 мая 2016 г.
Ядерная и реакторная физика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Ридинг, Массачусетс (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
- У. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
- Гласстоун, Сесонске.Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
- W.S.C. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
- Г. Р. Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
- Роберт Рид Берн, Введение в работу ядерных реакторов, 1988 г.
- Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам DOE, том 1 и 2.Январь 1993 г.
- Пол Рейсс, нейтронная физика. EDP Sciences, 2008. ISBN: 978-2759800414.
Advanced Reactor Physics:
- K. O. Ott, W. A. Bezella, Введение в статику ядерных реакторов, Американское ядерное общество, пересмотренное издание (1989), 1989, ISBN: 0-894-48033-2.
- К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
- Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
- Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.
Какова теплопроводность полиуретана?
Теплопроводность — это физическое свойство, которое проявляется в любом материале, включая полиуретан, и оно измеряет способность теплопроводности через него, или, другими словами, перенос тепловой энергии через тело. Это движение энергии создается разницей температур , поскольку, согласно второму закону термодинамики, тепло всегда течет в направлении самой низкой температуры.
Когда изолирует здание , важно знать теплопроводность используемых материалов, так как от этого будет зависеть его энергоэффективность и тепловой комфорт . Например, металлы имеют более высокую теплопроводность, чем дерево, но изоляционные материалы, такие как стекловолокно или полиуретан, имеют более низкую теплопроводность.
Значение теплопроводности в утеплении зданий
Поведение теплоизоляции является ключом к достижению целей Европейского Союза по энергосбережению на 2020 год. .Как в одноэтажных, так и в многоэтажных зданиях материалы, из которых изготовлено ограждение, определяют потребление энергии. Следовательно, если мы хотим, чтобы улучшило энергоэффективность зданий , одним из физических свойств, которые будут определять, является ли материал хорошей теплоизоляцией или нет, является теплопроводность.
Если сравнить теплопроводность основных материалов , используемых в строительстве , можно проверить, как в зависимости от выбора материалов уровень теплопроводности напрямую повлияет на теплоизоляцию дома .Например, традиционные материалы, такие как кирпич, древесная стружка или бетон, имеют более высокий уровень теплопроводности, чем изоляционные материалы, такие как полиуретан или полистирол.
Материал | Теплопроводность |
Кирпич | 0,49-0,87 Вт / м · К |
Бетонный блок | 0-35-0,79 Вт / м · К |
Пенополистирол | 0.031-0,050 Вт / м · К |
Экструдированный полистирол | 0,029-0,033 Вт / м · К |
Полиуретановые системы | 0,022-0,028 Вт / м · К |
Минеральная вата | 0,031-0,045 Вт / м · К |
Вспученный перлит | 0,040-0,060 Вт / м · К |
Древесная щепа | 0.038-0,107 Вт / м · К |
Теплопроводность полиуретана
Полиуретановые системы являются одними из материалов на рынке, обеспечивающих лучшую теплоизоляцию при минимальной толщине . Эта характеристика возможна благодаря низкой теплопроводности полиуретана, поскольку, хотя различия в уровнях теплопроводности между полистиролом (экструдированным и вспененным), минеральной ватой и полиуретановыми системами составляют лишь несколько десятых доли бумаги при применении в работе, такие десятичные знаки могут означать разницу в толщине на 3-4 см, чем для достижения такой же энергетической эффективности конверта.
Кроме того, полиуретановые системы (инжектированные, напыленные или пластинчатые) являются оптимальным решением для теплоизоляции зданий. Помимо низкой теплопроводности, они также обеспечивают хорошее уплотнение оболочки, предотвращая проникновение воздуха и токов, возникающих в ее пустых пространствах. Это важно, потому что, если бы эти токи не были уменьшены, теплопроводность полиуретана перестала бы быть такой эффективной.
Эффективная теплопроводность пенополиуретана с открытыми порами на основе теории фракталов
На основе теории фракталов проиллюстрирована геометрическая структура внутри пенополиуретана с открытыми порами, который широко используется в качестве адиабатического материала.Создана упрощенная клеточная фрактальная модель. В модели описывается метод расчета эквивалентной теплопроводности пористой пены и вычисляется фрактальная размерность. Выводятся математические формулы для фрактальной эквивалентной теплопроводности в сочетании с газом и твердой фазой, для эквивалентной теплопроводности теплового излучения и для полной теплопроводности. Однако полный эффективный тепловой поток складывается из теплопроводности твердой фазы и газа в порах, излучения и конвекции между газом и твердой фазой.Получено фрактальное математическое уравнение эффективной теплопроводности с учетом фрактальной размерности и вакансионной пористости в теле ячейки. Результаты расчетов хорошо согласуются с экспериментальными данными, разница составляет менее 5%. Обобщены основные влияющие факторы. Исследовательская работа полезна для улучшения адиабатических характеристик пеноматериалов и разработки новых материалов.
