Чтобы найти площадь что нужно сделать чтобы: Как найти площадь прямоугольника? Ответ на webmath.ru

Содержание

Как найти площадь фигуры? Ответ на webmath.ru

Содержание:

Определения

Площадь является одним из основных математических понятий. Она характеризует как плоские, так и поверхностные геометрические объекты.

Определение

Площадью плоской замкнутой фигуры называется величина части плоскости, которая находится внутри указанной фигуры.

Единицей измерения площади плоской фигуры является квадрат со стороной, равной единице. Число, соответствующее площади некоторой фигуры, состоящей из частей, равно сумме чисел, соответствующих площадям этих частей. Измерение площадей треугольников и многоугольников основано на возможности построения равновеликих им прямоугольников.

Площадь произвольной ограниченной плоской фигуры определяется как общий предел площадей описанных и вписанных в нее многоугольников, наибольшие стороны которых по длине стремятся к нулю.

Если фигура имеет площадь, то она называется квадрируемой.{2}$$

Читать дальше: формула площади круга и примеры решений →

Площадь квадрата

Чтобы найти площадь квадрата, надо длину его стороны возвести в квадрат, то есть

Читать дальше: формула площади квадрата и примеры решений →

Площадь прямоугольника

Чтобы найти площадь прямоугольника, надо его длину умножить на ширину, то есть

Читать дальше: формула площади прямоугольника и примеры решений →

Площадь параллелограмма

Чтобы найти площадь параллелограмма, нужно найти произведение стороны $a$ параллелограмма на высоту , проведенную к этой стороне, то есть

Читать дальше: формулы площади параллелограмма и примеры решений →

Площадь трапеции

Чтобы найти площадь трапеции, нужно длину средней линии умножить на длину высоты , опущенной к основанию:

Читать дальше: формулы площади трапеции и примеры решений →

Площадь ромба

Чтобы найти площадь ромба, надо длину стороны умножить на длину высоты, проведенной к этой стороне:

Читать дальше: формулы площади ромба и примеры решений →

Площадь эллипса

Чтобы найти площадь эллипса, нужно найти произведение длин большой и малой полуосей этого эллипса на число $\pi$, то есть

Читать дальше: формула площади эллипса и примеры решений →

Площадь прямоугольника

Автор Ольга Андрющенко На чтение 5 мин. Просмотров 1.4k. Опубликовано

Площадь прямоугольника очень часто требуется найти в задачах по геометрии. И не только — в повседневной жизни очень многие плоскости имеют форму прямоугольника и надо найти площадь прямоугольника. Как это сделать? Давайте рассмотрим все формулы и примеры.

Мы учимся вычислять площадь прямоугольника или площадь прямоугольника в школе. Однако, когда вы станете старше, вполне возможно, что вы не будете помнить, как найти площадь прямоугольника. Для начала давайте вспомним, что такое прямоугольник.

Что такое прямоугольник

Давайте не будем «срезать углы». Чтобы иметь возможность вычислить площадь прямоугольника, естественно, что мы сначала знаем, что это такое. Поэтому для начала необходимо помнить, что прямоугольник является четырехугольником. Другими словами, это геометрическая фигура, которая имеет четыре стороны и четыре прямых угла. Противоположные стороны прямоугольника имеют одинаковую длину. Две самые длинные стороны представляют его длину, а две другие стороны представляют его ширину.

Не все четырехугольники являются прямоугольниками. Действительно, обязательно, чтобы они имели следующие свойства, чтобы мы могли сказать, что это действительно прямоугольник:

Характеристики прямоугольника

Противоположные стороны должны быть параллельны.

  • Диагонали прямоугольника должны быть одинаковой длины. Они также пересекаются в своей середине.
  • Точка пересечения диагоналей прямоугольника называется центром симметрии.
  • Кроме того, прямоугольник также является параллелограммом, так как его стороны попарно параллельны. Однако это частный случай параллелограмма. На самом деле он имеет четыре прямых угла, и его две параллельные стороны не должны иметь одинаковую длину. В противном случае все четыре стороны имеют одинаковую длину — тогда мы говорим о квадрате.

Формула площади прямоугольника

Как рассчитать площадь прямоугольника? Обратите внимание, что базовую формулу для вычисления площади (или площади) прямоугольника очень легко запомнить. Вы просто должны умножить его длину на ширину.

Площадь прямоугольника равна его длине, умноженной на ширину.

Например, площадь прямоугольника длиной 4 сантиметра и шириной 2 сантиметра равна 4 x 2 = 8 см².

Площадь поверхности прямоугольника длиной L и шириной l равна: S = L x l

Принцип расчета площади прямоугольника

Чтобы вычислить площадь прямоугольника, мы посчитаем количество единиц областей, которые содержит прямоугольник:

В прямоугольнике выше 12 квадратов по 1 см². Его площадь составляет 12 см² (4 х 3).

Примечание. В этом расчете длина L и ширина l прямоугольника должны быть выражены в одной и той же единице длины. Результат будет выражен в той же единице измерения, возведенной в квадрат. Например, если длина прямоугольника выражена в метрах, ширина также должна быть выражена в метрах, а результат формулы для расчета площади прямоугольника даст результат в квадратных метрах (м²).

Площадь прямоугольника эквивалентна его территории. Территория — это термин, используемый для обозначения меры площади земли (мы используем единицу измерения гектар, а не м²). Гектар — это метрическая мера земельной площади, равная 10 000 м2.

Пример расчета

Рассмотрим прямоугольник длиной L = 4 см и шириной l = 2 см. Площадь S его поверхности равна:
A = L x l = 4 x 2 = 8 см².

Как рассчитать площадь прямоугольника, если мы знаем только одну сторону и диагональ

Можно определить площадь прямоугольника другим способом. Формула, которая была изложена ранее, не является единственным методом, который можно использовать. Действительно, вполне возможно сделать это по-другому. Для этого нам нужно будет, по крайней мере, измерить только одну сторону и необходимо знать длину диагонали. В этом случае мы делаем расчет, используя теорему Пифагора.

Что такое теорема Пифагора

Это формула, которая используется для определения длины третьей стороны прямоугольного треугольника, когда вы уже знаете значение двух других его сторон.

Обратите внимание, что прямоугольник состоит из двух прямоугольных треугольников. Действительно, диагональ представляет гипотенузу этого типа треугольника.

Теорема Пифагора

Кроме того, это также самая длинная сторона, которую можно найти на рисунке. Длина и ширина, с другой стороны, представляют две другие его стороны (скажем, смежные стороны). Это причина, почему можно использовать эту формулу для определения площади прямоугольника.

Теорема Пифагора основана на довольно простом уравнении, которое выглядит следующим образом: a² + b² = c². Где a и b используются для представления двух соседних сторон — катетов прямоугольного треугольника, а c представляет гипотенузу треугольника.

Чтобы полностью понять использование этой формулы, мы начнем с очень конкретного примера. Для этого предположим, что диагональ прямоугольника 10 см, а другая сторона 6 см. Если мы ссылаемся на формулу a² + b² = c², следовательно, сторона «a» составляет 6 см, а гипотенуза «c» — 10 см. Теперь нам нужно просто заменить буквенные значения числовыми значениями, которые у нас есть. Что дает нам:

a² + b² = c²
6² + b² = 10²
b² = 10² — 6²
b² = 100 — 36
b² = 64
b= 8
Мы получаем длину смежной стороны прямоугольника «b», которая равна 8 см. Теперь мы можем рассчитать площадь прямоугольника:

S = 8 см х 6 см
Следовательно, S = 48 см².

Урок 22. площадь прямоугольника - Математика - 3 класс

Математика, 3 класс

Урок №22. Площадь прямоугольника

Перечень вопросов, рассматриваемых в теме:

  1. Как вычислить площадь прямоугольника?
  2. В каких единицах измеряется площадь?
  3. Какими способами можно сравнить геометрические фигуры?

Глоссарий по теме:

Площадь – внутренняя часть любой плоской геометрической фигуры.

Квадрат – это прямоугольник, у которого все стороны равны.

Прямоугольник – это четырёхугольник, у которого все углы прямые.

Квадратный сантиметр – квадрат со стороной 1 сантиметр.

Основная и дополнительная литература по теме урока:

1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 60-61.

2. Рудницкая В. Н. Тесты по математике:3 класс. М.: Издательство «Экзамен», 2016 с. 38-43.

3. Волкова Е. В. ВПР. Математика 3 класс Практикум по выполнению типовых заданий. ФГОС .М.: Издательство «Экзамен», 2018, с. 36-53.

Теоретический материал для самостоятельного изучения

Упоминание о первых геометрических фигурах встречается еще у древних египтян и древних шумеров. Учёными-археологами (они ищут разные исторические древности) был найден папирусный свиток (бумага древних египтян, изготавливаемая из растения папирус) с геометрическими задачами, в которых упоминались геометрические фигуры. И каждая из них называлась каким-то определенным словом. Одним определенным словом называлась фигура прямоугольник независимо от того какие стороны были у этого прямоугольника. А если у прямоугольника все стороны были одинаковые, то такой прямоугольник имел специальное название – квадрат.  Таким образом, значит, что уже в те далекие времена люди имели представление о геометрии и знали изучаемые этой наукой фигуры. Название «геометрическая фигура» придумали древние греки. И названия всем геометрическим фигурам дали тоже древнегреческие учёные.

Найдём площадь геометрической фигуры.

Чтобы найти площадь фигуры, надо узнать сколько раз в фигуре поместится квадрат со стороной 1 см. Площадь этой геометрической фигуры составляет 18 квадратов. Для удобства подсчёта количество квадратов можно воспользоваться знаниями таблицы умножения. По 6 взять 3 раза получится 18 квадратов.

Найдём площадь прямоугольника со сторонами 6 см и 3 см.

Для этого достаточно умножить длину на ширину. 6 ∙ 3 = 18 см2

Таким образом, формулируем вывод: чтобы найти площадь прямоугольника, надо длину умножить на ширину.

S = a ∙ b

S – площадь

a – длина

b – ширина

Задания тренировочного модуля:

1. Заполните пропуски в таблице.

Правильный ответ:

2. Длина прямоугольника 8см, ширина 4 см. Чему равна площадь прямоугольника? Выделите правильный ответ.

12 см; 32 см; 24 см2; 32 см2; 24; 12 см2.

Правильный ответ:32см2.

Площадь прямоугольника — как ее найти по основной формуле, а также через диагональ и периметр

Обновлено 18 января 2021
  1. Что такое площадь
  2. Как найти площадь прямоугольника
  3. Формула площади через периметр
  4. Площадь прямоугольника через диагональ

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы расскажем, как вычислять площадь прямоугольника.

Различные формулы вычисления площади (а их действительно немало), изучают в 8 классе школы.

Что такое площадь прямоугольника

Но для начала давайте все-таки дадим основные определения:

Прямоугольник – это геометрическая фигура, относящаяся к категории четырехугольников. Ее отличительная особенность в том, что противоположные стороны лежат на параллельных прямых (то есть параллельны друг другу) и равны.

Прямоугольник является параллелограммом (что это такое?) и выглядит вот так:

А частным случаем прямоугольника, если у него все стороны равны между собой, является квадрат.

Площадь любой геометрической фигуры, формально говоря, это ее размер. Другими словами, размер того пространства, которое находится внутри границ фигуры.

В отношении четырехугольников применимо еще понятие «квадратура». С его помощью показывали, сколько квадратов вместится внутрь фигуры.

Собственно, отсюда и пошло современное обозначение площадей, когда речь идет о габаритах помещения или какой-то территории. Мы часто слышим «столько-то квадратных метров (миллиметров, сантиметров, километров)» или просто «столько-то квадратов».