1. Введение
Благодаря выдающимся адиабатическим характеристикам пенополиуретан с открытыми ячейками, малой плотностью и низкой теплопроводностью (0.018 ~ 0,032200 Вт / (м · К)), применяется в различных областях, таких как строительство, холодильные камеры для пищевых продуктов и перевозки грузов в холодильнике, с целью сохранения тепла. Неправильная геометрическая конструкция пенополиуретана с открытыми ячейками делает его нестандартным по физическим свойствам. И это затрудняет теоретические исследования, особенно в отношении точных тепловых характеристик. На самом деле теплопроводность адиабатических материалов можно измерить с помощью пластинчатого устройства с тепловой защитой, но это неудобно для научных исследований и разработки пенополиуретана.Анализ и оценка эффективной теплопроводности пористой среды в течение длительного времени представляли собой масштабный исследовательский проект для теплофизической инженерии и гилологии [1]. Хотя в качестве исследовательского проекта для расчета теплопроводности используется пенопластовый материал пористой среды, он всегда считается соединяющей виртуальной средой в крупномасштабном пространстве, то есть «средним объемом» в геометрическом распределении. Уитакер [2, 3] и Уитакер и Чоу [4] использовали метод виртуального «среднего объема» для описания процедуры тепломассопереноса внутри пористой среды.Считалось, что пористая среда объединена с твердофазным материалом, жидкостью и газом. Газовая фаза содержит сухой воздух и пар. Предположили, что все фазы в пористой среде представляют собой тепловые балансы, а размеры пор соответствуют «среднему объему», дюжине переменных, входящих в математическую формулу. Yu et al. [5, 6] также экспериментально исследовали их физическую модель связи и диффузии и вывели соответствующую математическую формулу.
В настоящее время существует два основных метода оценки теплопроводности материалов пористых сред.Во-первых, теплопроводность описывается как сложные математические функции пропорцией пор и параметрами микроструктуры. Лагард [7] вывел эквивалентную эффективную функцию теплопроводности насыщенных пористых материалов. Эквивалентная эффективная теплопроводность получается из где — теплопроводность жидкой фазы (), а — теплопроводность твердой фазы ().
Здесь было высказано предположение, что тепловые потоки через флюид в поре и через твердую фазу пористого тела индивидуальны и происходят одновременно.Однако теплообмен также происходил между жидкой фазой и твердой фазой одновременно. Таким образом, реальная модель была более сложной, чем выражение в (1). Поэтому Уильямс и Доу [8] разработали функцию следующим образом: куда. Фактор — это отношение, которое тепловой поток передает вместе с градиентами температуры к общему тепловому потоку, в то время как является фактором отсутствия соединения твердое тело-твердое тело и для существования соединения твердое тело-твердое тело и соединения твердое тело-жидкость.
Фактически, в микропространственной структуре материалов пористой среды существование идеального равномерного распределения пор в пористом теле невозможно. Таким образом, существует большая ошибка между упомянутой выше идеальной моделью и реальным телом. Доступные идеальные модели и эмпирические уравнения для пенопластовых теплоизоляционных материалов обычно связаны только с пропорцией пор, которая является приблизительным отражением кажущейся теплопроводности в макропространстве. Но для реального вспененного материала с неравномерным распределением пор существующие идеальные модели и эмпирические уравнения не относятся к микроструктуре и не могут раскрыть фактическую процедуру тепломассопереноса и распределение температуры и влажности.В результате большая ошибка — наличие в исследовательской работе.
Другой метод связан с теорией фракталов. Теория фракталов, внедренная в оценочные и исследовательские работы по расчету теплопроводности пористых пеноматериалов, представляет собой новый путь развития теории тепловых характеристик материалов пористой среды. Теория фракталов была впервые выдвинута в 1975 году Мандельбротом, профессором Гарвардского университета в США. Некоторые эксперты, такие как Питчумани [9], Ю и Ли [5], а также Ма и др.[6], провели глубокие исследования эффективной теплопроводности гранулированной пористой среды с помощью теории фракталов и создали соответствующие математические уравнения. Основываясь на теории фракталов, Thovert et al. [10], Zhang et al. В [11] и др. Разработаны теоретические модели для расчета эффективной теплопроводности неоднородной пористой среды. Согласно концепции модели ковра Серпинского, Пичумани и Рамакришнан [12, 13] создали теоретическую модель распределения пор, но модель и математические уравнения были очень сложными во фрактальной размерности.Ma et al. [6] построили математическую модель эффективной теплопроводности для пористой среды в соответствии с теорией фракталов, которая показала, что теплопроводность пористой среды зависит от соотношения пор, соотношения площадей, соотношения теплопроводности в компонентах и теплопроводности. контактное сопротивление все вместе. Это не имело ничего общего с эмпирическими константами и меньшим количеством параметров и просто вычислялось по формуле. Однако разные пористые среды не совпадают друг с другом по внутренней фрактальной сущности.Кроме того, на практике сложно оценить термическое контактное сопротивление пористой среды. Универсальность модели еще требует дополнительной проверки. Thovert et al. [10] осветили фрактальную пористую среду с помощью перколяционной математической модели и выполнили решение путем геометрической итерации. После этого Адлер, Товерт и Томпсон добавили эмпирические константы, полученные в результате экспериментов, в функцию Адлера. И функция обычно описывается как где — теплопроводность жидкости в порах пористого материала ().А верхний индекс здесь определяется как: где фактор фрактальной размерности = 2.5–2.85, а спектральная размерность используется для описания процедуры перколяции в порах.