Для площади геометрических фигур действуют определенные правила:

  1. Она не может быть отрицательной.
  2. У равных фигур всегда равные площади.
  3. Если две фигуры не пересекаются друг с другом, то их общая площадь равна сумме площадей фигур по отдельности.
  4. Если одна фигура вписана в другую, то ее площадь всегда меньше, чем у второй.

Обычно фигуры, которые имеют равные площади, называют «равновеликими».

Как найти площадь прямоугольника

Площадь прямоугольника вычисляется по очень простой формуле – надо лишь перемножить его стороны.

Возьмем, к примеру, такой прямоугольник:

Площадь геометрической фигуры обычно обозначается латинской буквой «S». И тогда формула для конкретного примера будет:

Например, если мы имеем прямоугольник со сторонами 2 и 3 сантиметра, то его площадь составит 2 * 3 = 6 сантиметров.

Но бывают случаи, когда неизвестны размеры сторон прямоугольника, а площадь вычислить все равно надо. Для этого существуют более сложные формулы.

Формула площади прямоугольника через периметр

Если известна длина только одной стороны, но известен еще и периметр прямоугольника.

В этом случае есть два варианта.

  1. Первый — вычислить длину второй стороны. Для этого надо вспомнить, что периметр (обозначается буквой «Р») считается по формуле:

    И тогда обратные расчеты выглядят вот так:

    Ну а после того, как станет известна длина второй стороны прямоугольника, можно прибегнуть к классической формуле.
  2. Ну и второй вариант – воспользоваться сразу готовой формулой:

Площадь прямоугольника через диагональ

  1. Известна одна сторона и длина диагонали.

    Тут опять же есть два варианта. В первом случае вычисляем длину второй стороны, используя теорему Пифагора.

    Второй вариант – опять же сразу прибегнуть к готовой формуле:

  2. Если известны длина диагоналей и угол между ними.

    В этом случае стоит воспользоваться вот такой формулой:

Вот и все, что нужно знать о вычислении площади прямоугольников.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Площадь прямоугольника и квадрата | Геометрия

Площадь прямоугольника или квадрата – это часть плоскости, занимаемая данной фигурой.

Рассмотрим два прямоугольника  ABCD  и  A1B1C1D1:

Чтобы узнать сколько места они занимают, надо вычислить их площадь. Так как размеры прямоугольников даны в сантиметрах, то и за единицу измерения площади можно взять квадратный сантиметр.

Прямоугольник  ABCD  состоит из  4  строк, в каждой из которых по  6  квадратных сантиметров, значит всего в нём  6 · 4,  или  24 см2A1B1C1D1  состоит из  3  строк, по  8  квадратных сантиметров, значит в нём  8 · 3,  или  24 см2.  Оказалось, что несмотря на то, что прямоугольники имеют разные размеры, они занимают одинаковую площадь.

Из данного примера можно сделать вывод, что площадь прямоугольника равна произведению длин его смежных сторон. Общая формула:

S = a · b,

где  S  — площадь прямоугольника, а  a  и  b  — его смежные стороны.

Рассмотрим квадрат  ABCD:

так как квадрат — прямоугольник, у которого все стороны равны, то в любом квадрате количество строк будет совпадать с количеством квадратных сантиметров, содержащихся в каждой строке. Квадрат  ABCD  состоит из  4  строк, по  4  квадратных сантиметра в каждой, значит в нём  4 · 4,  или  16 см2.

Из примера можно сделать вывод, что площадь квадрата равна длине любой его стороны во второй степени. Общая формула:

S = a2,

где  S  — площадь квадрата, а  a  — его сторона.

Чтобы узнать площадь прямоугольника, надо взять его длину и ширину (в одинаковых единицах измерения) и найти их произведение (площадь должна быть выражена в соответствующих единицах измерения).

Задача. Длина прямоугольного дома равна  12  метром, а ширина — на  5  метров меньше. Чему равна площадь дома?

Решение: Задача будет решаться в два действия:

1) 12 - 5 = 7 (метров)  — ширина дома.

2) 12 · 7 = 84 (м2)  — площадь дома.

Ответ:  84 м2.

Чтобы найти площадь что нужно сделать. Как посчитать площадь прямоугольника: практические советы

Одна из первых формул, которая изучается в математике, связана с тем, прямоугольника. Она же является и самой часто используемой. Прямоугольные поверхности окружают нас повсюду, поэтому часто требуется знать их площади. Хотя бы для того, чтобы узнать, хватит ли имеющейся в наличии краски для покраски полов.

Какие единицы измерения площади существуют?

Если говорить о той, которая принята за международную, то это будет квадратный метр. Его удобно использовать при расчете площадей стен, потолка или пола. В них указывается площадь жилья.

Когда речь идет о меньших предметах, то вводят квадратные дециметры, сантиметры или миллиметры. Последние нужны, если фигура не больше ногтя.

При измерении площади города или страны самыми подходящими оказываются квадратные километры. Но есть еще и единицы, которые используют для того, чтобы указать размер площади: ар и гектар. Первая из них еще называется соткой.

Как быть, если заданы стороны прямоугольника?

Подобным образом рассчитывается который является частным случаем прямоугольника. Так как у него все стороны равны, то произведение становится квадратом буквы а .

Как быть, если фигура изображена на клетчатой бумаге?

В этой ситуации нужно полагаться на количество клеточек внутри фигуры. По их числу бывает просто посчитать площадь прямоугольника. Но это можно сделать тогда, когда стороны прямоугольника совпадают с линиями клеток.

Часто имеет место такое положение прямоугольника, при котором его стороны наклонены по отношению к разлиновке бумаги. Тогда количество клеток определить сложно, поэтому расчет площади прямоугольника усложняется.

Потребуется сначала узнать площадь прямоугольника, который можно прочертить по клеточкам точно вокруг данного. Это просто: перемножить высоту и ширину. Потом вычесть из получившегося значения площади всех А их четыре. К слову, их рассчитывают как половину произведения катетов.

Итоговый результат даст значение площади данного прямоугольника.

Как поступить, если стороны неизвестны, зато даны его диагональ и угол между диагоналями?

До того в этой ситуации нужно вычислить его стороны, чтобы воспользоваться уже знакомой формулой. Поначалу потребуется вспомнить свойство его диагоналей. Они равны и делятся точкой пересечения пополам. Можно увидеть на чертеже, что диагонали делят прямоугольник на четыре равнобедренных треугольника, которые попарно равны друг другу.

Равные стороны этих треугольников определяются как половины диагонали, которая известна. То есть в каждом треугольнике есть две стороны и угол между ними, которые даны в задаче. Можно воспользоваться

Одна сторона прямоугольника будет вычислена по формуле, в которой фигурируют равные стороны треугольника и косинус заданного угла. Для вычисления второй значение косинуса придется брать от угла, равного разности 180 и известного угла.

Что делать, если в задаче дан периметр?

Обычно в условии указывается еще и соотношение длины и ширины. Вопрос о том, как посчитать площадь прямоугольника, в этом случае проще на конкретном примере.

Допустим, что в задаче периметр некоторого прямоугольника равен 40 см. Известно также, что его длина в полтора раза больше ширины. Необходимо узнать его площадь.

Решение задачи начинается с записи формулы периметра. Его удобнее расписать как сумму длины и ширины, каждую из которых умножить на два по отдельности. Это будет первым уравнением в системе, которую потребуется решить.

Второе связано с известным по условию соотношением сторон. Первая сторона, то есть длина, равна произведению второй (ширины) и числа 1,5. Это равенство нужно подставить в формулу для периметра.

Получится, что он равен сумме двух одночленов. Первый — произведение 2 и неизвестной ширины, второй — произведение чисел 2 и 1,5 и той же ширины. В этом уравнении всего одна неизвестная — это ширина. Нужно ее сосчитать, а потом воспользоваться вторым равенством, чтобы сосчитать длину. Останется только перемножить эти два числа, чтобы узнать площадь прямоугольника.

Расчеты дают такие величины: ширина — 8 см, длина — 12 см, а площадь — 96 см 2 . Последнее число — ответ рассмотренной задачи.

С таким понятием, как площадь, нам приходится сталкиваться в своей жизни повседневно. Так, например, при строительстве дома ее нужно знать для того, чтобы рассчитать количество необходимого материала. Размер садового участка также будет характеризоваться площадью. Даже ремонт в квартире невозможно сделать без этого определения. Поэтому вопрос, как найти площадь прямоугольника, на нашем встает очень часто и является важным не только для школьников.

Для тех, кто не знает, прямоугольник - это плоская фигура, у которой противоположные стороны равны, а углы составляют 90о. Для обозначения площади в математике используют английскую букву S. Ее измеряют в квадратных единицах: метрах, сантиметрах и так далее.

Теперь попытаемся дать подробный ответ на вопрос, как найти площадь прямоугольника. Существует несколько способов определения этой величины. Наиболее часто мы сталкиваемся со способом определения площади с помощью ширины и длины.

Возьмем прямоугольник с шириной b и длиной k. Для вычисления площади данного прямоугольника необходимо ширину умножить на длину. Это все можно представить в виде формулы, которая будет выглядеть так: S = b * k.

А теперь рассмотрим этот способ на конкретном примере. Необходимо определить площадь садового участка с шириной 2 метра и длиной 7 метров.

S = 2 * 7 = 14 м2

В математике, особенно в приходится определять площадь иными способами, так как во многих случаях ни длина, ни ширина прямоугольника нам не известна. Вместе с тем имеют место другие известные величины. Как найти площадь прямоугольника в этом случае?

  • Если нам известна длина диагонали и один из углов, составляющий диагональ с любой стороной прямоугольника, то в этом случае потребуется вспомнить о площади Ведь если разобраться, то прямоугольник состоит из двух равных прямоугольных треугольников. Итак, вернемся к определяемой величине. Для начала необходимо определить косинус угла. Полученную величину умножить на длину диагонали. В итоге получим длину одной из сторон прямоугольника. Аналогично, но уже с помощью определения синуса, можно определить длину второй стороны. А как найти площадь прямоугольника теперь? Да очень просто, перемножить полученные величины.

В виде формулы это будет выглядеть так:

S = cos(a) * sin(a) * d2 , где d- длина диагонали

  • Еще один способ определения площади прямоугольника - через вписанную в него окружность. Он применяется в том случае, если прямоугольник является квадратом. Для использования данного способа необходимо знать Как вычислить площадь прямоугольника таким способом? Конечно же, по формуле. Доказывать мы ее не будем. А выглядит она так: S = 4 * r2, где r -радиус.

Случается так, что вместо радиуса нам известен диаметр вписанной окружности. Тогда формула будет выглядеть так:

S=d2,где d - диаметр.

  • Если известна одна из сторон и периметр, то как узнать площадь прямоугольника в этом случае? Для этого необходимо произвести ряд простых вычислений. Как мы знаем, противоположные стороны прямоугольника равны, поэтому от значения периметра необходимо отнять известную длину, умноженную на два. Полученный результат разделить на два и получим длину второй стороны. Ну, а дальше стандартный прием, перемножаем обе стороны и получаем площадь прямоугольника. В виде формулы это будет выглядеть так:

S=b* (P - 2*b), где b - длина стороны, P - периметр.

Как видим площадь прямоугольника можно определять различными способами. Все зависит от того, какие величины нам известны перед рассмотрением данного вопроса. Конечно же, последние методы исчисления в жизни практически не встречаются, но могут пригодиться для решений многих задач в школе. Возможно, и для решения ваших задач эта статья окажется полезной.

Площадь прямоугольника, как не будет дерзко звучать, но это важное понятие. В повседневной жизни мы постоянно сталкиваемся с ним. Узнать размер полей, огородов, рассчитать количество краски, необходимой для побелки потолка, сколько понадобится обоев для оклейки ко

мнаты и другое.