Яншэн [14], основанный на теории перколяции, установил взаимосвязь между диаметром пор в различных зернистых материалах и теплопроводностью. Но пористость пор, фрактальная размерность и микроструктура в модели не участвуют. Пичумани и Яо [15] рассчитали поперечные и продольные фрактальные измерения для освещения микроструктуры волокнистых материалов, а коэффициент теплопроводности был получен на основе традиционной теории теплопередачи.Но модель хорошо работает только с некоторыми волокнистыми пористыми материалами.
Итак, построение теоретически математической модели эффективной теплопроводности, универсальной для пористой среды, значительно затруднительно и непрактично. Следовательно, создание математической модели теплопроводности для одной определенной пористой среды, отражающей ее структурную характеристику во внутреннем мире, является важным развивающимся направлением исследований в области пористой среды.
2. Микроструктуры пенополиуретана с открытыми порами и описание фрактала
2.1. Микроструктуры
Полиуретан с открытыми ячейками состоит из твердых субстратов и ячеек. Под действием пенообразователя и агента открытия ячеек образуется большое количество ячеек, которые непрерывно распределяются внутри материала. Ячейки соединяются друг с другом бок о бок, и газ в порах может свободно течь через одну ячейку в другую. Это действительно преимущество для удаления пенообразователя и паров, скопившихся в порах. Между тем газ в порах легко вытесняется прочным соединением ячеек.Твердая подложка из полиуретана с открытыми порами имеет определенную прочность, чтобы поддерживать материал и предотвращать сжатие в вакууме. Таким образом, пенополиуретан с открытой структурой ячеек может широко использоваться в качестве основного материала вакуумной изоляционной панели.
Микроструктура полиуретана с открытыми ячейками, состоящая из каркаса твердой подложки (белая часть на рисунке) и ячеек (черная часть на рисунке), показана на рисунке 1 (полученном с помощью электронной микроскопии). Ячейки обычно имеют кубическую форму в пространстве и непрерывно распределены в плоскости сечения, размеры отверстий находятся в диапазоне 140–220 м, а длина среднего каркаса составляет 125 м.Размеры ячеек различны, а распределение случайное и неравномерное.
2.2. Описание фрактала
Теория фракталов с момента своего зарождения вызвала интерес многих ученых благодаря своим уникальным преимуществам исследования нерегулярных и сложных геометрических объектов и успеху в решении многих задач геометрии, физики, геологии, гилологии и т. Д. на. Между тем, различные проблемы в научных дисциплинах также способствовали развитию теории фракталов.Теория фракталов — это эффективный подход к описанию нелинейных явлений в природе, сложных геометрических структур, внутренних объектов и пространственного распределения. Теория фракталов сначала провела исследование нелинейных сложных систем и проанализировала внутренние законы изучаемых предметов, которые не были упрощенными и абстрактными. В этом существенное отличие теории фракталов от линейного пути. Два предмета можно рассматривать как самоподобие, при этом значения фрактальной размерности равны согласно теории фракталов.Эксперты и исследователи построили различные фрактальные модели для материалов пористой среды, а многие исследователи применяют такие известные модели, как модель ковра Серпинского, модель губки Менгера и модель кривой Коха. Однако материалы почти пористой среды по своей природе не совпадают с упомянутыми выше моделями. Они не являются строгим подобием, но похожи по математическому расчету.
Согласно теории фракталов, это самоподобное масштабное соотношение между метрической мерой объектов и физической величиной, существующей в размерном евклидовом пространстве, включая площадь и объем, или длину пористого фрактала [16]:
Для одного фрактального тела значение фрактальной размерности находится в диапазоне от 2 до 3.Но для полиуретана с открытыми порами микроструктуры диаметры пор разные. Структура нерегулярная, а распределение случайное. Для пенополиуретана с открытыми порами наибольший размер пор ячеек = 220 мкм, а наименьший -; и предполагая длину такта для шага, объем ячейки V можно описать следующим образом:
На основании теории фракталов распределение ячеек статистически самоподобно для пенополиуретана с открытыми ячейками.Уравнение (6) можно заменить следующим: где C — постоянная величина. Логарифмируя (7), (8) можно получить как
Согласно методу случайных фракталов ковра Серпинского, на Рисунке 1 вычислен фрактал, и результат показан на Рисунке 2. То есть, объем пенополиуретана с открытыми ячейками в этом исследовании имеет фрактальную характеристику, а значение фрактальной размерности соответствует образцу.
Однако структура пористой среды нерегулярна, а распределение пор также является случайным.Физическая величина, количество пор, зависит от диаметра пор D . Итак, (5) можно переписать как или
Принимая дифференциальный коэффициент к (9), тогда
Итак, объединение с (10) и (12) может быть получено как
Здесь функцию вероятности распределения пор можно переписать как
Фрактальный эффективный диаметр L пор в полиуретане с открытыми ячейками может быть рассчитан в соответствии с функцией вероятности распределения пор:
Основываясь на внутренней структуре полиуретановой формы с открытыми ячейками, мы предполагаем, что ячейки имеют кубическую форму и хорошо распределены, как на рисунке 3.
3. Эквивалентная теплопроводность фрактальной модели
Эквивалентная теплопроводность материалов пористой среды с открытыми ячейками является функцией переменной теплопроводности фаз, внутренней структуры и распределения пор [17]. Таким образом, эквивалентная теплопроводность может быть представлена следующим образом: где — теплопроводность фазы и в материалах пористой среды. Для твердой фазы проводимость равна, а для газа в порах — пористость среднего объема.
Математическая модель для полиуретана с открытыми ячейками разработана на основе (15) в данной статье. Пренебрегая эффектом теплового излучения в ячейках и конвекции тепла газа, мы заключаем, что теплопередача в одной ячейке полиуретановой формы с открытыми ячейками зависит только от соседних ячеек. Для одной ячейки предполагаем, что структура представляет собой правильную призму, диаметр фрактала L ; высота указана выше в (14), а высота твердых подложек d , как на рисунке 3.Таким образом, всю процедуру теплопередачи в ячейке можно проанализировать как передачу электричества в электрической цепи. Предположим, что тепловой ток течет сверху вниз через корпус элемента, тогда тепловое сопротивление элемента в основном состоит из четырех частей.
— термическое сопротивление вертикальной стойки 1, стойки уровня 2, газа между стойками уровня и газа в полости.
Упрощенная модель теплового сопротивления может быть описана, как на рисунке 4.
Согласно взаимосвязанным знаниям о теплопередаче, мы можем легко получить, что где — полное тепловое сопротивление; — теплопроводность каркаса пены; — теплопроводность газа в ячейках; эффективная теплопроводность формы.
Из приведенного выше анализа мы можем сделать вывод, что
Из (3) и (17), (18) легко получить: где в (18) — эффективная теплопроводность при наличии статического газа в порах полиуретана с открытыми ячейками.
Здесь будет представлена концепция пористости пористого полиуретана. Как правило, это отношение суммы объема вакансии ко всему объему блока материала. Используя методы расчета по теории фракталов, пористость может быть легко освещена как [18] Комбинируя (18) с (19), получим эффективную теплопроводность:
Из (20) можно сделать вывод, что эффективная теплопроводность полиуретановой формы с открытыми ячейками связана с фазами тела ячейки, фрактальной размерностью и структурой ячейки, то есть пористостью.
Теплопроводность будет уменьшаться с увеличением фрактальной размерности объема ячеек и увеличением пористости пор, и это соответствует теплопроводности. Чем больше фрактальная размерность и пористость, тем меньше твердые подложки и тем хуже теплопроводность.
4. Эффективная теплопроводность теплового излучения
Тепловое излучение является важным фактором для пенополиуретана с открытыми порами. Его можно рассматривать как среду серого тела для оценки радиационного теплового потока в ячейках [10].Таким образом, скорость радиационного теплового потока для ячейки равна где — постоянная Стефна-Больцмана, Вт / (K 4 · м 2 ), — коэффициент ослабления излучения для пористой среды, а and — температура теплового потока на входе и выходе отдельно.