Геометрическая фигура

Для начала поговорим о прямоугольнике. Это фигура на плоскости, которая имеет четыре прямых угла, а ее противоположные стороны равны. Стороны его привыкли называть длиной и шириной. Измеряют их в миллиметрах, сантиметрах, дециметрах, метрах и т. д. Теперь ответим на вопрос: «Как найти площадь прямоугольника?» Для этого необходимо длину умножить на ширину.

Площадь=длина*ширина

Но еще одна оговорка: длина и ширина должны быть выражены в одинаковых единицах измерения, то есть метр и метр, а не метр и сантиметр. Записывается площадь латинской буквой S. Для удобства обозначим длину латинской буквой b, а ширину латинской буквой a, как показано на рисунке. Отсюда мы делаем вывод, что единицей измерения площади является мм 2 , см 2 , м 2 и т. д.

Рассмотрим на конкретном примере, как найти площадь прямоугольника. Длина b=10 ед. Ширина a=6 ед. Решение: S=a*b, S=10 ед.*6 ед., S=60 ед 2 . Задача. Как узнать площадь прямоугольника, если длина в 2 раза больше ширины и составляет 18 м? Решение: если b=18 м, тогда а=b/2, a=9 м. Как найти площадь прямоугольника, если известны обе стороны? Правильно, подставить в формулу. S=a*b, S=18*9, S=162 м 2 . Ответ: 162 м 2 . Задача. Сколько необходимо купить рулонов обоев для комнаты, если ее размеры составляют: длина 5,5 м ширина 3,5, а высота 3 м? Размеры рулона обоев: длина 10 м, ширина 50 см. Решение: сделаем рисунок комнаты.

Площади противоположных сторон равны. Вычислим площадь стены с размерами 5,5 м и 3 м. S стены 1 =5,5*3,

S стены 1 =16,5 м 2 . Следовательно, противоположная стена имеет площадь равную 16,5 м 2 . Найдем площади следующих двух стен. Стороны их, соответственно, равны 3,5 м и 3 м. S стены 2 =3,5*3, S стены 2 =10,5 м 2 . Значит, и противоположная сторона равна 10,5 м 2 . Сложим все результаты. 16,5+16,5+10,5+10,5=54 м 2 . Как вычислить площадь прямоугольника, если стороны выражены в разных единицах измерения. Ранее мы вычисляли площади в м 2 , то и в этом случае будем использовать метры. Тогда ширина рулона обоев будет равна 0,5 м. S рулона =10*0,5, S рулона =5 м 2 . Теперь узнаем, сколько рулонов необходимо для оклейки комнаты. 54:5=10,8 (рулонов). Так как они измеряются целыми числами, то нужно купить 11 рулонов обоев. Ответ: 11 рулонов обоев. Задача. Как вычислить площадь прямоугольника, если известно, что ширина на 3 см короче длины, а сумма сторон прямоугольника составляет 14 см? Решение: пусть длина х см, тогда ширина (х-3) см. х+(х-3)+х+(х-3)=14, 4х-6=14, 4х=20, х=5 см - длина прямоугольника, 5-3=2 см - ширина прямоугольника, S=5*2, S=10 см 2 Ответ: 10 см 2 .

Резюме

Рассмотрев примеры, надеюсь, стало понятно, как найти площадь прямоугольника. Напомню, что единицы измерения длины и ширины должны совпадать, иначе получится неправильный результат, чтобы не допустить ошибок, читайте задание внимательно. Иногда сторона может быть выражена через другую сторону, не стоит бояться. Обратитесь к нашим решенным задачам, вполне возможно, они могут помочь. Но хоть раз в жизни мы сталкиваемся с нахождением площади прямоугольника.

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 3 класса
Тренажер для 3 класса "Правила и упражнения по математике"
Электронное учебное пособие для 3 класса "Математика за 10 минут"

Что такое прямоугольник и квадрат

Прямоугольник – это четырёхугольник, у которого все углы прямые. Значит, противоположные стороны равны друг другу.

Квадрат – это прямоугольник, у которого равны и стороны, и углы. Его называют правильным четырёхугольником.


Четырёхугольники, в том числе прямоугольники и квадраты, обозначаются 4 буквами – вершинами. Для обозначения вершин используют латинские буквы: A, B, C, D ...

Пример.

Читается так: четырёхугольник ABCD; квадрат EFGH.

Что такое периметр прямоугольника? Формула расчета периметра

Периметр прямоугольника – это сумма длин всех сторон прямоугольника или сумма длины и ширины, умноженная на 2.

Периметр обозначается латинской буквой P . Так как периметр - это длина всех сторон прямоугольника, то он периметр записывается в единицах длины: мм, см, м, дм, км.

Например, периметр прямоугольника АВСD обозначается как P ABCD , где А, В, С, D - это вершины прямоугольника.

Запишем формулу периметра четырехугольника ABCD:

P ABCD = AB + BC + CD + AD = 2 * AB + 2 * BC = 2 * (AB + BC)


Пример.
Задан прямоугольник ABCD со сторонами: AB=СD=5 см и AD=BC=3 см.
Определим P ABCD .

Решение:
1. Нарисуем прямоугольник ABCD с исходными данными.
2. Напишем формулу для расчета периметра данного прямоугольника:

P ABCD = 2 * (AB + BС)

P ABCD = 2 * (5 см + 3 см) = 2 * 8 см = 16 см


Ответ: P ABCD = 16 см.

Формула расчета периметра квадрата

У нас есть формула для определения периметра прямоугольника.

P ABCD = 2 * (AB + BC)


Применим её для определения периметра квадрата. Учитывая, что все стороны квадрата равны, получаем:

P ABCD = 4 * AB


Пример.
Задан квадрат ABCD со стороной, равной 6 см. Определим периметр квадрата.

Решение.
1. Нарисуем квадрат ABCD с исходными данными.

2. Вспомним формулу расчета периметра квадрата:

P ABCD = 4 * AB


3. Подставим в формулу наши данные:

P ABCD = 4 * 6 см = 24 см

Ответ: P ABCD = 24 см.

Задачи на нахождение периметра прямоугольника

1. Измерь ширину и длину прямоугольников. Определи их периметр.

2. Нарисуй прямоугольник ABCD со сторонами 4 см и 6 см. Определи периметр прямоугольника.

3. Нарисуй квадрат СEOM со стороной 5 см. Определи периметр квадрата.

Где используется расчет периметра прямоугольника?

1. Задан участок земли, его нужно обнести забором. Какой длины будет забор?


В данной задаче необходимо точно рассчитать периметр участка, чтобы не купить лишний материал для постройки забора.

2. Родители решили сделать ремонт в детской комнате. Необходимо знать периметр комнаты и её площадь, чтобы правильно рассчитать количество обоев.
Определи длину и ширину комнаты, в которой ты живешь. Определи периметр своей комнаты.

Что такое площадь прямоугольника?

Площадь – это числовая характеристика фигуры. Площадь измеряется квадратными единицами длины: см 2 , м 2 , дм 2 и др. (сантиметр в квадрате, метр в квадрате, дециметр в квадрате и т.д.)
В вычислениях обозначается латинской буквой S .

Для определения площади прямоугольника необходимо длину прямоугольника умножить на его ширину.
Площадь прямоугольника вычисляется умножением длины АК на ширину КМ. Запишем это в виде формулы.

S AKMO = AK * KM


Пример.
Чему равна площадь прямоугольника AKMO, если его стороны равны 7 см и 2 см?

S AKMO = AK * KM = 7 см * 2 см = 14 см 2 .

Ответ: 14 см 2 .

Формула вычисления площади квадрата

Площадь квадрата можно определить, умножив сторону саму на себя.

Пример.
В данном примере площадь квадрата вычисляется умножением стороны АB на ширину BC, но так как они равны, получается умножение стороны AB на AB.

S AВСО = AB * BC = AB * AB


Пример.
Определи площадь квадрата AKMO со стороной 8 см.

S AKMО = AK * KM = 8 см * 8 см = 64 см 2

Ответ: 64 см 2 .

Задачи на нахождение площади прямоугольника и квадрата

1.Задан прямоугольник со сторонами 20 мм и 60 мм. Вычисли его площадь. Запиши ответ в квадратных сантиметрах.

2. Был куплен дачный участок размером 20 м на 30 м. Определи площадь дачного участка, ответ запиши в квадратных сантиметрах.

Мы уже познакомились с понятием площадь фигуры , узнали одну из единиц измерения площади - квадратный сантиметр . На уроке мы выведем правило, как вычислить площадь прямоугольника.

Мы уже умеем находить площадь фигур, которые разделены на квадратные сантиметры.

Например:

Мы можем определить, что площадь первой фигуры 8 см 2 , площадь второй фигуры 7 см 2 .

Как найти площадь прямоугольника, длины сторон которого 3 см и 4 см?

Для решения задачи разобьём прямоугольник на 4 полоски по 3 см 2 каждая.

Тогда площадь прямоугольника будет равна 3*4=12 см 2 .

Этот же прямоугольник можно разбить на 3 полоски по 4 см 2 .

Тогда площадь прямоугольника будет равна 4*3=12 см 2 .

В обоих случаях для нахождения площади прямоугольника перемножаются числа, выражающие длины сторон прямоугольника.

Найдем площадь каждого прямоугольника.

Рассмотрим прямоугольник АКМО.

В одной полоске 6 см 2 , а таких полосок в этом прямоугольнике 2. Значит, мы можем выполнить следующее действие:

Число 6 обозначает длину прямоугольника, а 2 - ширину прямоугольника. Таким образом, мы перемножили стороны прямоугольника для того, чтобы найти площадь прямоугольника.

Рассмотрим прямоугольник KDCO.

В прямоугольнике KDCO в одной полоске 2см 2 , а таких полосок 3. Следовательно, мы можем выполнить действие

Число 3 обозначает длину прямоугольника, а 2 - ширину прямоугольника. Мы их перемножили и узнали площадь прямоугольника.

Можно сделать вывод: чтобы найти площадь прямоугольника, не надо каждый раз разбивать фигуру на квадратные сантиметры.

Чтобы вычислить площадь прямоугольника, нужно найти его длину и ширину (длины сторон прямоугольника должны быть выражены в одних и тех же единицах измерения), а потом вычислить произведение полученных чисел (площадь будет выражена в соответствующих единицах площади)

Обобщим: площадь прямоугольника равна произведению его длины и ширины.

Решите задачу.

Вычисли площадь прямоугольника, если длина прямоугольника 9см, а ширина - 2см.

Рассуждаем так. В данной задаче известны и длина и ширина прямоугольника. Поэтому действуем по правилу: площадь прямоугольника равна произведению его длины и ширины.

Запишем решение.

Ответ: площадь прямоугольника 18см 2

Как вы думаете, какими ещё могут быть длины сторон прямоугольника с такой площадью?

Можно рассуждать так. Поскольку площадь - это произведение длин сторон прямоугольника, поэтому надо вспомнить таблицу умножения. При умножении каких чисел получается ответ 18?

Правильно, при умножении 6 и 3 тоже получится 18. Значит, у прямоугольника могут быть стороны 6см и 3 см и его площадь тоже будет равна 18см 2 .

Решите задачу.

Длина прямоугольника 8см, а ширина 2см. Найди его площадь и периметр.

Нам известны длина и ширина прямоугольника. Необходимо вспомнить, что для нахождения площади необходимо найти произведение его длины и ширины, а для нахождения периметра нужно сумму длины и ширины умножить на два.

Запишем решение.

Ответ: площадь прямоугольника 16 см 2 , а периметр прямоугольника 20 см.

Решите задачу.

Длина прямоугольника 4см, а ширина - 3см. Чему равна площадь треугольника? (смотри рисунок)

Чтобы ответить на вопрос задачи, сначала надо найти площадь прямоугольника. Мы знаем, что для этого необходимо длину умножить на ширину.

Посмотрите на чертёж. Вы заметили, диагональ разделила прямоугольник на два равных треугольника? Следовательно, площадь одного треугольника в 2 раза меньше площади прямоугольника. Значит, надо 12 уменьшить в 2 раза.