Итак, мы можем получить эквивалентную радиационную теплопроводность для пористой среды:
5. Сравнение результатов теоретического расчета и эксперимента
Полная эквивалентная теплопроводность может быть получена в (23) при условии объединения теплопроводности и радиационно-проводящей теплопроводности вместе:
Определенная выше полиуретановая пена с открытыми ячейками выбрана в качестве образца для испытаний в экспериментах, ее теплопроводность твердых субстратов составляет Вт / (м · К), теплопроводность газа в порах составляет Вт / (м · К). , а протестированный коэффициент затухания равен m −1 .Метод измерения теплопроводности образца — метод термозащитных пластин. Стандарт тестирования относится к GB / T3399-2009. Результаты представлены в таблице 1.
|
Между экспериментальными и теоретическими расчетами, представленными в этой статье, наблюдается хорошее соответствие.Ошибка менее 5%. В частности, если взять пенополиуретан с открытыми ячейками в качестве основы вакуумных изоляционных панелей, теплопроводностью газа в (18) можно пренебречь, и можно упростить вычисления и получить более точные результаты.
Эффективная теплопроводность полиуретановой пены с открытыми ячейками зависит от свойств материала, внутренней микроструктуры и температуры окружающей среды. Теплопроводность при теплопроводности в целом эффективная теплопроводность преобладает при нормальной температуре, тогда как эффективная теплопроводность при излучении немного волнообразна, но значение не является первичным.Таким образом, увеличение пористости корпуса может улучшить все его теплоизоляционные свойства при условии, что его структурная прочность будет достаточной для пенополиуретана с открытыми порами.
Исследовательская работа явно установила связь между теплофизическими свойствами и внутренней микроструктурой пористой среды с помощью теории фракталов. Теоретическая работа могла бы стать важным справочным материалом для улучшения теплоизоляции пористой среды и полезной при разработке нового материала для защиты окружающей среды и энергосбережения.
Номенклатура
C : | Постоянное значение |
: | Наименьший размер отверстия |
: | Наибольший размер отверстия 1616 | 9015 коэффициент
: | Спектральный размер |
d : | Ширина модельной колонны |
L : | Длина модельной колонны |
R : | Тепловое сопротивление (м 2 · К / Вт) |
T : | Температура (K) |
V : | Объем (м) ). |
: | ||
: | Константа Стефна-Больцмана, | |
σ = 5,6697 × 10 −8 9036 9036 2 ) | ||
: | Коэффициент ослабления излучения | |
: | Теплопроводность (Вт / (м · К)) | |
: | Регулируемая длина измерения (м) | Пористость пор в среднем объеме. |
: | Эффективный |
: | Излучение |
г : | Остаточная газовая фаза в порах |
f : | Флюидная фаза |
S : | Твердая фаза |
всего: | Общее значение |
Выражение признательности
Работа выполнена при финансовой поддержке Программы науки и технологий Шанхайского морского университета No. 20120091. Мы благодарны профессору Вэньчжэ Суну и профессору Дэну Цао за их советы и предложения по этому проекту. Авторы также выражают признательность доктору Вэньчжун Гао за ценные обсуждения и вклад в монтаж экспериментальных и установку устройств сбора данных.
(PDF) Теплофизические свойства пенополиуретанов и их расплавов
C.Лаутенбергер, Г. Рейн и К. Фернандес-Пелло, «Применение генетического алгоритма для оценки свойств материала
для моделирования пожара на основе данных лабораторных испытаний на огнестойкость», Fire Safety Journal, Vol. 41, No.
3, 2006, pp. 204-214.
Г. Рейн, А. Бар-Илан, А. С. Фернандес-Пелло, Дж. Л. Эллзи, Дж. Л. Тореро и Д. Л. Урбан, «Моделирование
одномерного тления полиуретана в условиях микрогравитации», Труды 30-го Международного симпозиума
on Combustion, Чикаго, штат Иллинойс, 25-30 июля 2004 г., Combustion Institute,
Pittsburgh, PA, Vol.30, No. 2, 2005, pp. 2327-2334.
А. Матала, «Оценка параметров твердофазной реакции для моделирования пожара», магистерская работа,
Хельсинкский технологический университет, Эспоо, 2008 г.
Т. Г. Клири и Дж. Г. Квинтьер, «Определение характеристик воспламеняемости пенопластов», NISTIR 4664 ,
Национальный институт стандартов и технологий, Гейтерсбург, Мэриленд, 1991.
Д. Хопкинс-младший и Дж. Г. Квинтьер, «Свойства материала и прогнозы возгорания для термопластов»,
Fire Safety Journal, Vol.26, No. 3, 1996, pp. 241-268.
К.М. Батлер, Т.Дж. Олемиллер и Г.Т. Линтерис, «Отчет о ходе численного моделирования поведения потока расплава полимера
в эксперименте», Труды 10-й Международной конференции INTERFLAM
, INTERFLAM ’04, Эдинбург, Шотландия, 5-7 июля , 2004 г., Interscience Communications
Limited, Лондон, Англия, 2004 г., стр. 937-948.
М. А. Абдельрахман, С. М. Саид, А. Ахмад, М. Инам и Х. Абул-Хамайель, «Теплопроводность
некоторых основных строительных материалов в Саудовской Аравии», Journal of Building Physics, Vol.13, No. 4, 1990,
pp. 294-300.
А. Бугерра, А. Айт-Мохтар, О. Амири и М.Б. Диоп, «Измерение теплопроводности,
температуропроводности и теплоемкости высокопористых строительных материалов с использованием метода нестационарного плоского источника
», International Communications in Heat и массообмен, Vol. 28, No. 8, 2001, pp. 1065-
1078.
С. А. Аль-Айлан, «Измерение тепловых свойств изоляционных материалов с использованием метода источника переходной плоскости
», Прикладная теплотехника, Vol.26, No. 17-18, 2006, pp. 2184-2191.
Указание по применению № 9, Свойства теплопередачи в наножидкостях, Hot Disk AB, Упсала, Швеция,
2009.
М. Густавссон и С. Э. Густавссон, «Теплопроводность как индикатор содержания жира в молоке»,
Thermochimica Acta, Vol. 442, № 1-2, 2006, стр. 1-5.
Y. He, «Быстрое измерение теплопроводности с помощью сенсора с горячим диском: Часть 2. Характеристика термопасты
», Thermochimica Acta, Vol.436, No. 1-2, 2005, pp. 130-134.
Д. Прайс, Ю. Лю, Дж. Дж. Милнс, Р. Халл, Б. К. Кандола и А. Р. Хоррокс, «Исследование
механизма огнестойкости и подавления дыма меламином в гибкой полиуретановой пене
», Пожар и материалы , Vol. 26, No. 4-5, 2002, pp. 201-206.
BS 5852: 2006, Методы испытаний для оценки воспламеняемости мягких сидений с помощью тлеющих и горящих источников воспламенения
, Британский институт стандартов, Лондон, Англия, 2006.
BS 4735: 1974, Лабораторный метод испытаний для оценки характеристик горизонтального горения
образцов размером не более 150 мм × 50 мм × 13 мм (номинал) пористой пластмассы и пористой резины
материалов при воздействии небольшого пламя, Британский институт стандартов, Лондон, Англия, 1974.
AS / NZS 1530.3: 1999, Методы огнестойких испытаний строительных материалов, компонентов и конструкций —
Одновременное определение воспламеняемости, распространения пламени, тепловыделения и дымовыделения,
Standards Australia, Сидней, Австралия, 1999 г.
Технический бюллетень 117, Требования, процедура испытаний и оборудование для проверки пламени
Устойчивость эластичных заполняющих материалов, используемых в мягкой мебели, Бюро домашней мебели
и теплоизоляция, Сакраменто, Калифорния, 2000.
Часть 25 — Летная годность Стандарты: самолеты транспортной категории, Приложение F к Части 25, Часть I —
Критерии испытаний и процедуры для подтверждения соответствия § 25.853 или § 25.855 Федеральной авиационной администрации
, Вашингтон, округ Колумбия, 1972.
К. Денекер, Дж. Дж. Лиггат и К. Э. Снейп, «Взаимосвязь между термической деградацией
Химия и воспламеняемость коммерческих гибких полиуретановых пен», Journal of Applied
Polymer Science, Vol. 100, No. 4, 2006, pp. 3024-3033.
Л. Б. Валенсия, Т. Рогом, Э. Гийом, Г. Рейн и Дж. Л. Тореро, «Анализ продуктов
основных газов во время горения полиэфирополиуретановой пены при различных уровнях освещенности», Fire Safety
Journal, Vol.44, No. 7, 2009, pp. 933-940.
А. Тьюарсон, «Выделение тепла и химических соединений при пожарах», Справочник по пожарам SFPE
Protection Engineering, третье издание, П. Дж. ДиНенно и др. (Ред.), Национальная ассоциация противопожарной защиты,
Куинси, Массачусетс, 2002, стр. 3-82–3-161.
(PDF) Теплопроводность пенополиуретана от комнатной температуры до 20 K
Теплопроводность пенополиуретана: C. Tseng et al.
25 —
20 —
15 —
10 —
5 —
0 измерение
— R141b 0.8 кПа Воздух 0,02 кПа
— — R141 b 0 кПа Воздух 0 кПа
Крад
0 50 100 150 200 250 300 350
Температура (К)
Рисунок 8 Сравнение теоретических расчетов теплопроводности с результатами измерений. Вакуумный корпус
1.
2.
3.
4.
5.
Теоретическая модель, предложенная в исследовании, достаточно хорошо предсказывает теплопроводность
.Несоответствие
в области высоких температур можно приписать либо
неопределенности состава газа внутри ячеек,
проводимости чистого твердого тела, либо радиационным свойствам
пенополиуретана.