Ответ: площадь треугольника 6 см 2 .

Сегодня на уроке мы познакомились с правилом, как вычислить площадь прямоугольника и учились применять это правило при решении задач на нахождение площади прямоугольника.

1. М.И.Моро, М.А.Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. М., «Просвещение», 2012 год.

2. М.И.Моро, М.А.Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. М., «Просвещение», 2012 год.

3. М.И.Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. - М.: Просвещение, 2012.

4. Нормативно-правовой документ. Контроль и оценка результатов обучения. М., «Просвещение», 2011 год.

5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.

6. С.И.Волкова. Математика: Проверочные работы. 3 класс. - М.: Просвещение, 2012.

7. В.Н.Рудницкая. Тесты. М., «Экзамен», 2012 (127с.)

2. Издательство «Просвещение» ()

1. Длина прямоугольника 7 см, ширина 4 см. Найдите площадь прямоугольника.

2. Сторона квадрата 5 см. Найдите площадь квадрата.

3. Начертите возможные варианты прямоугольников, площадь которых 18 см 2 .

4. Составьте задание по теме урока для своих товарищей.

Как найти площадь прямоугольника формула 3. Площадь прямоугольника онлайн калькулятор. Как найти площадь прямоугольника

Площадь многоугольника

Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.

Свойство 1: Для равных многоугольников значения их площадей равны.

Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При этом площадь исходного многоугольника равняется сумме площадей всех многоугольников, на которые разбит данный многоугольник.

Площадь квадрата

Теорема 1

Площадь квадрата определяется как квадрат длины его стороны.

где $a$ -- длина стороны квадрата.

Доказательство.

Для доказательства нам необходимо рассмотреть три случая.

Теорема доказана.

Площадь прямоугольника

Теорема 2

Площадь прямоугольника определяется произведением длин его смежных сторон.

Математически это можно записать следующим образом

Доказательство.

Пусть нам дан прямоугольник $ABCD$, у которого $AB=b,\ AD=a$. Достроим его до квадрата $APRV$, длина стороны которого равняется $a+b$ (рис. 3).

Рисунок 3.

По второму свойству площадей имеем

\ \ \

По теореме 1

\ \

Теорема доказана.

Пример задач

Пример 1

Найти площадь прямоугольника со сторонами $5$ и $3$.

Для вычисления площади и периметра квадрата нужно разобраться в понятиях этих величин. Квадрат представляет собой прямоугольник только с четырьмя одинаковыми сторонам, которые имеют между собой угол в 90°. Периметр - это сумма длин всех сторон. Площадь - это произведение длины прямоугольной фигуры на ее ширину.

Площадь квадрата и как ее найти

Как было сказано выше, квадрат - это прямоугольник, имеющий 4 равные стороны, поэтому ответом на вопрос: «как найти площадь квадрата» является формула: S = a*a или S = a 2 , где а - сторона квадрата. Исходя из этой формулы, легко находится сторона квадрата, если известна площадь. Для этого необходимо извлечь квадрат из указанной величины.

Например, S = 121, следовательно, а = √121 = 11. Если заданное значение отсутствует в таблице квадратов, то можно воспользоваться калькулятором: S = 94, а = √94 = 9,7.

Как найти периметр квадрата

Периметр квадрата находится по легкой формуле: Р = 4а, где а - сторона квадрата.

Пример:

  • сторона квадрата = 5, следовательно, P = 4*5 = 20
  • сторона квадрата = 3, следовательно, Р = 4*3 = 12

Но существуют такие задачи, где заведомо обозначена площадь, а нужно найти периметр. При решении нужны формулы, которые представлены ранее.

Например: как найти периметр квадрата, если известна площадь, равная 144?

Шаги решения:

  1. Выясняем длину одной стороны: а = √144 = 12
  2. Находим периметр: Р = 4*12 = 48.

Нахождение периметра вписанного квадрата


Существуют еще несколько способов нахождения периметра квадрата. Рассмотрим один из них: нахождение периметра через радиус описанной окружности. Здесь появляется новый термин «вписанный квадрат» - это квадрат, чьи вершины лежат на окружности.

Алгоритм решения:


  • так как на рассмотрении квадрат, формулу можно выразить таким образом: a 2 + a 2 = (2r) 2 ;
  • затем следует уравнение сделать проще: 2a 2 = 4(r) 2 ;
  • делим уравнение на 2: (a 2 ) = 2(r) 2 ;
  • извлекаем корень: a = √(2r).

В итоге получаем последнюю формулу: а (сторона квадрата) = √(2r).

  1. Найденная сторона квадрата умножается на 4, далее применяется стандартная формула по нахождению периметра: P = 4√(2r).

Задача:

Дан квадрат, который вписан в окружность, ее радиус равен 5. Значит, диагональ квадрата равняется 10. Применяем теорему Пифагора: 2(a 2 ) = 10 2 , то есть 2a 2 = 100. Делим полученное на два и в результате: a 2 = 50. Так как это не табличное значение, используем калькулятор: а = √50 = 7,07. Умножаем на 4: Р = 4*7,07 = 28,2. Задача решена!

Рассмотрим еще один вопрос

Часто в задачах встречается другое условие: как найти площадь квадрата, если известен периметр?

Мы уже рассмотрели все необходимые формулы, поэтому для решения задач подобного типа, необходимо умело их применять и связывать между собой. Перейдем сразу к наглядному примеру: Площадь квадрата равна 25 см 2 , найдите его периметр.

Шаги решения:

  1. Находим сторону квадрата: а = √25 = 5.
  1. Находим сам периметр: Р = 4*а = 4*5 = 20.

Подводя итог, важно напомнить, что такие легкие формулы применимы не только в учебной деятельности, но и повседневной жизни. Периметр и площадь фигуры дети учатся находить еще в начальной школе. В средних классах появляется новый предмет - геометрия, где теорема Пифагора находится в самом начале изучения. Эти азы математики проверяются и по окончанию школы ОГЭ и ЕГЭ, поэтому важно знать эти формулы и правильно их применять.

Урок и презентация на тему: "Периметр и площадь прямоугольника"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 3 класса
Тренажер для 3 класса "Правила и упражнения по математике"
Электронное учебное пособие для 3 класса "Математика за 10 минут"

Что такое прямоугольник и квадрат

Прямоугольник – это четырёхугольник, у которого все углы прямые. Значит, противоположные стороны равны друг другу.

Квадрат – это прямоугольник, у которого равны и стороны, и углы. Его называют правильным четырёхугольником.


Четырёхугольники, в том числе прямоугольники и квадраты, обозначаются 4 буквами – вершинами. Для обозначения вершин используют латинские буквы: A, B, C, D ...

Пример.

Читается так: четырёхугольник ABCD; квадрат EFGH.

Что такое периметр прямоугольника? Формула расчета периметра

Периметр прямоугольника – это сумма длин всех сторон прямоугольника или сумма длины и ширины, умноженная на 2.

Периметр обозначается латинской буквой P . Так как периметр - это длина всех сторон прямоугольника, то он периметр записывается в единицах длины: мм, см, м, дм, км.

Например, периметр прямоугольника АВСD обозначается как P ABCD , где А, В, С, D - это вершины прямоугольника.

Запишем формулу периметра четырехугольника ABCD:

P ABCD = AB + BC + CD + AD = 2 * AB + 2 * BC = 2 * (AB + BC)


Пример.
Задан прямоугольник ABCD со сторонами: AB=СD=5 см и AD=BC=3 см.
Определим P ABCD .

Решение:
1. Нарисуем прямоугольник ABCD с исходными данными.
2. Напишем формулу для расчета периметра данного прямоугольника:

P ABCD = 2 * (AB + BС)

P ABCD = 2 * (5 см + 3 см) = 2 * 8 см = 16 см


Ответ: P ABCD = 16 см.

Формула расчета периметра квадрата

У нас есть формула для определения периметра прямоугольника.

P ABCD = 2 * (AB + BC)


Применим её для определения периметра квадрата. Учитывая, что все стороны квадрата равны, получаем:

P ABCD = 4 * AB


Пример.
Задан квадрат ABCD со стороной, равной 6 см. Определим периметр квадрата.

Решение.
1. Нарисуем квадрат ABCD с исходными данными.

2. Вспомним формулу расчета периметра квадрата:

P ABCD = 4 * AB


3. Подставим в формулу наши данные:

P ABCD = 4 * 6 см = 24 см

Ответ: P ABCD = 24 см.

Задачи на нахождение периметра прямоугольника

1. Измерь ширину и длину прямоугольников. Определи их периметр.

2. Нарисуй прямоугольник ABCD со сторонами 4 см и 6 см. Определи периметр прямоугольника.

3. Нарисуй квадрат СEOM со стороной 5 см. Определи периметр квадрата.

Где используется расчет периметра прямоугольника?

1. Задан участок земли, его нужно обнести забором. Какой длины будет забор?


В данной задаче необходимо точно рассчитать периметр участка, чтобы не купить лишний материал для постройки забора.

2. Родители решили сделать ремонт в детской комнате. Необходимо знать периметр комнаты и её площадь, чтобы правильно рассчитать количество обоев.
Определи длину и ширину комнаты, в которой ты живешь. Определи периметр своей комнаты.

Что такое площадь прямоугольника?

Площадь – это числовая характеристика фигуры. Площадь измеряется квадратными единицами длины: см 2 , м 2 , дм 2 и др. (сантиметр в квадрате, метр в квадрате, дециметр в квадрате и т.д.)
В вычислениях обозначается латинской буквой S .

Для определения площади прямоугольника необходимо длину прямоугольника умножить на его ширину.
Площадь прямоугольника вычисляется умножением длины АК на ширину КМ. Запишем это в виде формулы.

S AKMO = AK * KM


Пример.
Чему равна площадь прямоугольника AKMO, если его стороны равны 7 см и 2 см?

S AKMO = AK * KM = 7 см * 2 см = 14 см 2 .

Ответ: 14 см 2 .

Формула вычисления площади квадрата

Площадь квадрата можно определить, умножив сторону саму на себя.

Пример.
В данном примере площадь квадрата вычисляется умножением стороны АB на ширину BC, но так как они равны, получается умножение стороны AB на AB.

S AВСО = AB * BC = AB * AB


Пример.
Определи площадь квадрата AKMO со стороной 8 см.

S AKMО = AK * KM = 8 см * 8 см = 64 см 2

Ответ: 64 см 2 .

Задачи на нахождение площади прямоугольника и квадрата

1.Задан прямоугольник со сторонами 20 мм и 60 мм. Вычисли его площадь. Запиши ответ в квадратных сантиметрах.

2. Был куплен дачный участок размером 20 м на 30 м. Определи площадь дачного участка, ответ запиши в квадратных сантиметрах.

Площадь прямоугольника, как не будет дерзко звучать, но это важное понятие. В повседневной жизни мы постоянно сталкиваемся с ним. Узнать размер полей, огородов, рассчитать количество краски, необходимой для побелки потолка, сколько понадобится обоев для оклейки ко

мнаты и другое.

Геометрическая фигура

Для начала поговорим о прямоугольнике. Это фигура на плоскости, которая имеет четыре прямых угла, а ее противоположные стороны равны. Стороны его привыкли называть длиной и шириной. Измеряют их в миллиметрах, сантиметрах, дециметрах, метрах и т. д. Теперь ответим на вопрос: «Как найти площадь прямоугольника?» Для этого необходимо длину умножить на ширину.

Площадь=длина*ширина

Но еще одна оговорка: длина и ширина должны быть выражены в одинаковых единицах измерения, то есть метр и метр, а не метр и сантиметр. Записывается площадь латинской буквой S. Для удобства обозначим длину латинской буквой b, а ширину латинской буквой a, как показано на рисунке. Отсюда мы делаем вывод, что единицей измерения площади является мм 2 , см 2 , м 2 и т. д.