Газопроводность в закрытых камерах
составляет примерно 60-80% от общего теплообмена. Отвод газа может значительно улучшить тепловые характеристики пенополиуретана.
Перенос излучения не важен в области низких температур, но на него приходится примерно 1X) — 20% в области комнатных температур
.
Чтобы улучшить тепловые характеристики при комнатной температуре, пенополиуретан следует выдувать с как можно более высоким содержанием R141b в процентах. Тем не менее, необходимо продуть
как можно большим количеством CO, если он должен быть удален,
, например, при использовании в системе теплоизоляции
резервуара для хранения жидкого водорода, поскольку коэффициент диффузии CO
составляет намного выше, чем у R141b.
Данные о теплопроводности чистого твердого полиуретана составляют
, необходимые для более точного теоретического предсказания теплопроводности
пенополиуретана.
Благодарности
Это исследование было выполнено в рамках проекта WE-NET
(Международная сеть чистой энергии с использованием водорода
), запущенного NED0 (Новая энергия и
Организация по развитию промышленных технологий) при поддержке
при поддержке Агентство промышленной науки и технологий —
нология.Chung-jen Tseng также хотел бы поблагодарить
за помощь и поддержку Японской ассоциации инженерного развития
(ENAA) и Ishikawajima-Harima
Heavy Industries Co. Ltd (IHI).
Ссылки
1.
2.
3.
4.
9.
10.
11.
12.
13.
14.
Sparks, LL и Arvidson , JM, Тепловые и механические свойства
пенополиуретана и обзор изоляционных бетонов при криогенных температурах
.Отчет NTIS PB85-100949, Национальное бюро стандартов
, Боулдер, Колорадо, 1984.
Скочдополе Р.Э. Теплопроводность пенопластов.
Chem. Англ. Прог., 1961, 57, 55-59.
Тянь, кл. и Каннингтон Г. Р. Криогенная теплоизоляция.
Adv. Теплопередача, 1916, 9, 349-411.
Стебель, К.Х. Радиационные характеристики жесткого пенопласта. Диссертация BS
, Массачусетский технологический институт, Кембридж, Массачусетс,
1982.
Сигел Р. и Хауэлл Дж. Р. Тепловое излучение теплопередачи, 3-е изд.
. Hemisphere, New York, 1992.
Wang, L.S. и Tien, CL., Исследование различных пределов в задачах передачи радиационного тепла
. ht. J. Тепломассообмен, 1967, 10, 1327-1338.
Кикуике С., Жесткая изоляция из пенополиуретана. Japan Industrial
Standards Explanation, Tokyo, Japan, 1991
Touloukian, Y.С., Лили П.Е. и Саксена, С.С., Теплопроводность —
‑ тивность, Теплофизические свойства материи. IFI / Plenum, New
York, 1970.
Timmerhaus, K.D. и Флинн Т.М. Криогенная технологическая инженерия.
Plenum Press, Нью-Йорк, 1989, стр. 75.
Инамото, М., Частное сообщение, Nichiasu Co. Ltd, Токио,
Япония, 1997.
Танака, Ю., Накада, М., Кубода, Х. и Токита, К., Термальный
проводимость газов HFC134a, HFC143a, HCFC14lb и HCFC142b
газов.Proc. 1989 Symp. Японской ассоциации холодильников,
1989, стр. 9–12 (на японском языке).
Рейд Р.К., Праусниц Дж.М. и Полинг Б.Е. Свойства газов
и жидкостей, 4-е изд. McGraw-Hill, New York, 1987.
Russell, H.W., L Am. Ceram. Сот., 1935, 18, 1.
Патанкар С.В. Численный теплообмен и поток жидкости. Hemi-
сфера, Нью-Йорк, 1980.
312 Cryogenics 1997 Volume 37, Number 6
Типы пенополиуретана — чем они отличаются?
Пенополиуретан, несомненно, является прекрасным изоляционным и герметизирующим материалом.На рынке существует множество видов этого продукта, поэтому стоит узнать больше об их свойствах. Узнайте, чем разные виды пенополиуретана отличаются друг от друга и каково их применение.
Пенополиуретан и их свойства
Полиуретан в основном состоит из двух сырьевых материалов — изоцианата и полиола, которые получают из сырой нефти.После смешивания этих двух жидких компонентов системы, готовых к переработке, и различных вспомогательных материалов, таких как катализаторы, пенообразователи и стабилизаторы, начинается химическая реакция.
История полиуретана насчитывает несколько поколений. Сначала была технология производства жесткого (жесткого) пенопласта, затем гибкого пенопласта и, наконец, полужесткого пенопласта.
Какими свойствами обладает пена PUR? Прежде всего, он демонстрирует хорошие тепловые параметры — он устойчив к широкому диапазону температур (от –200 ° C до + 135 ° C).Средний коэффициент теплопроводности пенополиуретана составляет 0,026 Вт / м2, а наиболее благоприятная кажущаяся плотность после отверждения жесткого пенопласта обычно составляет 35-50 кг / м³.
Самым большим преимуществом пенополиуретана являются его прекрасные теплоизоляционные свойства. Пенополиуретан также устойчив к относительно высоким нагрузкам, а также к грибкам и плесени. Таким образом, это, несомненно, идеальный материал для любых строительных и ремонтных работ, таких как термо- и звукоизоляция, а в случае гибкого пенополиуретана — для монтажа и герметизации.
Пенополиуретан обеспечивает отличную адгезию как к вертикальным, так и к горизонтальным поверхностям, имеет пористую структуру. Внутри пористых материалов имеются полые полости. Пористость — это свойство, которое говорит нам об объеме и количестве пор определенного диаметра. Пенополиуретан также отличается коротким временем обработки и после отверждения сохраняет свою химическую нейтральность.
Из недостатков материала часто упоминают его относительную горючесть и низкую стойкость к УФ-излучению.
Пены с открытыми и закрытыми порами
Пенополиуретан делится на два основных типа — с открытыми порами и с закрытыми порами.Первый предназначен для использования внутри помещений, в частности, для изоляции стен и крыш, а также для повышения акустического комфорта помещения, поскольку пенополиуретан, помимо теплоизоляционных свойств, имеет очень высокий коэффициент шумоподавления. Пенопласт с открытыми порами является паропроницаемым, поэтому можно сказать, что покрытая им поверхность «дышит». Распыляется изнутри прямо на крышу, легко наносится на мембрану или доску.
По техническим параметрам — пена с открытыми ячейками имеет плотность 7–14 кг / м 3 , а коэффициент теплопроводности от 0.От 034 до 0,039 Вт / (м * К). Среди видов пенополиуретана с открытыми порами есть материалы с разной огнестойкостью. Лучшие из них имеют рейтинг E.
Другая группа — пенополиуретаны с закрытыми порами — благодаря высокой водостойкости, повышенной жесткости и прочности используются на открытом воздухе и в помещениях с повышенной влажностью.
Его структура содержит более 90% закрытых ячеек, а его плотность колеблется от 30 до 60 кг / м 3 . Коэффициент теплопроводности пенополиуретана с закрытыми порами составляет от 0,02 до 0,024 Вт / (м * К).
Виды пенопласта с закрытыми порами различаются по параметрам в зависимости от области применения. С одной стороны, он идеально подходит для изоляции фундаментных стен, потолочных конструкций, крыш и полов. С другой стороны, его можно использовать в промышленных и сельскохозяйственных зданиях, например, для изоляции производственных полов, складов, холодильных складов или животноводческих помещений.
Пены одно- и двухкомпонентные
Эти два типа отличаются тем, что для отверждения первым требуется влажность воздуха и строительных материалов. Последний подвергается отверждению в результате химической реакции между двумя его компонентами.
Однокомпонентная пена применяется в помещениях с неограниченным потоком воздуха и на открытом воздухе. Причина проста. Чем выше влажность (более 35%) и температура воздуха, тем быстрее пена застывает. В течение ок. За 25 минут пена увеличивается в объеме примерно на 35%, поэтому полости необходимо заполнить примерно на 50% или 60%.
Двухкомпонентная пена для фитингов проходит химическое отверждение без доступа влаги. Поэтому его можно использовать в труднодоступных местах, сухих и требующих пены отличного качества.Этот вид пены также подходит для фиксированного соединения деревянных конструкций. В течение ок. За 25 минут двухкомпонентная пена увеличивается в объеме примерно на 30%, поэтому не следует заполнять полости полностью, а только на 80%.
Пена для пистолета и шланга
Пистолет-распылитель и стандартный жесткий пенополиуретан (распыление из шланга) являются обычно используемыми герметизирующими материалами.Здесь решающее значение имеет метод нанесения. Первый тип требует специального пистолета для пены, который позволяет точно наносить. Шланговая пена, с другой стороны, получила свое название от специального шланга, через который пена распыляется. Этот вид пены используется чаще, поскольку он дешев и не требует специальных инструментов для нанесения.
Пена зимняя, летняя и круглогодичная
Пенополиуретан можно различать по диапазону наружных температур во время обработки.Как видно из названия, зимняя пена используется при низких температурах, а летняя — при температуре не менее 10 ° C. Круглогодичная пена отличается лучшей температурной переносимостью. Однако помните, что последнего следует избегать как при очень низких, так и при очень высоких температурах.
.