Рассмотрим на конкретном примере, как найти площадь прямоугольника. Длина b=10 ед. Ширина a=6 ед. Решение: S=a*b, S=10 ед.*6 ед., S=60 ед 2 . Задача. Как узнать площадь прямоугольника, если длина в 2 раза больше ширины и составляет 18 м? Решение: если b=18 м, тогда а=b/2, a=9 м. Как найти площадь прямоугольника, если известны обе стороны? Правильно, подставить в формулу. S=a*b, S=18*9, S=162 м 2 . Ответ: 162 м 2 . Задача. Сколько необходимо купить рулонов обоев для комнаты, если ее размеры составляют: длина 5,5 м ширина 3,5, а высота 3 м? Размеры рулона обоев: длина 10 м, ширина 50 см. Решение: сделаем рисунок комнаты.

Площади противоположных сторон равны. Вычислим площадь стены с размерами 5,5 м и 3 м. S стены 1 =5,5*3,

S стены 1 =16,5 м 2 . Следовательно, противоположная стена имеет площадь равную 16,5 м 2 . Найдем площади следующих двух стен. Стороны их, соответственно, равны 3,5 м и 3 м. S стены 2 =3,5*3, S стены 2 =10,5 м 2 . Значит, и противоположная сторона равна 10,5 м 2 . Сложим все результаты. 16,5+16,5+10,5+10,5=54 м 2 . Как вычислить площадь прямоугольника, если стороны выражены в разных единицах измерения. Ранее мы вычисляли площади в м 2 , то и в этом случае будем использовать метры. Тогда ширина рулона обоев будет равна 0,5 м. S рулона =10*0,5, S рулона =5 м 2 . Теперь узнаем, сколько рулонов необходимо для оклейки комнаты. 54:5=10,8 (рулонов). Так как они измеряются целыми числами, то нужно купить 11 рулонов обоев. Ответ: 11 рулонов обоев. Задача. Как вычислить площадь прямоугольника, если известно, что ширина на 3 см короче длины, а сумма сторон прямоугольника составляет 14 см? Решение: пусть длина х см, тогда ширина (х-3) см. х+(х-3)+х+(х-3)=14, 4х-6=14, 4х=20, х=5 см - длина прямоугольника, 5-3=2 см - ширина прямоугольника, S=5*2, S=10 см 2 Ответ: 10 см 2 .

Резюме

Рассмотрев примеры, надеюсь, стало понятно, как найти площадь прямоугольника. Напомню, что единицы измерения длины и ширины должны совпадать, иначе получится неправильный результат, чтобы не допустить ошибок, читайте задание внимательно. Иногда сторона может быть выражена через другую сторону, не стоит бояться. Обратитесь к нашим решенным задачам, вполне возможно, они могут помочь. Но хоть раз в жизни мы сталкиваемся с нахождением площади прямоугольника.

Что такое площадь и что такое прямоугольник

Площадь – это такая геометрическая величина, с помощью которой можно определить размер какой-либо поверхности геометрической фигуры.

На протяжении многих веков так повелось, что вычисление площади называли квадратурой. То есть, чтобы узнать площадь несложных геометрических фигур, достаточно было подсчитать количество единичных квадратов, которыми условно были покрыты фигуры. А фигуру, которая имела площадь, называли квадрируемой.

Поэтому, можно подвести итог, что площадь – это такая величина, которая показывает нам размер части плоскости, соединенной между собой отрезками.

Прямоугольник – это такой четырехугольник, у которого все углы прямые. То есть, четырехстороннюю фигуру, которая имеет четыре прямых угла и ее противоположные стороны равны, называют прямоугольником.

Как найти площадь прямоугольника

Самый простой способ нахождения площади прямоугольника – взять прозрачную бумагу, например кальку, или клеенку и расчертить ее на равные квадратики по 1 см, а потом приложить к изображению прямоугольника. Количество заполненных квадратиков и будет площадью в сантиметрах квадратных. Например, на рисунке видно, что прямоугольник попадает в 12 квадратов, значит, его площадь равна – 12 кв. см.


Но для нахождения площади больших объектов, например квартиры, необходим более универсальный способ, поэтому была доказана формула, чтобы найди площадь прямоугольника необходимо умножить его длину на ширину.

А теперь давайте попробуем записать правило нахождения площади прямоугольника в виде формулы. Обозначим площадь нашей фигуры буквой S, буква а – будет обозначать его длину, а буква b – ширину.

В итоге получаем вот такую формулу:

S = а * b.

Если наложить эту формулу на рисунок прямоугольника выше, то мы получим те же 12 кв.см, т.к. а = 4 см, b = 3 см, а S = 4 * 3 = 12 кв.см.

Если взять две идентичные фигуры, и наложить их одну на другую, то они совпадут, а будут называться равными. У таких равных фигур будут также равны их площади и периметры.

Зачем уметь находить площадь

Во-первых, если вы знаете, как найти площадь какой-либо фигуры, то с помощью ее формулы вы без проблем сможете решать любые задачи по геометрии и тригонометрии.
Во-вторых, научившись находить площадь прямоугольника, вы сначала сможете решать простые задачки, а со временем перейдете к решению более сложных, и научитесь находить площади фигур, которые вписаны в прямоугольник или около него.
В-третьих, зная такую простую формулу, как S = а * b, вы получаете возможность без проблем решать любые простые бытовые задачи (например, находить S квартиры или дома), а со временем и сможете применить их к решению сложных архитектурных проектов.

То есть, если совсем упростить формулу нахождения площади, то она будет выглядеть так:

П = Д х Ш,

Что обозначает П – это искомая площадь, Д – это ее длина, Ш – обозначает ее ширину, а х – является знаком умножения.

А известно ли вам, что площадь любого многоугольника можно условно разбить на определенное количество квадратных блоков, которые находятся внутри этого многоугольника? Какая разница между площадью и периметром

Давайте на примере попробуем понять разницу между периметром и площадью. Например, наша школа находится на участке, который огражден забором – суммарная длина этого забора будет периметром, а то пространство, которое находится внутри ограждения и является площадью.

Единицы измерения площади

Если периметр одномерный измеряется в линейных единицах, которыми являются дюймы, футы и метры, то S относится к двумерным исчислениям и имеет свою длину и ширину.

И измеряется S в квадратных единицах, таких, как:

Один квадратный миллиметр, где S квадрата имеет сторону, равную одному миллиметру;
Квадратный сантиметр, имеет S такого квадрата, у которого сторона равна одному сантиметру;
Квадратный дециметр равен S этого квадрата со стороной в один дециметр;
Квадратный метр имеет S квадрата, сторона которого равна одному метру;
И наконец, квадратный километр имеет S квадрата, сторона которого равна одному километру.

Для измерения площадей больших участков на поверхности Земли используют такие единицы, как:

Один ар или сотка – если S квадрата имеет сторону десять метров;
Один гектар равен S квадрата, у которого сторона имеет сто метров.

Задачи и упражнения

А теперь давайте рассмотрим несколько примеров.

На рисунке 62 нарисована фигура, которая имеет восемь квадратов и каждая сторона этих квадратов равна одному сантиметру. Поэтому S такого квадрата будет квадратный сантиметр.

Если записать, то это будет выглядеть так:

1 см2. А S все этой фигуры, состоящей из восьми квадратов, будет равняться 8 кв.см.

Если взять какую-нибудь фигуру и разбить ее на «р» квадратов со стороной, равной одному сантиметру, то ее площадь будет равна:

Р см2.

Давайте рассмотрим прямоугольник, изображений на рисунке 63. Этот прямоугольник состоит из трех полос, а каждая такая полоска разбита на пять равных квадратов, имеющих сторону в 1 см.

Попробуем найти его площадь. И так берем пять квадратов, и умножаем на три полоски и получаем площадь равную 15 кв.см.:

Рассмотрим следующий пример. На рисунке 64 изображен прямоугольник ABCD, ломаной линией KLMN он разбит на две части. Первая его часть равна площади 12 см2, а вторая имеет площадь 9 см2. Теперь давайте найдем площадь всего прямоугольника:

Итак, берем три и умножаем на семь и получаем 21 кв.см:

3 7 = 21 кв.см. При этом 21 = 12 + 9.

И приходим к выводу, что площадь всей нашей фигуры равна сумме площадей ее отдельных частей.

Рассмотрим еще один пример. И так на рисунке 65 изображен прямоугольник, который с помощью отрезка АС разбит на два равных треугольника ABC и ADC

А так, как нам уже известно, что квадрат – это такой же прямоугольник, только имеющий равные стороны, то площадь каждого треугольника будет равняться половине площади всего прямоугольника.

Представим, что сторона квадрата равна а, то:

S = a a = a2.

Делаем вывод, что формула площади квадрата будет иметь такой вид:

А запись a2 называется квадратом числа а.

И так, если сторона нашего квадрата равна четырем сантиметрам, то его площадь будет:

4 4, то есть 4 * 2 = 16 кв.см.

Вопросы и задания

Найдите площадь фигуры, которая разбита на шестнадцать квадратов, сторона которых равна одному сантиметру.
Вспомните формулу прямоугольника и запишите ее.
Какие измерения нужно произвести, чтобы узнать площадь прямоугольника?
Дайте определение равным фигурам.
Могут ли иметь равные фигуры различные площади? А периметры?
Если вам известны площади отдельных частей фигуры, как узнать ее общую площадь?
Сформулируйте и запишите, чему равняется площадь квадрата.

Историческая справка

А известно ли вам, что древние люди в Вавилоне умели рассчитать площадь прямоугольника. Так же древние египтяне делали расчеты различных фигур, но так как точных формул они не знали, то вычисления имели небольшие погрешности.

В своей книге «Начала» знаменитый древнегреческий математик Евклид, описывает различные способы вычисления площадей разных геометрических фигур.

Как найти площадь прямоугольника

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса - изображению, ссылке, тексту и т. д. - относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Расчетная область | SkillsYouNeed

Площадь - это мера того, сколько места внутри фигуры. Расчет площади формы или поверхности может быть полезен в повседневной жизни - например, вам может потребоваться знать, сколько краски нужно купить, чтобы покрыть стену, или сколько семян травы вам нужно, чтобы засеять лужайку.

На этой странице описаны основные сведения, которые необходимо знать для понимания и расчета площадей общих форм, включая квадраты и прямоугольники, треугольники и круги.

Расчет площади по сетке

Когда фигура рисуется на масштабированной сетке, вы можете найти площадь, подсчитав количество квадратов сетки внутри фигуры.

В этом примере внутри прямоугольника 10 квадратов сетки.


Чтобы найти значение площади с использованием метода сетки, нам нужно знать размер, который представляет квадрат сетки.

В этом примере используются сантиметры, но тот же метод применяется к любой единице длины или расстояния. Например, вы можете использовать дюймы, метры, мили, футы и т. Д.

В этом примере каждый квадрат сетки имеет ширину 1 см и высоту 1 см. Другими словами, каждый квадрат сетки равен одному квадратному сантиметру.

Подсчитайте квадраты сетки внутри большого квадрата, чтобы найти его площадь.

Есть 16 маленьких квадратов, поэтому площадь большого квадрата составляет 16 квадратных сантиметров.

В математике мы сокращаем «квадратные сантиметры» до 2 . 2 означает «в квадрате».

Каждый квадрат сетки равен 1 см 2 .

Площадь большого квадрата 16см 2 .


Подсчет квадратов на сетке для определения площади работает для всех форм - если известны размеры сетки. Однако этот метод становится более сложным, когда фигуры не точно соответствуют сетке или когда вам нужно подсчитать доли квадратов сетки.

В этом примере квадрат не точно помещается на сетке.

Мы все еще можем вычислить площадь, считая квадраты сетки.

  • Имеется 25 квадратов полной сетки (заштрихованы синим цветом).
  • 10 квадратов полусетки (заштрихованы желтым цветом) - 10 полуквадратов равны 5 полным квадратам.
  • Также есть 1 четверть квадрата (заштрихована зеленым) - (или 0,25 целого квадрата).
  • Сложите целые квадраты и дроби вместе: 25 + 5 + 0.25 = 30,25.

Следовательно, площадь этого квадрата составляет 30,25 см 2 .

Вы также можете записать это как 30¼см 2 .


Хотя использование сетки и подсчет квадратов внутри фигуры - очень простой способ изучения понятий площади, он менее полезен для нахождения точных областей с более сложными формами, когда можно сложить много частей квадратов сетки.

Площадь можно рассчитать с помощью простых формул, в зависимости от типа фигуры, с которой вы работаете.

Остальная часть этой страницы объясняет и дает примеры того, как вычислить площадь фигуры без использования системы сеток.


Площади простых четырехугольников:


квадратов, прямоугольников и параллелограммов

Простейшие (и наиболее часто используемые) вычисления площади выполняются для квадратов и прямоугольников.

Чтобы найти площадь прямоугольника, умножьте его высоту на ширину.

Для квадрата вам нужно только найти длину одной из сторон (поскольку каждая сторона имеет одинаковую длину), а затем умножить это на себя, чтобы найти площадь.Это то же самое, что сказать длину 2 или длину в квадрате.

Хорошей практикой является проверка того, что фигура на самом деле является квадратом, путем измерения двух сторон. Например, стена комнаты может выглядеть как квадрат, но когда вы ее измеряете, вы обнаруживаете, что на самом деле это прямоугольник.

Часто в реальной жизни формы могут быть более сложными. Например, представьте, что вы хотите найти площадь пола, чтобы заказать нужное количество ковра.

Типовой план помещения не может состоять из простого прямоугольника или квадрата:

В этом и других подобных примерах фокус состоит в том, чтобы разделить фигуру на несколько прямоугольников (или квадратов).Неважно, как вы разделите фигуру - любое из трех решений даст один и тот же ответ.

Для решений 1 и 2 необходимо создать две фигуры и сложить их площади, чтобы найти общую площадь.

Для решения 3 вы создаете большую форму (A) и вычитаете из нее меньшую форму (B), чтобы найти площадь.


Другая распространенная проблема - найти область границы - фигуры внутри другой фигуры.

В этом примере показана дорожка вокруг поля - ширина дорожки 2 метра.

Опять же, в этом примере есть несколько способов определить площадь пути.

Вы можете просмотреть путь как четыре отдельных прямоугольника, вычислить их размеры, а затем их площадь и, наконец, сложить области, чтобы получить итог.

Более быстрый способ - вычислить площадь всей формы и площадь внутреннего прямоугольника. Вычтите площадь внутреннего прямоугольника из всей, оставив площадь пути.

  • Площадь всей формы составляет 16 м × 10 м = 160 м 2 .
  • Мы можем определить размеры средней секции, потому что знаем, что путь по краю имеет ширину 2 метра.
  • Ширина всей формы составляет 16 м, а ширина пути по всей форме - 4 м (2 м слева от формы и 2 м справа). 16 м - 4 м = 12 м
  • То же самое для высоты: 10м - 2м - 2м = 6м
  • Итак, мы подсчитали, что средний прямоугольник имеет размер 12 × 6 м.
  • Таким образом, площадь среднего прямоугольника составляет: 12 м × 6 м = 72 м 2 .
  • Наконец, мы убираем область среднего прямоугольника из области всей формы. 160 - 72 = 88м 2 .

Площадь тропы 88м 2 .


Параллелограмм - это четырехсторонняя форма с двумя парами сторон равной длины - по определению прямоугольник - это разновидность параллелограмма. Однако большинство людей склонны думать о параллелограммах как о четырехсторонних фигурах с наклонными линиями, как показано здесь.

Площадь параллелограмма рассчитывается так же, как и для прямоугольника (высота × ширина), но важно понимать, что высота означает не длину вертикальных (или отклоненных от вертикали) сторон, а расстояние между сторонами.

Из диаграммы вы можете видеть, что высота - это расстояние между верхней и нижней сторонами фигуры, а не длина стороны.

Представьте себе воображаемую линию под прямым углом между верхней и нижней сторонами. Это высота.


Области треугольников

Может быть полезно думать о треугольнике как о половине квадрата или параллелограмма.

Предполагая, что вы знаете (или можете измерить) размеры треугольника, вы можете быстро вычислить его площадь.

Площадь треугольника (высота × ширина) ÷ 2.

Другими словами, вы можете вычислить площадь треугольника так же, как площадь квадрата или параллелограмма, а затем просто разделите свой ответ на 2.

Высота треугольника измеряется по прямой линии от нижней линии (основания) до «вершины» (верхней точки) треугольника.

Вот несколько примеров:

Площадь трех треугольников на диаграмме выше одинакова.

Каждый треугольник имеет ширину и высоту 3 см.

Площадь рассчитана:

(высота × ширина) ÷ 2

3 × 3 = 9

9 ÷ 2 = 4,5

Площадь каждого треугольника составляет 4,5 см 2 .


В реальных ситуациях вы можете столкнуться с проблемой, требующей найти площадь треугольника, например:

Вы хотите покрасить фронтальный конец сарая. Вам нужно посетить магазин украшений только один раз, чтобы получить нужное количество краски.Вы знаете, что литр краски покроет 10 м 2 стены. Сколько краски нужно, чтобы покрыть фронтон?

Вам нужно три измерения:

A - Общая высота до вершины крыши.

B - Высота вертикальных стен.

C - Ширина здания.

В этом примере измерения:

A - 12,4 м

B - 6,6 м

C - 11,6 м

Следующий этап требует дополнительных расчетов.Подумайте о здании как о двух формах: прямоугольнике и треугольнике. По имеющимся у вас измерениям вы можете рассчитать дополнительное измерение, необходимое для определения площади фронтона.

Размер D = 12,4 - 6,6

D = 5,8 м

Теперь вы можете определить площадь двух частей стены:

Площадь прямоугольной части стены: 6,6 × 11,6 = 76,56 м 2

Площадь треугольной части стены: (5.8 × 11,6) ÷ 2 = 33,64 м 2

Сложите эти две области вместе, чтобы получить общую площадь:

76,56 + 33,64 = 110,2 м 2

Как вы знаете, один литр краски покрывает 10 м 2 стены, поэтому мы можем рассчитать, сколько литров нам нужно купить:

110,2 ÷ 10 = 11,02 л.

На самом деле вы можете обнаружить, что краска продается только в 5-литровых или 1-литровых канистрах, результат - чуть более 11 литров. У вас может возникнуть соблазн округлить до 11 литров, но, если мы не будем разбавлять краску водой, этого будет недостаточно.Таким образом, вы, вероятно, округлите до следующего целого литра и купите две 5-литровые банки и две 1-литровые банки, что в сумме составит 12 литров краски. Это позволит избежать потерь и оставит большую часть литра для подкраски позднее. И не забывайте, что если вам нужно нанести более одного слоя краски, вы должны умножить количество краски для одного слоя на количество необходимых слоев!


Области кругов

Чтобы вычислить площадь круга, вам необходимо знать его диаметр или радиус .

Диаметр круга - это длина прямой линии от одной стороны круга до другой, проходящей через центральную точку круга. Диаметр в два раза больше длины радиуса (диаметр = радиус × 2)

Радиус круга - это длина прямой линии от центральной точки круга до его края. Радиус составляет половину диаметра. (радиус = диаметр ÷ 2)

Вы можете измерить диаметр или радиус в любой точке окружности - важно измерять, используя прямую линию, проходящую через (диаметр) или заканчивающуюся (радиус) в центре окружности.

На практике при измерении окружностей часто легче измерить диаметр, а затем разделить на 2, чтобы найти радиус.

Радиус нужен для вычисления площади круга, формула:

площадь круга = πR 2 .

Это означает:

π = Pi - постоянная, равная 3,142.

R = радиус окружности.

R 2 (радиус в квадрате) означает радиус × радиус.


Следовательно, круг с радиусом 5 см имеет площадь:

3.142 × 5 × 5 = 78,55 см 2 .

Круг диаметром 3 м имеет площадь:

Сначала прорабатываем радиус (3м ÷ 2 = 1,5м)

Затем примените формулу:

πR 2

3,142 × 1,5 × 1,5 = 7,0695.

Площадь круга диаметром 3 м составляет 7,0695 м 2 .


Заключительный пример

В этом примере используется большая часть содержимого этой страницы для решения простых задач с областями.

Это дом Рубена М. Бенджамина в Блумингтоне, штат Иллинойс, внесенный в Национальный реестр исторических мест США (номер записи: 376599).

Этот пример включает поиск области фасада дома, деревянной решетчатой ​​части - исключая дверь и окна. Вам нужны следующие размеры:

A - 9,7 м B - 7,6 м
C - 8,8 м D - 4,5 м
E - 2.3 мес F - 2,7 м
G - 1,2 м H - 1,0 м

Примечания:

  • Все размеры являются приблизительными.
  • Не нужно беспокоиться о границе вокруг дома - она ​​не учтена в измерениях.
  • Мы предполагаем, что все прямоугольные окна одинакового размера.
  • Размер круглого окна - это диаметр окна.
  • Размер двери включает ступеньки.

Какова площадь деревянной реечной части дома?

Работы и ответы ниже:



Ответы на приведенный выше пример

Сначала определите площадь основной формы дома - прямоугольника и треугольника, составляющих форму.

Главный прямоугольник (B × C) 7,6 × 8,8 = 66,88 м 2 .

Высота треугольника (A - B) 9,7 - 7,6 = 2,1.

Следовательно, площадь треугольника равна (2.1 × C) ÷ 2.
2,1 × 8,8 = 18,48. 18,48 ÷ 2 = 9,24 м 2 .

Общая площадь фасада дома равна сумме площадей прямоугольника и треугольника:

66,88 + 9,24 = 76,12 м 2 .

Затем проработайте площади окон и дверей, чтобы их можно было вычесть из всей площади.

Площадь двери и ступенек составляет (Д × В) 4,5 × 2,3 = 10,35 м 2 .

Площадь одного прямоугольного окна составляет (G × F) 1.2 × 2,7 = 3,24 м 2 .

Есть пять прямоугольных окон. Умножьте площадь одного окна на 5.

3,24 × 5 = 16,2 м2. (общая площадь прямоугольных окон).

Круглое окно имеет диаметр 1 м, поэтому радиус 0,5 м.

Используя πR 2 , определите площадь круглого окна: 3,142 × 0,5 × 0,5 =. 0,7855м 2 .

Затем сложите площади двери и окон.

(зона двери) 10,35 + (прямоугольная зона окон) 16.2 + (площадь круглого окна) 0,7855 = 27,3355

Наконец, вычтите общую площадь окон и дверей из всей площади.

76,12 - 27,3355 = 48,7845

Площадь деревянного реечного фасада дома и ответ на проблему: 48,7845м 2 .

Вы можете округлить ответ до 48,8 м 2 или 49 м 2 .

См. Нашу страницу Оценка, приближение и округление .

Что такое площадь?

Площадь - это размер поверхности!

Пример:

У всех этих фигур одинаковая площадь 9:

Это помогает представить , сколько краски покроет форму.

Площадь простых форм

Для определенных форм существуют специальные формулы:

Пример: Какова площадь этого прямоугольника?

Формула:

Площадь = Ш × В
Ш = Ширина
В = Высота

Ширина равна 5, а высота равна 3, поэтому мы знаем, что w = 5 и h = 3 :

Площадь = 5 × 3 = 15

Узнайте больше в Area of ​​Plane Shapes.

Площадь по счету квадратов

Мы также можем нанести фигуру на сетку и подсчитать количество квадратов:


Прямоугольник имеет площадь 15

Пример: когда каждый квадрат равен 1 метр со стороны, тогда площадь составляет 15 м 2 (15 квадратных метров)

Квадратный метр и Квадратный метр

Базовая единица площади в метрической системе - кв. М. - квадрат, каждая сторона которого имеет 1 метр:


1 квадратный метр

Будьте осторожны, говоря «квадратные метры», а не «квадратные метры»:

Есть также «квадратный мм», «квадратный см» и т. Д., Подробнее см. Метрическая площадь.

Примерная площадь по подсчету квадратов

Иногда квадраты не совсем соответствуют форме, но мы можем получить «приблизительный» ответ.

В одну сторону:
  • больше чем половина квадрата считается как 1
  • минус , чем половина квадрата считается как 0

Как это:


Этот пятиугольник имеет площадь примерно 17

Или мы можем сосчитать один квадрат, когда кажется, что
областей в сумме составляют .

Пример: Здесь область, обозначенная « 4 », кажется равной примерно 1 целому квадрату (также для « 8 »):


Этот круг имеет площадь примерно 14

Но лучше всего использовать формулу (когда это возможно):

Пример: круг имеет радиус 2,1 метра:

Формула:

Площадь = π × r 2

Где:

Радиус 2.1м , итого:

Площадь = 3,1416 ... × (2,1 м) 2

= 3,1416 ... × (2,1 м × 2,1 м)

= 13,854 ... м 2

Таким образом, круг имеет площадь 13,85 квадратных метров (с точностью до 2 знаков после запятой)

Область сложных форм

Иногда мы можем разбить фигуру на две или более простые формы:

Пример: Какова площадь этой фигуры?

Разобьем область на две части:

Часть A - квадрат:

Площадь A = a 2 = 20 м × 20 м = 400 м 2

Часть B представляет собой треугольник.При взгляде сбоку он имеет основание 20 м и высоту 14 м.

Площадь B = ½b × h = ½ × 20 м × 14 м = 140 м 2

Итак, общая площадь:

Площадь = Площадь A + Площадь B

Площадь = 400 м 2 + 140 м 2

Площадь = 540м 2

Площадь путем сложения треугольников

Мы также можем разбить фигуру на треугольники:

Затем измерьте основание ( b ) и высоту ( h ) каждого треугольника:

Затем рассчитайте каждую площадь (используя Area = ½b × h) и сложите их все.

Площадь по координатам

Когда мы знаем координаты каждой угловой точки, мы можем использовать метод «Площадь неправильных многоугольников».

Есть область многоугольника с помощью инструмента рисования, который тоже может помочь.

Область

- Открытый справочник по математике

Область - Открытый справочник по математике

Что такое площадь?

Площадь - это мера того, сколько места есть на плоской поверхности.Например, два листа бумаги имеют вдвое большую площадь, чем один лист, потому что на них вдвое больше места для записи.

У разных форм есть разные способы найти область. Например, в прямоугольнике мы находим площадь, умножая длину на ширину. В прямоугольнике выше площадь 2 × 4 или 8. Если вы посчитаете маленькие квадратики, то обнаружите, что их 8.
(См. Площадь прямоугольника.)

Шт.

Площадь измеряется в квадратных единицах.Например, в прямоугольнике выше, если длина сторон 2 и 4 метра, то площадь составляет 8 квадратных метров. Если бы стороны были 2 фута и 4 фута в длину, площадь была бы 8 квадратных футов. Самое важное, что нужно помнить при расчете площади, - это то, что

Все размеры должны быть в одинаковых единицах .

Обозначение

Мы говорим о прямоугольнике выше, имеющем площадь, скажем, 8 квадратных метров, но есть сокращенный способ записи. Мы пишем букву единицы измерения с надстрочным индексом 2 после нее, например:

«8 квадратных метров» записывается как 8 м 2

«8 квадратных футов» записывается как 8 футов 2

Преобразователи

Есть много единиц площади.Например, площадь земли измеряется в акрах и гектарах. Самый простой способ конвертировать из одной единицы в другую - использовать поисковую систему Google. Малоизвестной особенностью этого является то, что если вы вводите проблему преобразования в поле поиска, она преобразует ее для вас. если он сможет понять, что вы имеете в виду.

Например, если вы введете «300 квадратных футов на квадратный метр», вы получите ответ, что 300 квадратных футов равны 27,87 квадратных метров.

Участки плоских форм

Для многих фигур есть способы рассчитать площадь - например, площадь круга.Они перечислены ниже со ссылками на страницы, которые объясняют каждую более подробно.

См. Также

Площади на координатной плоскости

Если вам известны координаты x, y вершин фигуры, есть способы вычислить площадь по этим координатам. См. Полигоны на координатной плоскости.

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

Калькулятор площади

. Найдите область из 16 популярных фигур!

Если вам интересно, как рассчитать площадь любой основной формы, вы попали в нужное место - этот калькулятор площади ответит на все ваши вопросы.Воспользуйтесь нашим интуитивно понятным инструментом, чтобы выбрать из шестнадцати различных форм и вычислить их площадь в мгновение ока. Если вы ищете определение площади или, например, формулу ромба, у нас есть все необходимое. Продолжайте прокручивать, чтобы узнать больше, или просто поиграйте с нашим инструментом - вы не будете разочарованы!

Что такое площадь в математике? Определение площади

Проще говоря, площадь - это размер поверхности . Другими словами, его можно определить как пространство, занимаемое плоской формой.Чтобы понять концепцию, обычно полезно думать о площади как о количестве краски, необходимом для покрытия поверхности . Посмотрите на картинку ниже - все фигуры имеют одинаковую площадь, 12 квадратных единиц:

Есть много полезных формул для вычисления площади простых форм. В разделах ниже вы найдете не только хорошо известные формулы для треугольников, прямоугольников и кругов, но и другие формы, такие как параллелограммы, воздушные змеи или кольца.

Мы надеемся, что после этого объяснения у вас не возникнет проблем с определением области в математике!

Как рассчитать площадь?

Ну конечно это зависит от формы ! Ниже вы найдете формулы для всех шестнадцати форм, представленных в нашем калькуляторе площади.Для ясности мы перечислим только уравнения - их изображения, объяснения и выводы можно найти в отдельных абзацах ниже (а также в инструментах, посвященных каждой конкретной форме).

Вы готовы? Вот наиболее важные и полезные формулы площади для шестнадцати геометрических фигур:

  • Квадрат Формула площади: A = a²
  • Прямоугольник формула площади: A = a * b
  • Формулы площади треугольника :
    • A = b * h / 2 или
    • А = 0.5 * a * b * sin (γ) или
    • A = 0,25 * √ ((a + b + c) * (-a + b + c) * (a - b + c) * (a + b - c)) или
    • A = a² * sin (β) * sin (γ) / (2 * sin (β + γ))
  • Окружность Формула площади: A = πr²
  • Сектор круга Формула площади: A = r² * угол / 2
  • Эллипс Формула площади: A = a * b * π
  • Трапеция Формула площади: A = (a + b) * h / 2
  • Параллелограмм Формулы площади:
    • A = a * h или
    • A = a * b * sin (угол) или
    • A = e * f * sin (угол)
  • Ромб Формулы площади:
    • A = a * h или
    • A = (e * f) / 2 или
    • A = s² * sin (угол)
  • Kite формулы площади:
    • A = (e * f) / 2 или
    • A = a * b * sin (γ)
  • Пентагон Формула площади: A = a² * √ (25 + 10√5) / 4
  • Шестиугольник Формула площади: A = 3/2 * √3 * a²
  • Восьмиугольник Формула площади: A = 2 * (1 + √2) * a²
  • Формула площади кольцевого пространства : A = π (R² - r²)
  • Четырехугольник Формула площади: A = e * f * sin (угол)
  • Правильный многоугольник Формула площади: A = n * a² * кроватка (π / n) / 4

Если ваша форма неправильная, попробуйте мысленно разделить ее на основные формы, для которых вы можете легко вычислить площадь.

Хотите изменить единицу площади? Просто нажмите на название устройства, и появится раскрывающийся список.

Формула площади

Вы забыли, что такое формула площади? Тогда вы попали в нужное место. Площадь квадрата равна длине его сторон:

  • Площадь квадрата = a * a = a² , где a - сторона квадрата

Это самая основная и наиболее часто используемая формула, хотя существуют и другие.Например, есть формулы площади, в которых используются диагональ, периметр, радиус описанной окружности или внутренний радиус.

Формула площади прямоугольника

Формула площади прямоугольника тоже несложная задача - это просто умножение сторон прямоугольника:

Расчет площади прямоугольника чрезвычайно полезен в повседневных ситуациях: от строительства здания (оценка необходимой плитки, настила, сайдинга или поиск площади крыши) до декорирования вашей квартиры (сколько краски или обоев мне нужно?) До расчета количества людей ваш листовой торт может накормить.

Формула площади треугольника

Существует множество различных формул для вычисления площади треугольника, в зависимости от того, что дано и какие законы или теоремы используются. В этом калькуляторе площади мы реализовали четыре из них:

1. Данные база и высота

  • Площадь треугольника = b * h / 2

2. Даны две стороны и угол между ними (SAS)

  • Площадь треугольника = 0,5 * a * b * sin (γ)

3.Учитывая три стороны (SSS) (Эта формула площади треугольника называется формулой Герона )

  • Площадь треугольника = 0,25 * √ ((a + b + c) * (-a + b + c) * (a - b + c) * (a + b - c))

4. Даны два угла и сторона между ними (ASA)

  • Площадь треугольника = a² * sin (β) * sin (γ) / (2 * sin (β + γ))

Есть треугольник особого вида, прямоугольный.В этом случае основание и высота - это две стороны, которые образуют прямой угол. Тогда площадь прямоугольного треугольника может быть выражена как:

Площадь правого треугольника = a * b / 2

Формула площади круга

Формула площади круга - одна из самых известных формул:

  • Площадь круга = πr² , где r - радиус окружности

В этом калькуляторе мы реализовали только это уравнение, но в нашем круговом калькуляторе вы можете рассчитать площадь по двум разным формулам:

  1. Диаметр
  • Площадь круга = πr² = π * (d / 2) ²
  1. Окружность

Кроме того, формула площади круга удобна в повседневной жизни - как серьезная дилемма, какой размер пиццы выбрать.

Формула площади сектора

Формулу площади сектора можно найти, взяв пропорцию круга. Площадь сектора пропорциональна его углу, поэтому, зная формулу площади круга, мы можем записать, что:

α / 360 ° = Площадь сектора / Площадь круга

Преобразование угла говорит нам, что 360 ° = 2π

α / 2π = Площадь сектора / πr²

так:

  • Площадь сектора = r² * α / 2

Формула площади эллипса

Чтобы найти формулу площади эллипса, сначала вспомните формулу площади круга: πr² .Для эллипса у вас есть не одно значение радиуса, а два разных значения: a и b . Единственная разница между формулой площади круга и эллипса заключается в замене произведением большой и малой полуосей, a * b :

  • Площадь эллипса = π * a * b

Формула площади трапеции

Площадь трапеции можно найти по следующей формуле:

  • Площадь трапеции = (a + b) * h / 2 , где a и b - длины параллельных сторон, а h - высота

Также формула площади трапеции может быть выражена как:

Площадь трапеции = м * ч , где м - среднее арифметическое длин двух параллельных сторон

Площадь формулы параллелограмма

Если вы хотите рассчитать площадь с учетом основания и высоты, сторон и угла или диагоналей параллелограмма и угла между ними, вы находитесь в правильном месте.В нашем инструменте вы найдете три формулы площади параллелограмма:

1. Основание и высота

  • Площадь параллелограмма = a * h

2. Стороны и угол между ними

  • Площадь параллелограмма = a * b * sin (α)

3. Диагонали и угол между ними

  • Площадь параллелограмма = e * f * sin (θ)

Площадь формулы ромба

Мы реализовали три полезные формулы для вычисления площади ромба.Вы можете найти этот район, если знаете:

1. Сторона и высота

2. Диагонали

  • Площадь ромба = (e * f) / 2

3. Сторона и любой угол, например, α

  • Площадь ромба = a² * sin (α)

Площадь кайта формулы

Для расчета площади воздушного змея можно использовать два уравнения, в зависимости от того, что известно:

  1. Площадь формулы воздушного змея с учетом диагоналей змея
  1. Площадь формулы воздушного змея с учетом двух несовпадающих длин сторон и угла между этими двумя сторонами
  • Площадь воздушного змея = a * b * sin (α)

Формула площади пятиугольника

Площадь пятиугольника можно рассчитать по формуле:

  • Площадь пятиугольника = a² * √ (25 + 10√5) / 4 , где a - сторона правильного пятиугольника

Ознакомьтесь с нашим специальным инструментом пятиугольника, в котором представлены другие важные свойства правильного пятиугольника: сторона, диагональ, высота и периметр, а также радиус описанной и вписанной окружности.

Площадь шестиугольника, формула

Основная формула площади шестиугольника:

  • Площадь шестиугольника = 3/2 * √3 * a² , где a - сторона правильного шестиугольника

Так откуда взялась формула? Вы можете представить себе правильный шестиугольник как набор из шести равносторонних треугольников. Чтобы найти площадь шестиугольника, все, что нам нужно сделать, это найти площадь одного треугольника и умножить ее на шесть. Формула для площади правильного треугольника равна квадрату стороны, умноженному на квадратный корень из 3, деленный на 4:

.

Площадь равностороннего треугольника = (a² * √3) / 4

Площадь шестиугольника = 6 * Площадь равностороннего треугольника = 6 * (a² * √3) / 4 = 3/2 * √3 * a²

Площадь восьмиугольника по формуле

Чтобы найти площадь восьмиугольника, все, что вам нужно сделать, это знать длину стороны и формулу ниже:

  • Площадь восьмиугольника = 2 * (1 + √2) * a²

Площадь восьмиугольника также можно рассчитать по:

Площадь восьмиугольника = периметр * апофема / 2

Периметр в восьмиугольном корпусе - это просто 8 * .А что такое апофема? Апофема - это расстояние от центра многоугольника до середины стороны. В то же время это высота треугольника, образованного линией от вершин восьмиугольника к его центру. Этот треугольник - один из восьми совпадающих - является равнобедренным треугольником, поэтому его высоту можно рассчитать, например, с помощью теоремы Пифагора по формуле:

h = (1 + √2) * a / 4

Итак, наконец, мы получаем первое уравнение:

Площадь восьмиугольника = периметр * апофема / 2 = (8 * a * (1 + √2) * a / 4) / 2 = 2 * (1 + √2) * a²

Формула площади кольцевого пространства

Кольцо - это объект в форме кольца - это область, ограниченная двумя концентрическими окружностями разного радиуса.Найти формулу площади кольца - простая задача, если вы помните формулу площади круга. Вы только посмотрите: площадь кольца - это разница площадей большего круга радиуса R и меньшего радиуса r:

  • Площадь кольцевого пространства = πR² - πr² = π (R² - r²)

Кстати, вы видели наш конвертер размеров колец?

Площадь четырехугольника формулы

Четырехугольная формула, которую реализует этот калькулятор площади, использует две заданные диагонали и угол между ними.

  • Площадь четырехугольника = e * f * sin (α) , где e, f - диагонали

Мы можем использовать любой из двух углов, так как мы вычисляем их синус. Зная, что два соседних угла являются дополнительными, мы можем утверждать, что sin (угол) = sin (180 ° - угол) .

Если вы ищете другие формулы для площади четырехугольника, воспользуйтесь нашим специальным инструментом для четырехугольника, где вы найдете формулу Бретшнайдера (с учетом четырех сторон и двух противоположных углов) и формулу, в которой используются бимедианы и угол между ними. .

Формула площади правильного многоугольника

Формула для площади правильного многоугольника выглядит следующим образом:

  • Площадь правильного многоугольника = n * a² * детская кроватка (π / n) / 4

где n - количество сторон, а - длина стороны.

Существуют и другие уравнения, в которых используются, например, такие параметры, как радиус описанной окружности или периметр. Вы можете найти эти формулы в специальном абзаце нашего калькулятора площади многоугольника.

Если вы имеете дело с неправильным многоугольником, помните, что вы всегда можете разделить фигуру на более простые фигуры.Просто посчитайте площадь каждого из них и в конце просуммируйте их. Разбиение многоугольника на набор треугольников называется триангуляцией многоугольника.

Что такое площадь? - Определение, факты и пример

Area Games

Area

Используйте единичные квадраты, чтобы понять концепцию площади и найти площадь для различных двухмерных форм.

охватывает Common Core Curriculum 3.MD.7Играть сейчасПосмотреть все игры по геометрии >>
Учитесь с полной программой обучения математике K-5

Что такое Area? В геометрии площадь можно определить как пространство, занимаемое плоской формой или поверхностью объекта. Площадь фигуры - это количество единичных квадратов, покрывающих поверхность замкнутой фигуры. Площадь измеряется в квадратных единицах, таких как квадратные сантиметры, квадратные футы, квадратные дюймы и т. Д.

Площадь приведенных ниже квадратов со стороной 1 сантиметр каждый будет измеряться в квадратных сантиметрах (см²).

Здесь площадь фигур ниже будет измеряться в квадратных метрах (м²) и квадратных дюймах (дюйм²).

Слово «площадь» происходит от латинского «площадь», что означает свободный участок ровной поверхности.Происхождение далее привело к неправильному получению площади как «определенного количества пространства, заключенного в пределах набора границ».

Мы часто находим площадь пола комнаты, чтобы определить размер покупаемого ковра. Покрытие пола плиткой, покрытие стен краской или обоями или строительство бассейна - другие примеры, где площадь вычисляется.

Обычные простые формы и многоугольники имеют свои собственные формулы для вычисления площади. Вот как вычисляется площадь обычных двухмерных или двумерных фигур:
Двумерные геометрические формы:
Название формы: Изображение формы: Формула площади:
Круг

Площадь = πr²,

где r радиус.

Треугольник Площадь = bh,

, где b - основание,

А h - высота.

Квадрат

Площадь = l × l,

где l - длина каждой стороны.

Прямоугольник

Площадь = l × w,

, где l - длина

и w - ширина.

Параллелограмм

Площадь = b × h,

, где b - основание,

, а h - высота по перпендикуляру.

Трапеция Площадь = (a + b) h,

, где a и b - длины параллельных сторон,

, а h - высота по перпендикуляру.

В реальной жизни не каждую плоскую фигуру можно однозначно классифицировать как прямоугольник, квадрат или треугольник. Чтобы найти площадь составной фигуры, которая состоит из более чем одной формы, нам нужно найти сумму площадей обеих или всех фигур, образующих составную фигуру.

Площадь внешней поверхности твердой или трехмерной формы называется площадью поверхности. Например, прямоугольная призма имеет 6 прямоугольных оснований и боковые грани. Итак, общая площадь поверхности - это сумма площадей всех 6 прямоугольников.

Интересные факты

  • Среди всех фигур с одинаковым периметром круг имеет наибольшую площадь.

Давайте споем!

Для посадки овощей в саду,

Найдите площадь поля - все внутри.

Умножьте его длину на ширину,

И вот формула площади, которую вы применили!

Давайте сделаем это!

Вместо того, чтобы раздавать детям рабочие листы по математике, вовлекайте их в проекты по благоустройству дома. Сообщите им о комнате, которую вы собираетесь покрасить. Попросите их подсчитать общую площадь поверхности стен, чтобы узнать, сколько требуется краски.

Обсудите, как все стены в комнате могут отличаться друг от друга, и, таким образом, измерение общих размеров с последующим вычитанием площади двери, окон или книжных полок поможет оценить необходимое количество краски.

Вы также можете попросить рассмотреть возможность определения общей площади подарка, который они упаковывают, чтобы определить необходимое количество оберточной бумаги.

Сопутствующий математический словарь

Площадь квадрата - веб-формулы

Квадрат - это правильный многоугольник с четырьмя сторонами.У него четыре прямых угла и параллельные стороны. Чтобы вычислить площадь квадрата, умножьте основание на себя, что может быть выражено как сторона × сторона. Если квадрат имеет основание длиной 8 дюймов, его площадь будет 8 × 8 = 64 квадратных дюйма.

Площадь квадрата определяется по:

А = а 2

, где a = длина стороны

Периметр квадрата = 4а
Диагональ квадрата = (a) (sqrt (2)) или 1.414 (а)

Пример 1: Найдите площадь квадрата со стороной 15 м.

Решение :

Площадь квадрата = 2 = 15 2 = 225 м 2

Пример 2: Вычислите площадь квадрата, длина стороны которого составляет 35 см.

Решение :

Площадь квадрата определяется как a × a.

Площадь = 35 × 35

Площадь = 1225 см

Пример 3: Какова площадь квадратного поля, если его периметр равен 32 ярду?

Решение :

Периметр квадратного поля = 32 ярда, а поскольку периметр квадрата равен P = 4s, где s - длина стороны. Мы можем легко определить длину, выделив s из приведенной выше формулы:

с = P / 4 = 32/4 = 8 ярдов

Площадь квадратного поля = s × s

Подставляем значение s, получаем:

Площадь = 8 × 8 = 64 ярда 2

Следовательно, площадь квадратного поля составляет 64 ярда 2 .

Пример 4: Сторона квадратного парка составляет 200 м. Сколько будет стоить озеленение при цене 0,5 доллара за кв. М?
Решение
:

Что нам нужно сделать, это найти площадь парка, а затем умножить площадь на стоимость за м 2 .


Площадь квадратного парка = сторона × сторона

A = s²

Заменить значения и упростить.
А = 200 × 200
A = 40 000 м 2

Площадь озеленения = площадь парка = 40 000 кв. М.

Стоимость посадки травы = площадь посадки травы × ставка за квадратный метр.

Подставим значения получим:
Стоимость = 40 000 x 0,5 = 20 000 долларов США.


Следовательно, стоимость посадки травы составляет 20 000 долларов США.

Пример 5: Квадратный газон окружен дорожкой шириной 2 м.Если площадь дорожки 160 кв.м, найдите площадь газона.

Решение :

Дано: Квадратный газон окружен дорожкой шириной 2 м; площадь дорожки 160 кв.м.
Найти: Площадь газона.
(Подсказка: лужайка окружена дорожкой, т. Е. Дорожка находится у внешнего края газона. Чтобы найти площадь лужайки, вычтите площадь дорожек из общей площади)
Пусть сторона лужайки будет y, тогда у нас будет:

Внешняя сторона, включая путь = сторона лужайки + ширина дорожки с обеих сторон.
= у + (2 + 2)
= y + 4

Общая площадь, включая путь = (y + 4) × (y + 4).
= y² + 8y + 16 (i).
И площадь газона = (сторона) ² = y × y = y² (ii).

Поскольку задана площадь пути (160 м 2 ), имеем:
Площадь дорожки = Общая площадь, включая дорожку - площадь лужайки.
А = (i) - (ii).
Подставим полученные значения в следующее уравнение, и, выделив y, мы можем определить длину стороны газона:
160 = (y² + 8y + 16) - y²
160 = y² + 8y + 16 - y²
160 = y² - y² + 8y + 16
160 = 8лет + 16
160–16 = 8 лет
144 = 8лет
18 = у
Сторона газона = 18 м


Площадь газона = сторона × сторона

А = с²
А = 18 × 18
A = 324 м 2

Отсюда площадь газона = 324 м 2 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *