Цемент с опилками пропорции: Опилкобетон-пропорции объема ведрами

Содержание

Опилкобетон-пропорции объема ведрами

Опилкобетон также называют арболитом (но для арболита используется щепа), это легкий вид бетона, разработанный в середине прошлого века, обладающий множеством преимуществ относительно некоторых современных материалов. В его состав входят природные компоненты, безвредные для здоровья человека и экологически чистые. 

Опилки являются натуральным утеплителем органического происхождения, поэтому опилкобетон значительно теплее обычного бетона. Малый вес опилок обуславливает легкость получаемого материала, в то же время он удивительно прочный, не горит, обладает шумоизоляцией и недорогой стоимостью. К недостаткам материала можно отнести длительный период высыхания и повышенную водопроницаемость.

Подготовка опилок

Для изготовления опилкобетона используются любые виды древесных опилок. Лучшими по качествам считаются полученные при обработке хвойных деревьев и лиственницы как наиболее устойчивые к процессам гниения. Рекомендуется перед добавлением в бетон просушить их в защищенном от солнца месте в течение 2-3 месяцев. При этом испарится значительная часть веществ, снижающих скорость схватывания бетона.

Приготовление опилкобетона для стяжки

Для нижнего слоя стяжки нужно взять 1 ведро цемента марки М 400, 2 ведра песка и 6 ведер опилок. Пропорции для верхнего слоя: 1 ведро цемента, 2 – песка и 3 – опилок. При желании можно добавить для 1-го слоя на 1 ведро цемента 3 кг гашеной извести, для 2-го слоя – в два раза меньше (1,5 кг). На высыхание изготовленной таким способом стяжки толщиной 10-15 см потребуется примерно 1 месяц. 

В условиях промышленного производства ускорение этого процесса достигается добавлением специальных добавок, способствующих минерализации наполнителя. На 1 ведро цемента добавляют 250 гр. хлорида кальция (Е 509), а также применяется нитрат кальция, сульфат аммония, жидкое стекло, известь, которые ускоряют затвердевание раствора. Последовательность добавления материалов: в воду насыпаются опилки, затем цемент, потом песок и добавки. Отсутствие добавок не влияет на качество бетона, просто его высыхание займет больше времени. Густота опилкобетона должна быть, как у магазинной сметаны, если сделать раствор более жидким, его застывание будет более длительным.

Изготовление блоков из опилкобетона

Готовые блоки из опилкобетона имеют плотность от 500 кг/м³, что позволяет строить из них дома, гаражи и другие хозяйственные сооружения. Выпускаемые промышленностью материалы фибролит и карболит содержат в своем составе цемент и древесные опилки, благодаря чему обладают низкой теплопроводностью и эффективно удерживают тепло в помещении. По выводам санитарно-гигиенических экспертиз, опилкобетон превосходит все другие виды бетона по многим показателям. Недостатком этого материала является способность впитывания влаги из окружающей среды. Поэтому для того, чтобы предохранить стены от увлажнения следует позаботиться о гидроизоляции фундамента, сооружении отмостки, отделке наружных стен обожженным кирпичом или цементным раствором.
Добавление в состав материала цемента, глины и извести способствуют его пластичности, облегчающей процесс формирования блоков. Вяжущие вещества добавляются в одинаковой пропорции с сухими заполнителями. Добавление в смесь песка позволяет повысить прочность бетона и уменьшить усадку его при высыхании блока. Соотношение песка к вяжущим материалам – примерно 3:1. Лучше использовать добываемый в горах песок с ребристыми песчинками, обеспечивающими хорошее сцепление с остальными составляющими опилкобетон компонентами.

Состав опилкобетона различных марок

Для изготовления марки М5 на 80 ведер опилок (200 кг) нужно взять 4,5 ведра цемента М400 (50 кг), 3 ведра песка (50 кг), 14 ведер глины или извести (200 кг). Плотность опилкобетон данной марки составит 500 кг/м³, он так же, как и М 10 обеспечивает хорошую теплоизоляцию и может применяться для сооружения подвалов. В состав марки М10 на 80 ведер опилок берется 9,5 ведер цемента, 12 — песка и 10,5 — извести или глины. Плотность получаемого материала 650 кг/м³.
Изготовление марки М15: на 80 ведер опилок 13,5 ведро цемента, 21 – песка и 7 – извести (глины), плотность полученного материала составит 800 кг/м³. Марка М20: на 80 ведер песка 18 ведер цемента, 30 – песка и 35 – извести (глины), плотность опилкобетона – 950 кг/м³. Опилкобетон марок М10 и М15 можно использовать для возведения стен дома. При малом содержании цемента в составе материала уменьшается его плотность, снижается водонепроницаемость и устойчивость к воздействию низких температур, увеличивается коррозия металлической арматуры, применяемой при укладке блоков. Увеличение в составе опилкобетона содержания цемента удорожает его себестоимость.


Из-за длительного высыхания опилкобетона при строительстве стен используют не сооружение опалубки, а готовые, предварительно высушенные блоки. Чаще всего делают блоки толщиной 140 мм, чтобы удобно было использовать в кладке при необходимости обожженный красный кирпич или его части. При изготовлении блока опилкобетона в нем делают 2 или 3 отверстия, ускоряющие процесс сушки и снижающие теплопроводность материала. Блоки из опилкобетона очень прочные, не имеют трещин, удобны для кладки стен строений.

Как приготовить раствор цемента с опилками?

Для утепления стен или пола необходимы опилки, ведь с ними легко заниматься стройкой. Они широко эксплуатируются для бетонных растворов с песком, а также можно добавить другие компоненты, которые необходимы вам.

СодержаниеСвернуть

Пропорции раствора из опилок, песка и цемента употребляется для утепления и качественного покрытия пола. Также такой раствор подойдет для отделки стен, в результате чего они меньше пропускает холодный воздух в зимний период, а в летний наоборот, держат нормальную температуру помещения. Все отделочные работы происходят внутри.

Утепление опилками

Для сбережения теплоты в полу можно практиковать различные утепляющие виды материалов, ведь строительный рынок это позволяет. Но также не следует забывать о древесных опилках.

Конечно, они не используются в чистом виде, потому что быстро возгораются, и в большей степени они входят в состав смесей, блоков.  Их применение наблюдается в составе из цемента, песка, чтобы грызун не смог повредить конструкцию.

Чтобы уменьшить расходы на утепление стен опилки замечательно подходят. Они служат в качестве надежного утепления, ведь замес для блока делать очень просто. Для него потребуется:

  • 10 частей опилок;
  • 1 часть цемента.

Вода нужна, чтобы получился комок, который не распадется, и во время нажатия будет выступать вода.

Стяжка

Пропорции раствора из цемента, песка и воды применяются для выравнивания пола. Высокое качество раствора непременно зависит от марки цемента. Благодаря этому, стяжка буде прочнее после затвердения.

Чтобы избежать усадки цемента, в него непременно добавляется песок. Для каждой марки цемента наблюдается индивидуальное соотношение воды и песка. Например:

  • берем цемент марки 400, в него добавляем песок с расчетом 1:4 в некоторых случаях 1:3 или 1:6.
  • если цемент марки 500, то соотношение будет 1:5. В этом случая если цемента больше, то прочность еще выше.

Вода добавляется понемногу, ведь она будет лишней и уменьшит долговечность бетона. Также существует некое мнение, если в раствор добавляется небольшое количество  моющего средства, то он получается более пластичным.

На строительном рынке можно найти отечественный пластификатор, который используется для раствора, вместо моющего средства или порошка.

Таблица  для каждого вида бетона в зависимости от марки.

                                  Марка бетона
М100М150М200М250М350М400
Марка цемента200300400400400500
Расход цемента кг/м3200-240215-240240-310270-340310-390250-440

Правильная пропорция из песка, цемента, воды приводит к образованию бетона высокого качества, или цементного раствора, который изготавливают как на стройках, так и домашних условиях.

Сколько цемента надо в арболит?

К высококачественным материалам относят арболит (опилкобетон), его можно употреблять для формирования стен всякого помещения. В состав арболита входит известь, песок, цемент и древесные опилки. Только в определенном соотношении. Благодаря такому составу материалов он начисляет большое количество преимуществ и является популярным при возведении жилищных помещений. А вот, сколько класть цемента в арболит, сейчас детально рассмотрим!

дом из такого материала будет очень теплый

Технология изготовления арболита

Такой материал, как арболит несложно сделать самостоятельно на своем участке. Для этого понадобится инвентарь:

  • бетономешалка;
  • формы для залива готовой смеси.

А также понадобятся:

  • древесные опилки;
  • цемент;
  • известь или глина;
  • песок.

Состав материалов для арболита

Так как арболит относится к опилкобетону, тогда становится понятно, что он включает в свой состав цемент разных марок. А также чтобы повысить прочность материала арболита, применяют цемент даже с лучшими характеристиками.

К бетону добавляют стружку и опилки. Когда такого материала недостаточно, тогда наполняют отходами от хвои, листвы либо коры, только в концентрации не выше пяти процентов от всего состава наполнителя.

Количество материала для формирования арболита

Готовая форма арболита должна быть с параметрами 5×25 мм. Для этого весь органический состав пропускают на дробилку. Дальше такой дробленый состав добавляется в смесь цемента.

Предварительно на заводах для нейтрализации сахара в органику добавляют особые химические вещества. Это связано с тем, что сахар ухудшает прочность арболита и его обязательно надо удалить.

Этапы изготовления

  1. Просеивание опилок ситом с ячейками − 1×1 см.
  2. Помещение в бетономешалку опилок и песка.
  3. Перемешивается в бетономешалке состав.
  4. А сколько цемента надо в арболит, определяется по его марке, додается вместе с известью.
  5. Перемешивается в бетономешалке.
  6. Заливается состав в формы по 15 см каждый слой.

В течение 3 месяцев арболит становится прочным.

Итак, сколько цемента в арболите:

  • в 5 марке арболита имеется 1/М 400 цемента;
  • в 10 марке арболита имеется 1/М 400 цемента;
  • в 15 марке арболита имеется 1/М 400 цемента;
  • в 25 марке арболита имеется 1/М 400 цемента.

Если есть нужное количества цемента, создается материал легкого состава с прочностью 400-850 кг/м 2 и обладает огнестойкостью при температуре 1000 С.

Экономный и качественный утеплитель из опилок и цемента

Опубликовано:

29.07.2015

Сегодня современный строительный рынок предоставляет большое количество самых различных теплоизоляционных материалов, которые имеют разную стоимость, характеристики, применяются при отличных друг от друга условиях. Но одним из самых простых и качественных принято считать обычные древесные опилки. Такой материал редко применяется сам по себе, из него обычно делают качественные смеси, в которые добавляют песок, цемент, известь, медный купорос, антисептики.

Обычные древесные опилки являются отличным  теплоизоляционным материалом.

Узнаем, как именно можно использовать утеплители на основе опилочной массы, как их быстро и просто приготовить дома.

Как использовать опилки?

Применять опилки в качестве утеплителя не так сложно, материал этот отличается небольшим весом, с ним легко работать. Для обычной засыпки используют не чистые опилки, а специальные смеси на их основе, в которые добавляются цемент, песок и другие компоненты.

Самый простой раствор на основе древесных опилок готовится следующим образом:

Смесь из опилок, цемента и извести можно применять в качестве утеплителя.

  • 10 ведер опилок;
  • 1 часть цемента;
  • 1 часть извести;
  • 0,5 ведра воды.

При перемешивании смеси опилки постепенно обволакиваются цементом и известью, но жидкая смесь не образовывается. Это дает возможность при укладке обеспечить плотную массу, удобно располагаемую по поверхности. Проверить готовность ее очень просто: надо просто взять комок в руку и немного его сжать. Он не должен рассыпаться, но и вода из него сочиться также не должна. После высыхания такой материал немного хрустит, но не прогибается, осадка не происходит.

Есть и еще один способ, как использовать такой утеплитель. Из древесного материала делают специальную штукатурку, в составе которой находятся не только опилки, но и вода, глина, цемент, измельченная бумага (самый лучший вариант – газетная). Но применяется штукатурка такого типа только для внутренних работ.

Рассмотрим более подробно, как выполнять утепление при помощи материала, состоящего из опилок с цементом.

Утепление пола

Утеплитель для пола может быть самым различным, современный строительный рынок предлагает большое количество различных материалов, которые различаются не только по цене, но и по характеристикам. Но древесные опилки в чистом виде практически не используются, так как они легко воспламеняются, поэтому составляются специальные смеси и блоки на их основе.

В качестве дополнительных материалов применяют песок, цемент, известь, различные антисептические растворы, которые помогают исключить повреждения грызунами. На основе древесных опилок изготавливают такие теплоизоляционные материалы, как эковата, арболит (то есть плитный утеплитель), специальные опилочные окатыши.

Эковата изготавливается на основе древесных опилок и является качественным утеплителем.

Эковата – это один из самых дешевых, но и качественных натуральных материалов, которые применяются в качестве теплоизоляции. Наносить такой материал можно различными методами: как вручную просто насыпью, так и при помощи специальных аппаратов, дающих возможность укладывать ее в сухом и влажном состоянии.

Но для одноразового утепления дома покупать установку не столь выгодно, поэтому чаще всего при строительстве частного или дачного дома используется обычный ручной метод засыпки сухой смеси. Но необходимо помнить, что расход в таком случае будет примерно на 40 % больше, чем при машинном.

Использовать такой вариант утепления можно при любых условиях, нет необходимости применять дополнительные материалы, такие как цемент, песок или известь. Слой утеплителя не должен быть слишком большим. Например, для местности, где температура зимой опускается до минус 20 градусов, достаточно всего 15 см утеплителя. Если же зимние условия местности, где строится дом, более жесткие, то достаточно на каждые 5 градусов прибавлять по 4 см утеплителя.

Наносится опилочный утеплитель очень просто: эковата насыпается между лагами пола на необходимую высоту, после чего утрамбовывается.

Древесно-стружечные плиты используются как утеплитель для полов.

В качестве теплоизолятора для пола жилого дома можно применять и такой материал на основе опилок, как ДСП. Это очень прочные, жесткие плиты, которые укладывают непосредственно на черновой пол, они не требуют подготовки в виде длительных и сложных работ. На поверхность базового основания наносят грунтовку, после чего слой гидроизоляции в виде полиэтиленовой пленки. ДСП, или древесно-стружечные плиты, укладываются на пленку, к основанию они крепятся при помощи специальных анкеров, расширяющих дюбелей, саморезами и прочими крепежными элементами. Но такой утеплитель нельзя использовать в качестве финишного покрытия в местах, где наблюдается повышенная влажность, например, в погребах, ванных комнатных, на кухнях.

Утепление стен опилками

Арболит – строительные плиты, изготавливаемые на основе древесных опилок. Используются для строительства и утепления стен.

Отличным утеплением стен или перегородок служат опилки, позволяющие значительно сократить расходы на строительные работы. Сделать такую теплоизоляцию довольно просто, для этого необходимо приготовить сухие опилки без следов плесени.

Далее готовится такая смесь: 10 частей опилок и 1 часть извести (можно взять и другой состав: 8 частей опилок и 1 часть гипса) увлажняются при помощи антисептического раствора (на ведро вод необходимо брать 25 гр антисептика), после чего смесь тщательно перемешивается.

Полученный теплоизолятор засыпается в стены, после чего хорошо уплотняется. Это даст возможность избежать проседания материала со временем, а используемый антисептик защитит от грызунов и прочих вредителей.

Можно использовать и специальные деревянные блоки, которые можно легко сделать своими руками. Для этого надо сухие опилки смочить при помощи медного купороса, после чего смешать с приготовленным цементом. Пропорция для этого используется следующая: 10 частей опилок, 1 часть цемента. Вода для смешивания берется в количестве, достаточном, чтобы комок полученной смеси в итоге не распадался. Утеплитель на ощупь должен быть немного влажным, но при нажатии не выделять воду.

Полученная смесь укладывается на слой гидроизоляции, после чего тщательно утрамбовывается. Особенностями такого деревянного блока является то, что находящийся в составе цемент укладывается во влажном состоянии, то есть после формировки блок из опилок и цемента начинает схватываться, образуя очень прочный пласт с отличными теплоизоляционными свойствами. Работы по изготовлению подобного утеплителя доступны любому.

Утепление потолка раствором из опилок

Утеплитель в виде опилок может применяться и для работ с потолком. К этому вопросу надо подходить очень внимательно, так как именно через поверхность потолка уходит более 20 % тепла из помещения. Именно использование опилок позволяет не только улучшить утепление, но и снизить расходы на работы по теплоизоляции.

Рассмотрим процесс использования опилок для утепления потолков в жилых помещениях:

  1. Поверхность чернового потолка застилается при помощи пергамина, все потолочные балки обрабатываются специальными огнезащитными составами (если они выполнены из дерева).
  2. Для утепления подходят опилки, которые хранятся от одного года и больше, иначе цемент при укладке может просто не схватиться. При подготовке материала надо следить, чтобы масса опилок не была мокрой, не имела запаха плесени.
  3. Опилки надо замешать с водно-цементным раствором при соблюдении соотношения 10:1. Количество жидкости должно быть достаточным для того, чтобы смесь была слегка влажной. На десять ведер древесных опилок надо взять полтора ведра воды. Опилки надо сначала перемешать с сухим цементом выбранной марки, после этого постепенно добавлять воду, перемешивая получившийся раствор. Опилки в результате должны быть немного смазанными в цементе.

Смесь опилок и водно-цементного раствора выкладывают между балками и утрамбовывают.

Полученную смесь по поверхности перекрытия рассыпают, после чего утрамбовывают. Слой, который располагается между балками, должен иметь толщину в 2 см. Такую работу рекомендуют начинать летом, чтобы уже к осени смесь полностью просохла. Определить это очень просто: опилки не проминаются под ногами, а немного похрустывают.

Применяемые для утепления потолка опилки могут быть различной фракции, при этом чем мельче опилки, тем больше требуется воды. Соответственно, цемент для этого также берется в большем количестве. Но необходимо помнить, что чем больше цементной смеси, тем хуже теплоизоляционные свойства получившегося материала.

Опилки применяются при многих строительных работах, но наиболее эффективны они при утеплении. Использовать их можно при сооружении дачных, загородных домов, различных хозяйственных построек. Такие работы отличаются низкой стоимостью, но при их выполнении надо помнить о некоторых нюансах, о которых уже упомянули. Сами работы не так сложны, при соблюдении всех технологических требований и рекомендаций помещение, где использовались опилки, будет сухим и теплым в течение долгих лет.

Сегодня, когда большую популярность приобретают экологически чистые строительные материалы, все большее внимание начинают уделять именно таким простым на первый взгляд веществам, как древесина и продукты ее переработки. Это позволяет не только снизить стоимость всех работ, но и повысить их качество.

Цемент с опилками: пропорции

В современном строительстве для теплоизоляции перекрытий и других конструкций нередко используют опилочный цемент. От большинства других защищающих от температурного воздействия материалов он отличается наличием в составе органического заполнителя (в основном, древесных опилок). В такой цемент добавляют большое количество вяжущих веществ, обеспечивающих его высокую прочность и долговечность. Всё это делает стоимость материала довольно высокой, однако увеличивает и его теплоизоляционные свойства, вдвое превышающие аналогичные показатели фибролита и примерно в 15 раз – обычного кирпича.

Рецепты опилочного бетона

Блоки из опилочного цемента изготавливаются заранее, так как до производства работ по их монтажу материал должен приобрести достаточную влажность и прочность. Рецептов же приготовления блоков существует много:

  • самые лёгкие блоки получаются с использованием цемента и опилок в массовой пропорции 1:1. Обычно берут 50 кг опилок и стружки, столько же сухого цемента и ровно 100 литров воды. Материал получается прочнее, а расход вяжущего сокращается, если органический наполнитель будет смешанным. Например, если кроме опилок в него добавят перемолотые твёрдые стебли растений;
  • более тяжёлый, зато и имеющий повышенную прочность материал получают, используя следующий состав (пропорции уже объёмные): 1 часть цемента М300, 2 части среднеразмерного песка и 6 частей опилок (или смеси). Получившийся опилочный цемент имеет марку 10–15. А сделанные из него блоки приобретают достаточную для строительных работ прочность через 90 дней.

Материал наполнителей

Органическими наполнителями, которые добавляют в различные марки опилочных цементов, могут быть:

  • свежие измельчённые отходы от лесозаготовительных работ, а также из лесопильных и других деревообрабатывающих установок. Лучше всего подходят для цемента опилки хвойных деревьев;
  • растительная резка, представляющая собой результат дробления стеблей риса, конопли и льна;
  • старые опилки, которые перед добавлением в материал следует предварительно обработать. Антисептиком в этом случае выступает кремнефтористый натрий и 25%-ный аммиак, которых на 100 л цементного раствора добавляют соответственно 0,4 кг и 0,65 литра.
Особенности приготовления

Приготовление материала похоже на получение обычного бетона. В первую очередь берётся вяжущий материал (с целью экономии лучше всего приобретать цемент оптом) и перемешивается с песком. Далее в смесь добавляют опилки, а потом воду – причём, малыми порциями, например, из лейки с небольшими отверстиями. Недостаточное количество воды может привести к тому, что опилочный цемент не достигнет требуемой прочности, а избыточное – к медленному затвердеванию. Правильно же приготовленный раствор не разваливается при сжатии в ладони и не смачивает кожу, а лишь увлажняет.

Поверхность цементных блоков после их изготовления затирают цементом, увеличивая их прочность. А уже после установки на место материал штукатурят или даже облицуют в половину или четверть кирпича.

Опилки как утеплитель с цементом, известью, глиной и гипсом: пропорции, рецепты, рекомендации

Постоянный рост стоимости утеплительных материалов, а также высокая вероятность покупки некачественной или даже опасной продукции вынуждает искать другие способы и материалы, с помощью которых можно снижать теплопотери.

Один из наиболее эффективных материалов – это древесные опилки, полученные в результате распиливания древесины.

При правильном использовании они обладают меньшим коэффициентом теплопередачи, чем цельная или клееная древесина, а их покупка обходится в сотни раз дешевле.

Однако использование одних только опилок не позволяет достичь максимального эффекта, поэтому необходимы дополнительные компоненты, компенсирующие недостатки отходов распиливания древесины.

В этой статье мы расскажем о:

  • несовершенстве утепления одними опилками, из-за которых необходимо использовать вяжущее вещество;
  • различных вяжущих веществах, которые компенсируют недостатки отходов распиливания древесины;
  • средстве, которое защитит утеплитель от бактерий и грызунов;
  • способах применения опилок и остальных компонентов.

Почему опилки не применяют для утепления в чистом виде?

Несмотря на то, что чистые опилки хорошо снижают теплопотери любых строений, у них есть три серьезных недостатка:

  1. Они со временем слеживаются, из-за чего в утепляющем слое появляются пустоты, обладающие более высоким коэффициентом теплопередачи.
  2. Отходы распиливания древесины – это очень привлекательное место для различных грызунов, которые поселяются в них.
  3. Чистые опилки можно применять лишь для засыпки четко ограниченного пространства, поэтому их невозможно применить для утепления стен без пустот.

Нормальное уплотнение опилок невозможно без сильного увлажнения, которое резко снижает их теплоизоляционные свойства.

Поэтому при засыпке этого материала в предназначенные для них карманы, приходится мириться с вероятностью появления пустот, вызванных уплотнением опилок.

В местах таких пустот появляются мосты холода, что приводит к появлению холодных участков стен и увеличению расходов на отопление.

Еще один минус этого материала в том, что он привлекает грызунов.

Ведь по своей структуре отходы распиливания древесины очень похожи на почву, поэтому мыши и крысы роют в них норы и начинают усиленно размножаться.

После этого грызуны проделывают проходы в разные комнаты и начинают чувствовать себя в доме очень вольготно.

Третий недостаток связан с тем, что опилки не могут самостоятельно удерживать форму, поэтому их нельзя использовать снаружи или изнутри стены.

Три этих недостатка сильно ограничивают область применения этого материала.

Зато комбинация отходов распиливания древесины с различными типами вяжущих материалов не только снижает, а то и полностью устраняет описанные недостатки, но и позволяет успешно конкурировать с самыми современными утеплителями.

Наиболее популярные типы вяжущих веществ

Вот наиболее популярные вяжущие:

  • гипс;
  • цемент;
  • глина;
  • ПВА;
  • навоз.

Гипс – наиболее популярный материал, преимуществом которого является малое время схватывания. Ведь гипсовый состав твердеет в течение десяти минут, а через 1–2 часа он полностью высыхает и обретает полную прочность.

Благодаря использованию этого вяжущего утеплитель получается легким и прочным, поэтому в нем не появляются провалы и вызванные ими мосты холода.

Однако такой состав нельзя использовать для наружного утепления без последующей отделки, ведь гипс — гидрофильный материал.

Поэтому дождь или роса будут разрушать утепляющий слой, лишая его прочности.

Тем не менее этим раствором можно утеплять стены изнутри, ведь там гипс не имеет прямого контакта с водой.

Цемент – менее удобный, но более прочный вяжущий элемент, ведь он застывает в течение суток, поэтому его сложней наносить на стены.

Однако смесь опилок и цемента вполне подходит для оштукатуривания наружных стен, ведь после застывания вяжущий компонент не боится стекающей воды. Его также можно наносить и методом передвижной опалубки.

Не менее эффективен цементно-опилочный состав и для заполнения подпольного и внутристенного состава, а также для потолочных перекрытий.

После застывания он превращается в рыхлый, но довольно прочный камень серого цвета, однако добавление колеров придает застывшей массе нужный оттенок.

Глина – один из самых дешевых вяжущих, единственный недостаток которого в том, что под действием высокой влажности или потоков воды засохшая глиняно-опилочная масса раскисает.

В отличие от цемента и гипса, в процессе высыхания (застывания) теряет массу из-за испаряющейся воды, ведь никаких химических реакций, в которых вода связывается с другими веществами, не происходит.

По прочности полностью высохший состав почти не уступает гипсовому или цементному утеплителю.

ПВА – этот клей наиболее эффективен там, где утеплитель будет подвержен частому или постоянному воздействию влажности и воды.

После застывания клей превращается в довольно жесткое и прочное вещество (поливинилацетат), нерастворимое в воде, поэтому и не боится высокой влажности.

Кроме того, винил пропускает водяной пар, поэтому во время летней жары частицы опилок теряют влажность и усыхают.

При этом подвижности и упругости вяжущего хватает для компенсации изменения размеров опилок, поэтому утеплитель не расслаивается и не теряет своей прочности.

Навоз – несмотря на то, что прочность засохшего навоза гораздо ниже прочности любого другого вяжущего, его использовали для утепления домов в течение многих столетий, а возможно и тысячелетий.

Причина этого в том, что смесь навоза с опилками, сеном или соломой после высыхания образует на поверхности стены пористую корку, обладающую превосходными теплоизолирующими свойствами.

Поэтому при одинаковой толщине слоя именно утеплитель на основе навоза будет обладать наименьшим уровнем теплопроводности.

Кроме того, после высыхания он перестает выделять неприятный запах, поэтому его можно оштукатурить глиняным или цементным раствором, а также оббить досками для защиты от дождя.

Применение различных вспомогательных компонентов

Вне зависимости от типа вяжущего вещества, общий принцип их применения одинаков – после высыхания/застывания вещество связывает опилки, образуя монолитный слой.

Однако для каждого вида работ используют собственную технологию, которая позволяет максимально использовать качества как свежей смеси, так и застывшего утеплителя.

Кроме того, для каждого из вяжущих есть собственная оптимальная пропорция компонентов, также время жизни готового состава, в течение которого его необходимо использовать.

Поэтому мы кратко расскажем о применении вяжущего для утепления различных частей дома, а потом покажем разницу в технологиях использования различных типов этого вещества.

Процесс утепления дома древесными опилками можно разделить на несколько этапов, то есть утепление:

  • пола;
  • стен;
  • потолка;
  • чердака.

Для утепления пола отходы распиливания древесины засыпают между лагами, чтобы они отделяли подбой или стяжку от досок чернового пола. Поэтому особой разницы между утеплением чистыми опилками и отходами с вяжущим нет.

Тем не менее, вяжущее вещество увеличивает срок службы такого утеплителя, ведь в нем прекращаются процессы распада и перегнивания, о которых вы можете прочитать в этой статье (Перегной из опилок).

Это особенно важно для комнат, где велика вероятность пролива воды или нередко появляется высокая влажность.

Такую технологию применяют как на деревянных, так и на бетонных полах.

Если же вы хотите узнать о ней более подробно, то рекомендуем прочитать эту статью (Утепление пола).

Поэтому в большинстве случаев при утеплении пола выбор вяжущего не играет особой роли, исключение составляют те деревянные полы, где по каким-то причинам сложно сделать подбой из достаточно прочного материала.

Поэтому там желательно использовать ПВА, ведь удельная масса готового состава будет меньше, чем с другим типом вяжущего вещества.

Утепление стен проводят тремя способами:

  • засыпая или заливая утеплитель в пространство между досками или кирпичами;
  • заполняя утепляющим материалом пространство между стеной и декоративным фасадом или фальшпанелью;
  • обмазывая поверхность стены утепляющим составом.

В первом случае ни одно из описанных в статье вяжущих средств не имеет никаких серьезных преимуществ, ведь после приготовления смесь засыпают/заливают в пустоты и уплотняют, после чего она твердеет.

Разница лишь во времени жизни смеси, поэтому гипс применяют очень редко, ведь он застывает очень быстро.

Поэтому даже использование замедлителей твердения не позволяет использовать раствор в течение более чем получаса, что очень мало для заполнения даже небольшого участка стены.

Если же стену утепляют методом передвигающейся опалубки или постепенно заполняя отдельные куски, то гипсовый раствор можно использовать для заливки между стеной и декоративным фасадом или фальшпанелью.

В этом случае малое время жизни не будет существенным недостатком из-за небольших объемов.

Для утепления потолка используют ту же технологию, что и для утепления пола – готовую смесь засыпают в пространство между лагами.

Разница лишь в том, что утеплять потолок удобней через снятое покрытие пола следующего этажа.

Такую же технологию используют и для пола чердака, однако на чердаках с мансардой приходится утеплять еще и стены. Исключение составляют крыши, где утеплена кровля.

Также рекомендуем прочитать эти статьи Утепление каркасного дома, Потолка и Крыши, в них подробно рассказывают о различных методиках утепления опилками.

Вяжущие и их пропорции

Люди утепляют дома опилками сотни, а возможно и тысячи лет.

Это достаточное время для того, чтобы определить наиболее эффективные вяжущие вещества.

Кроме того, промышленность предлагает современные материалы, которых не было несколько веков назад.

Все это определило список наиболее эффективных и популярных типов вяжущих веществ, которые сделают утепление отходами распиливания древесины более качественным и долговечным.

Гипс

Смесь отходов распиливания древесины и извести насыпают в удобную для перемешивания емкость небольшими (1/5 от объема одной заливки) порциями и пересыпают гипсом.

Пропорции зависят от сорта вяжущего вещества – для гипса первого сорта составляют 10:1 (опилки/гипс), для второго сорта 5:1.

После заполнения емкости ее заливают водой из расчета 0,7 л воды на 1 кг гипса и энергично перемешивают. Время перемешивания 2–3 минуты, после чего готовую смесь нужно быстро залить в подготовленное для нее место.

Если смесь используют для обмазывания стен, то на 2 кг гипса наливают 1 л воды.

Однако такую смесь почти невозможно качественно перемешать вручную, поэтому ее делают только с помощью бетономешалки.

Если невозможно быстро использовать этот раствор, то в него нужно ввести замедлитель, в качестве которого можно использовать столярный (казеиновый) клей.

Также можно использовать смесь извести и мездрового клея. Для этого 1 кг клея замачивают на сутки в 5 л воды, затем добавляют 2 кг известкового теста и варят 5 часов. Замедлитель разбавляют водой в соотношении 1:50 и тщательно перемешивают.

Готовый замедлитель используют как обычную воду, он увеличивает время жизни раствора до получаса.

Если нет возможности или желания возиться с замедлителем, то можно использовать хвойные опилки с максимально сильным запахом. Пропитывающий их скипидар увеличивает время жизни готового утеплителя на 2–5 минут.

Цемент

Для работы с цементом используют другую технологию, ведь время жизни разведенного водой цемента (цементное молоко) превышает 3 часа.

Кроме того, использование присадок, увеличивающих подвижность раствора, позволяет снизить количество воды и повысить прочность застывшего утеплителя.

По механической прочности утеплитель с присадкой превосходит застывшие гипсовый и цементный утеплители на воде в 1,2–1,5 раза.

Кроме того, застывший цемент с пластификатором меньше боится воды.

Если же вместе с пластификатором добавить жидкое стекло, то после застывания материал вообще не будет подвержен воздействию воды.

Минус использования жидкого стекла в том, что такой утеплитель не будет пропускать водяной пар, поэтому его нельзя использовать в домах с неэффективной вентиляцией.

Это приведет к тому, что начнут сыреть стены, пол, потолок и мебель, затем появится гниль и плесень. Проживание в таком доме опасно для здоровья.

Поэтому перед утеплением стен цементно-опилочным раствором с жидким стеклом сначала установите рекуператоры для увеличения эффективности вентиляционной системы и наладьте воздухообмен в каждом из помещений.

Нежелательно использовать цемент марки ниже М400, особенно если он пролежал больше трех месяцев.

Ведь даже в течение первых трех месяцев потеря прочности при соблюдении условий хранения составляет 20–25%, а в течение года прочность портландцемента может упасть на 35–45%.

Максимальная прочность застывшего утеплителя будет лишь в том случае, если масса воды составляет ¼ от массы цемента.

Увеличение количества воды делает молоко и готовый состав более подвижным, но снижает его прочность в застывшем состоянии.

Такого количества воды недостаточно для получения цементного молока нужной вязкости, поэтому вместе с водой добавляют и пластификаторы.

В качестве таковых можно использовать как покупные, так и самодельные вещества.

Из покупных средств наиболее эффективны суперпластификаторы, которые производят различные компании.

Мы подготовили ссылки на сайты некоторых компаний, которые торгуют такой продукцией:

  1. Полипласт.
  2. Суперпласт.
  3. Форт.

Также в качестве пластификатора можно использовать любое жидкое мыло или шампунь. На мешок цемента необходимо 200–300 мл жидкого мыла или шампуня, поэтому эффект от его применения гораздо хуже того, что оказывает любое промышленно изготовленное средство.

Известь

Известь необходима для обеззараживания отходов распиливания древесины, а также для борьбы с грызунами.

Этот реагент подавляет размножение любых патогенных микроорганизмов, поэтому добавление извести надежно защищает утеплитель от гниения, гнили и других проблем.

Кроме того, после такой обработки утеплитель становится крайне некомфортным для любых грызунов, ведь известь – это сильная щелочь, наносящая животным тяжелые ожоги.

Чтобы приготовить пригодный для использования состав, свежие опилки любых пород и размеров смешивают в сухой гашеной известью в пропорции 1:10–1:15.

Еще один плюс от такой обработки заключается в том, что в опилках гибнут любые личинки, которые попали в них во время хранения.

Благодаря извести в утеплителе не заведутся никакие жуки и другие насекомые, которые могут из утеплителя пробраться в деревянные стены и повредить их.

Это особенно важно в тех случаях, когда для утепления домов используют отходы распиливания окоренной древесины, ведь личинки жучков-древоточцев очень маленькие и могут проскочить мимо зубьев пилы.

Для обработки опилок нельзя использовать свежую негашеную известь, потому что при контакте с водой она сильно нагреется и, вода превратится в концентрированный раствор щелочи.

После внесения извести, древесные отходы необходимо тщательно перемешать, чтобы равномерно распределить антисептик по всему утеплителю.

Только после этого можно вносить вяжущее любого типа.

Кроме того, известь можно использовать и в качестве вяжущего.

Однако в этой роли ее эффективность заметно ниже, чем любого другого вещества.

Тем не менее ее необходимо добавлять для обеззараживания и защиты от грызунов вне зависимости от выбора вяжущего вещества, ведь известь совместима с любыми типами вяжущего вещества.

Глина

Утеплители на основе глины применяют несколько тысячелетий, только вместо отходов распиливания древесины в них засыпали рубленые сено или солому.

Оптимальное соотношение глины и опилок от 1:2 до 1:10, причем чем меньше это соотношение, тем прочней получается утеплитель после застывания, а чем выше, тем меньше его уровень теплопроводности.

Это позволяет подбирать такие пропорции, которые лучше подходят к тем или иным задачам.

К примеру, для утепления пола или потолка лучше подходит пропорция 1:10.

Соотношение 1:5 подходит для наружного утепления полостей между стеной и фасадом, или для заполнения внутристенных пустот.

А вот для оштукатуривания стен как изнутри, так и снаружи необходимо использовать соотношение 1:2, ведь только оно обеспечивает достаточную прочность застывшего слоя.

Преимущество смеси опилок с глиной перед другими вяжущими веществами, в частности перед цементом, в том, что у нее не ограничено время жизни.

Ведь после того, как раствор станет слишком густым и потеряет пластичность, в него можно добавить немного воды и перемешать, после чего он обретет исходную консистенцию.

Для приготовления раствора можно использовать как покупную молотую красную или белую глину, так и накопанную в собственном огороде.

Однако в огороде глину необходимо брать с глубины 1,5 м и более. Ведь глина, расположенная выше, содержит в себе слишком много перегнивших растительных останков, поэтому опилки при контакте с ней также начнут перегнивать.

Для наибольшей эффективности высохшего утеплителя, раствор нужно заливать участками любой длины, но небольшой (20–40 см) высоты, причем чем больше воды в растворе, тем меньше должна быть высота.

Это необходимо для того, чтобы залитый раствор мог нормально сохнуть, ведь чем больше высота залитого слоя, тем сложней воде испаряться из него.

Кроме того, чем жиже раствор, тем больше должен быть промежуток между заливками, поэтому оптимальная консистенция раствора соответствует густому бетону.

Такой раствор нужно уплотнять вибратором или палкой, ведь самостоятельно он очень плохо заполняет пустоты. Зато заливки можно делать 2–3 раза в день.

Можно налить меньше воды, но повысить подвижность готовой смеси с помощью извести пушенки, предварительно разведенной в подготовленной к заливке воде. На 50 л воды можно добавить 1–2 кг извести.

Однако работать с таким раствором нужно осторожно, используя резиновые перчатки и защитные очки.

Клей ПВА

Для создания раствора необходимо использовать Строительный и Универсальный клеи ПВА.

Канцелярский и Бытовой клеи обладают малой прочностью и хорошо подходят лишь для склеивания бумаги.

Кроме того, оба этих клея слишком жидкие, поэтому и смесь получится излишне текучей.

Для приготовления раствора используют сухие свежие опилки, которые смешивают с клеем в любой подходящей таре.

Время жизни такого раствора не менее полутора часов.

Универсальной пропорции не существует, однако оптимальное соотношение опилок и клея находится между 1:2 и 1:10.

Чем меньше клея в растворе, тем более легким и теплоизолирующим он получится.

Чем больше клея в растворе, тем более прочным и водостойким он будет.

Поэтому не стоит увеличивать соотношение более чем 1:10, ведь в этом случае опилки будут впитывать влагу и постепенно перегнивать.

Для увеличения прочности можно добавить цемент в соотношении 1:10 от массы клея. В этом случае сначала перемешивают свежие отходы распиливания древесины и цемент, затем добавляют клей и снова тщательно перемешивают.

Растворы на основе ПВА не стоит использовать для обмазывания стен, ведь они не обладают нужной пластичностью, поэтому лучше всего они подходят для заполнения различных пустот.

Если вы собираетесь заполнять пространство между стеной и фальшпанелью или фасадом, то учитывайте, что клей схватится с обеими поверхностями и соединит их, из-за чего достаточно сложно будет снять панель или фасад без повреждения.

Поэтому желательно застелить обе поверхности паропроницаемой пленкой или обмазать тонким слоем олифы.

Навоз как вяжущее средство

Экскременты животных после высыхания превращаются в довольно прочное и легкое вещество с низкой теплопроводностью.

Это свойство используют для утепления домов и подсобных строений.

Однако такой раствор подходит лишь для наружного утепления стен.

Свежие опилки смешивают со свежим навозом в соотношении от 1:1 до 4:1 и сразу же намазывают на стену слоем толщиной 1–5 см.

Если необходим более толстый утеплитель, то есть делают послойно, намазывая следующий слой после высыхания первого.

Однако не стоит делать слишком толстый слой, ведь снаружи его придется чем-то закрывать, иначе утеплитель размоет водой во время дождя.

Вывод

Применение вяжущих веществ увеличивает эффективность утепления опилками, ведь утепляющий материал становится более прочным и твердым, а также не проседает со временем.

Прочитав статью, вы узнали о:

  • различных видах вяжущих веществ;
  • особенностях готового утеплителя на их основе;
  • методике приготовления и применения раствора из опилок и выбранного вяжущего.

пропорции объема ведрами и состав

Опилкобетон – это легкий класс пескоцемента с экологически чистым составом и абсолютно безвредными для человека компонентами. На опилкобетоне получаются блоки с высокими санитарно-гигиеническими параметрами, паропроницаемостью и звукопоглощением. Другие названия материала – арболит, деревобетон.

Готовые блоки используют для строительства малоэтажных зданий. При изготовлении опилкобетона отсутствуют значительные энергетические и тепловые затраты, что снижает себестоимость готовой продукции. Рассмотрим состав опилкобетона.

Стандартное соотношение компонентов

Арболит выполняет те же функции, что и классический вяжущий строительный материал. Стандартный состав бетона с опилками: цементно-песочная смесь, деревянная стружка, известь (по необходимости). Допускается использование древесной стружки, которая увеличивает прочность моноблоков. Перед приготовлением сухую смесь следует просеять на ситах с размером ячеек 20х20, 10х10, 5х5 мм, а стружки – на ситах величиной 10х10 мм.

Каждая марка арболита готовится по определенным пропорциям. Классическими соотношениями считаются:

  • стружки к извести — 1:1;
  • вяжущего вещества к воде — 1:2.

Песок и известь нужно брать в одинаковых количествах. Достаточное количество воды на 1м3 готовой смеси является 250 — 300 литров. При этом жидкость не должна выталкиваться из раствора, а находиться в нем.

Вернуться к оглавлению

Пропорции

Для трех наиболее популярных марок арболита вместо 1м3 предлагаются конкретные объемы основных компонентов ведрами (далее сокращение в.).

  1. Марка М10 требует такие количества: полведра вяжущего сырья, ведро с горкой очищенного песка и немногим больше трех ведер со стружкой.
  2. Арболит М15 готовится из чуть больше половины емкости трехкальциевого силиката, полутора в. песка, четырех частей со стружками.
  3. Состав опилкобетона М25 получается из половины объема силиката, немногим меньше чем полтора в. песка, трех в. с горкой стружки.

Пропорции этими емкостями были подобраны и отработаны давно для каждой марки, чтобы облегчить строителям задачу без использования расчетов через величины в 1м3. В качестве отдельного компонента или возможной добавки допустимо использование гашеной извести. Цель ее примешивания – обессахаривания стройсмеси. Вместо нее можно добавлять пушонку.

Вернуться к оглавлению

Приготовление для стяжки

Для стяжки используется высокая марка вяжущего компонента М400. Приготовить ее можно своими руками. Смесь состоит из верхнего и нижнего слоев. Оптимальное соотношение силиката, песка и стружки:

  • для нижнего слоя составляет 1:2:6, также допустима добавка 3 кг гашеной извести;
  • для верхнего – 1: 2:3 с добавкой или без 1,5 кг известки.

Первой наливается вода, затем последовательно добавляется стружка, цемент, песок и в конце по необходимости – добавки. Важным условием смешения является достижение густоты раствора как у 20%-ой сметаны. Более жидкие смеси сохнут дольше.

Стяжке толщиной 10 – 15 см такого состава сохнуть месяц. Ускорить сушку можно примешиванием специальных добавок, таких как нитрат или хлорид кальция, жидкое стекло, аммоний сульфат. Эти вещества ускоряют процесс минерализации, поэтому заливка твердеет быстрее.

Вернуться к оглавлению

Состав раствора для различных марок

Помимо М10, М15, М25 существуют другие марки арболита с разным составом. Например, смесь М5 высокой плотности можно приготовить своими руками из таких количеств, измеренных в ведрах: 4,5 частей силиката, смешанного с 3 и 80 частями песка и опилок, соответственно. Для обеспечения высокой скорости твердения в М5 добавляют 14 в. известки или глины. Количество ингредиентов можно пересчитать на 1м3. Такой продукт подходит для создания подвалов с хорошей теплоизоляцией.

Промежуточная марка М20 готовится из 18, 30 и 35 в. наполнителя, песка и известки, соответственно. Пропорции берутся из расчета на 80 частей. В промышленных масштабах, а именно для возведения стен, используются М10 и М15 и готовятся они как представлено в таблице.

Таблица: Приготовление строительных смесей М10 и М15:

  • ингредиенты  М10; М15;
  • опилки 80; 80;
  • цемент 9,5; 13,5;
  • песок 12; 21;
  • известь или глина 10,5; 7.

Важно не занижать количества вяжущего материала. Это может привести к потере будущей конструкцией плотности, водонепроницаемости, устойчивости к температурным колебаниям, коррозионной стойкости арматуры. Однако преувеличение содержания цемента удорожает себестоимость готового продукта.

Вернуться к оглавлению

Раствор с известью и без

Следует знать, что известь повышает взаимные адгезионные способности компонентов песко-цементного композита. К тому же использование или отсутствие в его составе глины существенно влияет на количественное соотношение основных ингредиентов. Решить, применять ее или нет, нужно на начальном этапе строительства в зависимости от назначения готового монолита, марки прочности изделия.

Максимальной плотностью обладают растворы без глины. На 10 литров рабочей смеси потребуется 2 кг стружки, 2 кг (М15) или 3 кг (М25) цемента, 6,3 кг (М15) или 6,7 кг (М25) песка. Эти же марки с известью будут содержать 1,5 и 2 кг цемента, 3,5 и 5 кг песка, 1 и 0,5 кг глины на 2 кг опилок в 10 л раствора, соответственно.

Составу с наименьшей плотностью потребуется несколько другое количество:

  • М5 из полкило цемента на 2 кг гашенки, полкило песка и 2 кг стружки;
  • М10 на 2 кг древесного материала требует 1 кг цемента, 1,5 глины, 2 кг песка.
Вернуться к оглавлению

О размере опилок

При достаточном количестве вяжущего компонента величина опилок не играет роли. Как правило, древесный материал получают с ленточной и дисковой пилорамы. Размеры отходов с разного оборудования практически не разнятся. Однако древесный материал с оцилиндровочных и калибровочных механизмов не подходит. Сложно получить однородный бетон, если фракции отличаются в более чем 100 раз.

Определить хорошее качество замеса можно вручную. Нужно набрать его в руку и сильно сжать. Если вода не стекает, а комок не рассыпается, значит, жидкий арболит готов.

пропорции объема ведрами, состав, приготовление

Дата: 21 августа 2017

Просмотров: 5683

Коментариев: 1

Специалистами строительной отрасли ведется постоянный поиск новых материалов. Одной из разновидностей легкого бетона, в котором используются опилки древесины, является опилкобетон. Он характеризуется повышенными теплозащитными характеристиками, огнестойкостью, соответствует санитарно-гигиеническим нормам. Смешивая бетон с опилками несложно приготовить своими руками готовые блоки для постройки коттеджей, домов, а также строений хозяйственного назначения. Важно соблюдать пропорции и технологию изготовления. Рассмотрим детально технологические нюансы, разберемся с различными вариантами рецептуры.

Готовые блоки используют для строительства малоэтажных зданий

Изготовление опилкобетона своими руками

Самостоятельное изготовление легкого бетонного композита осуществляется по следующему алгоритму:

  1. Выполняется подготовка необходимых материалов. Составляющие нет необходимости приобретать предварительно. Все компоненты можно заготовить непосредственно перед изготовлением, посетив магазины или склады стройматериалов, а также воспользовавшись отходами производства деревообрабатывающих предприятий.
  2. Смешиваются ингредиенты согласно пропорции. Перемешивание компонентов может осуществляться механическим способом с применением бетоносмесителя или ручным путем с использованием лопат. Автоматизация технологического процесса путем применения бетономешалки повышает производительность, улучшает интенсивность смешивания, положительно влияет на качество продукции.
  3. Производится формовка. Преимущественно используется групповой процесс формовки, когда предварительно перемешанный состав заливается в несколько десятков форм. Применяются единичные и групповые формы разборной конструкции, изготовленные из древесины толщиной 2 см и обитые металлом или пластиком. Применение полиэтиленовой пленки облегчает извлечение готовых изделий.
  4. Осуществляется сушка готовой продукции естественным путем. Снятие форм производится через 4–5 суток после заливки путем ослабления затяжки барашковых гаек, извлечения резьбовых шпилек и разборки формовочного ящика. Длится процесс естественной сушки в зависимости от пород древесины до трех месяцев, в течение которых значительно снижается концентрация влаги, и изделие приобретает эксплуатационную прочность.

Стандартный состав бетона с опилками: цементно-песочная смесь, деревянная стружка, известь (по необходимости)

Бетон с опилками – состав и соотношение компонентов

Опилкобетон производится на основе ингредиентов, полученных промышленным путем и составляющих природного происхождения:

  • портландцемента марки М300;
  • просеянного песка размером до 1,8 мм;
  • извести;
  • древесных опилок;
  • воды.

Опилка следующих видов деревьев обеспечивает необходимое качество продукции:

  • сосны;
  • ели;
  • березы;
  • тополя;
  • ясеня;
  • дуба;
  • лиственницы.

Период твердения блоков из различных видов древесины значительно отличается. По скорости набора прочности лидирует сосна, у которой процесс твердения завершается через полтора месяца после заливки. На последней позиции находится лиственница, блоки из которой можно использовать через 3,5 месяца после заливки.

Каждая марка арболита готовится по определенным пропорциям

Концентрация наполнителя и песка влияет на плотность материала. При уменьшении его концентрации удельный вес блоков снижается, что улучшает теплотехнические характеристики, однако уменьшает прочность. Увеличение объема вяжущих ингредиентов и песка повышает водонепроницаемость, а также устойчивость к воздействию отрицательных температур.

Рекомендуемое соотношение компонентов для приготовления состава средней плотности из 100 кг древесной стружки, составляет:

  • цемент – 75 кг;
  • известь – 50 кг;
  • песок – 175 кг.

Пропорции и состав опилкобетона в ведрах

Для приготовления опилкобетона добавлять компоненты ведрами достаточно удобно.

Состав опилкобетона в ведрах регламентируется следующими пропорциями:

  1. Для марки опилкобетонных блоков М10 соотношение цемента, песка, тырсы и извести составляет 1:2,2:6,5:1,5.
  2. Опилкобетон, маркируемый М15, включает указанные выше ингредиенты в соотношении 1,2:3:7,8:0,8.
  3. Блоки с маркировкой М25 содержат портландцемент, просеянный песок, древесную стружку и известь в пропорции 1:2,8:6,4:0,8.

Важно не занижать количества вяжущего материала

На примере материала с маркировкой М10 рассмотрим пропорции ингредиентов при введении ведрами. Смесь включает:

  • портландцемент – 1 ведро;
  • песок – 2 ведра с горкой;
  • опилки – 6 с половиной ведер;
  • известь – полтора ведра.

Соблюдая указанные пропорции несложно своими руками подготовить раствор для изготовления блоков различных марок.

[testimonial_view id=»17″]

Опилкобетон – приготовление смеси

Технологический процесс приготовления смеси можно осуществлять следующим образом:

  • подготовить цементный раствор путем разведения портландцемента водой с последующим добавлением просеянного песка, извести, древесной стружки;
  • осуществить смешивание извести с тырсой, затем ввести портландцемент с песком, развести перемешанные ингредиенты водой.

Независимо от выбранного метода приготовления, необходимо обеспечить однородность смеси. Важным моментом технологии является предварительная сушка стружки, уменьшающая концентрацию влаги. Правильно приготовленная смесь начинает твердеть через пару часов. Именно поэтому важно готовить раствор в объеме, соответствующем количеству имеющихся форм. При укладке бетонной смеси следует тщательно уплотнить состав с целью недопущения образования воздушных пор.

Следует знать, что известь повышает взаимные адгезионные способности компонентов песко-цементного композита

Растворы для различных марок

В зависимости от концентрации ингредиентов опилкобетонные блоки делятся на следующие марки:

  • М5. Характеризуется пониженной до 0,6 т/м3 плотностью, уменьшенным коэффициентом теплопроводности, равным 0,18. На один 50-килограммовый мешок цемента необходимо взять по 0,2 тонны опилок и извести, а также 20 кг присеянного песка;
  • М10. Коэффициент теплопроводности составляет 0,21, а удельный вес возрастает до 0,8 т/м3. Для приготовления мешок портландцемента необходимо перемешать со 100 кг стружки и 100 кг песка, а также добавить 80 кг извести;
  • М15. Плотность и коэффициент теплопроводности увеличиваются и составляют, соответственно, 0,8 т/м3 и 0,24. Для приготовления на 50 кг цемента вводится 70 кг тырсы, 30 кг извести и 115 кг песка;
  • М20. Удельная плотность достигает величины 0,95 т/м3, а величина коэффициента теплопроводности увеличивается до 0,3. Опилкобетон готовится путем смешивания по 50 кг цемента и опилок с добавлением 130 килограмм песка и 15 кг извести.

С увеличением марки опилкобетона возрастает коэффициент теплопроводности, увеличивается плотность. Блоки высоких марок позволяют возводить увеличенные помещения, в которых из-за высокого коэффициента теплопроводности сложно поддерживать комфортный температурный режим. Введение специальных добавок, вымачивание древесного сырья в жидком стекле и известковом молоке позволяет использовать сырье с увеличенной влажностью и повышает огнестойкость блоков.

Марка М10 требует такие количества: полведра вяжущего сырья, ведро с горкой очищенного песка и немногим больше трех ведер со стружкой

Готовность перемешанных компонентов определяется путем сжатия подготовленной смеси ладонью. Пластичный и готовый к формовке материал сохраняет следы пальцев, что свидетельствует о готовности раствора к заливке.

Введение в раствор глины вместо извести

В состав материала допускается вводить вместо извести глину, что не сказывается на качестве изделий. Технология использования глины предусматривает следующие этапы:

  • смешивание древесного сырья с портландцементом и песчаной массой;
  • введение в смесь глиняного теста, тщательное перемешивание;
  • добавление воды небольшими дозами;
  • перемешивание состава до рабочей консистенции.

Предусмотренные рецептурой пропорции известкового и глиняного теста остаются неизменными.

Раствор на основе гипсового вяжущего вещества

Допускается в качестве вяжущего вещества использовать строительный гипс вместо портландцемента. Может возникнуть вопрос, как замедлить интенсивность твердение гипса при смешивании с водой? Проблема довольно просто решается введением в воду моющего средства, которое способствует замедленному твердению гипса.

Для обеспечения высокой скорости твердения в М5 добавляют гипс

Особенности применения строительного гипса:

  • увеличение по сравнению с цементом скорости твердения блоков в 5 раз;
  • незначительное увеличение затрат на изготовление опилкобетонной продукции.

Среди специалистов по строительству ведется полемика о возможности применения опилкобетонных блоков на основе гипса для возведения наружных стен зданий. Надежная защита опилкобетона от отрицательного влияния атмосферных факторов позволяет решить проблему поглощения материалом влаги.

Размер опилок

Несмотря на то что в ряде источников отмечается необходимость просеивания опилок на сите с квадратной ячейкой размером 1 см, размер используемой стружки не имеет принципиального значения.

Важно обратить внимание на следующие моменты:

  • следует вводить древесное сырье, являющееся вяжущим веществом, в требуемом количестве;
  • проблематично получить однородный состав при использовании опилок, крупность которых отличается в сотни раз;
  • древесная стружка с калибровочных станков и оцилиндровочного оборудования не используется при изготовлении опилкобетона;
  • целесообразно применять опилки с пилорамы, оснащенной ленточной пилой или дисковым рабочим органом.

Жирные растворы, содержащие вяжущее вещество в избыточном количестве, менее восприимчивы к крупности опилок по сравнению с тощими составами.

Итоги

Руководствуясь пропорциями, приведенными в материале статьи, несложно своими руками подготовить качественную смесь для изготовления опилкобетона необходимой марки. Самостоятельно изготовленные с соблюдением технологии опилкобетонные блоки отличаются прочностью, морозостойкостью, доступной ценой. Освоив технологию изготовления, можно оценить достоинства экологически чистого и простого в изготовлении материала.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках — 12 лет, из них 8 лет — за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

(PDF) РАЗРАБОТКА ОПИЛОВОГО БЕТОНА ДЛЯ БЛОКОВОГО ИЗГОТОВЛЕНИЯ

Труды конференции «Строительные технологии 2001»,

Кота-Кинабалу, Малайзия, 12–14 октября 2001 г.

РАЗРАБОТКА ОПЫЛОВОГО БЕТОНА ДЛЯ ИЗГОТОВЛЕНИЯ БЛОКОВ

р.

, C. Carroll2 & N. Appleyard2

1Центр исследований встроенной инфраструктуры, Технологический университет, Сидней, PO Box

123, Broadway, NSW 2007, Австралия, электронная почта: R, Ravindra @ uts.edu.au

2 Бывшие студенты-строители Технологического университета, Сидней, PO Box

123, Бродвей, Новый Южный Уэльс, 2007, Австралия.

РЕФЕРАТ

В данной статье представлены результаты исследования разработки бетона на опилках

, пригодного для производства легких несущих блоков. Ингредиентами

, использованными в смеси, были цемент, известь, летучая зола, хлорид кальция, Radiata

сосновые опилки, песок и вода.Бетонная смесь из опилок плотностью 1540

кг / м3 (содержание опилок 12% по объему) имела 7-дневную прочность на сжатие

14 МПа. Хотя установлено, что использование 2% хлорида кальция обеспечивает оптимальную прочность

для всех возрастов, усадка значительно увеличивается. Установлено, что последовательность дозирования

влияет на эффективность перемешивания и характеристики бетонных опилок.

Ключевое слово: Опилки, Цемент, Хлорид кальция, Летучая зола, Состав смеси, Прочность на сжатие

Прочность, Усадка, Плотность, Легкий бетон

1 ВВЕДЕНИЕ

Использование отходов в бетонных смесях теперь признано одним из

эффективные способы утилизации твердых отходов других производств.Летучая зола от сжигания угля

и гранулированный доменный шлак металлургических заводов

являются типичными успешными примерами замены дорогостоящего портландцемента в бетонных смесях

. Помимо снижения стоимости поставляемого бетона, они обеспечивают

ряд технических преимуществ, таких как пониженная теплота гидратации, улучшенная когезионная способность и химическая стойкость

, снижение просачивания и проницаемости и постоянное улучшение прочности

с возрастом.Сельскохозяйственные отходы, такие как рисовая шелуха

, могут быть использованы для производства отличного пуццоланового материала путем контролируемого сжигания. Этот материал

используется в производстве цемента из золы рисовой шелухи для строительства.

Во многих развивающихся и развитых странах лесная промышленность производит

значительного количества опилок в качестве побочного продукта обработки древесины. Хотя

в ограниченном количестве используется в качестве топлива в некоторых странах, большая часть образующихся опилок

тратится впустую.Из-за ограниченного количества свалок и полигонов захоронение опилок

стало серьезной проблемой, стоящей перед лесной промышленностью. Предыдущие исследования

показали, что опилки, являясь легким материалом, могут использоваться в качестве заполнителя

в бетонных смесях для производства легкого бетона. Еще в 1940 г. было опубликовано

исследований свойств бетонных опилок (Baver 1940).

Физико-механические свойства бетонных опилок

зависят не только от количества используемых опилок, но также и от химических и физических характеристик

опилок.Благодаря высоким характеристикам водопоглощения

Использование опилочной пыли в цементном растворе и цементном бетоне

% PDF-1.3 % 2 0 obj >>>] / ON [337 0 R] / Order [] / RBGroups [] >> / OCGs [222 0 R 337 0 R] >> / Outlines 213 0 R / Pages 3 0 R / Type / Catalog / ViewerPreferences 208 0 R >> эндобдж 211 0 объект > / Шрифт >>> / Поля 332 0 R >> эндобдж 212 0 объект > поток application / pdf

  • K.GOPINATH, K.ANURATHA, R.HARISUNDAR, M.САРАВАНАН
  • Утилизация опилок в цементном растворе и цементном бетоне
  • Международный журнал научных и технических исследований, том 6, выпуск 8, август 2015 г.
  • 2015-08-07T12: 17: 47 + 05: 30pdfFactory Pro www.pdffactory.com2015-08-28T10: 50: 20 + 05: 302015-08-28T10: 50: 20 + 05: 30pdfFactory Pro 3.20 (Windows XP Professional) uuid: 83b27b92-5d10-4d71-831e-e645a7ed5ca2uuid: 1d37973f-27a1-4e07-997e-60ea7859cd5a конечный поток эндобдж 213 0 объект > эндобдж 3 0 obj > эндобдж 208 0 объект > эндобдж 6 0 obj > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 19 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 25 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 32 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 38 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 44 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 50 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 56 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 62 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 72 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 79 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 85 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 91 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Type / Page >> эндобдж 98 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Type / Page >> эндобдж 104 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 110 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 122 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Type / Page >> эндобдж 140 0 объект > / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Type / Page >> эндобдж 143 0 объект [144 0 R] эндобдж 389 0 объект > поток HVsb? UL]; 2IIAMt҄ & 4 Mbp `__, zY /

    Древесные отходы в бетонных блоках, изготовленные методом вибропрессования

    Для изготовления образцов ПБК использовался уплотнитель с одним цилиндром для виброуплотнения (пневматический вибратор) (рис.5). Цилиндр имеет размер 100 мм в диаметре и 200 мм в высоту. Арболит вводится в цилиндры двумя одинаковыми слоями по 1,7 кг каждый.

    Рис. 5

    Схема внутренней части камеры виброуплотнения

    Продолжительность вибрации каждого слоя PSC составляла 15 с (определено серией калибровочных испытаний). Затем к образцу прикладывают желаемую силу уплотнения. Виброуплотнение выполняется с помощью вибрации в горизонтальной плоскости и увеличивающейся осевой силы по вертикали, прилагаемой с помощью поршня ко всему сечению образца.Пневматический домкрат, работающий со сжатым воздухом, может создать максимальное давление 6 бар. Требуемое давление уплотнения достигается через 2 или 3 с. Вибрация имеет частоту 250 Гц и амплитуду 2 мм. Комбинированное действие уплотнения и вибрации способствует образованию гранулированного бетона, что очень быстро приводит к хорошей плотности.

    Выбор времени вибрации и силы уплотнения

    Время вибрации и сила уплотнения являются основными параметрами, которые будут влиять на развитие бетона, полученного путем виброуплотнения, и его механические свойства.Оптимальное время вибрации было определено серией испытаний на компактность для 3 бетонных смесей (PSC0, PSC30 и PSC60). Плотность рассчитывалась путем принятия отношения вибрирующего объема бетона к начальному объему для одного слоя арболита (1,7 кг) в разное время вибрации. Результаты представлены на рис. 6.

    Рис. 6

    Эволюция компактности PSC в зависимости от времени вибрации

    На рис. 6 видно, что вибрация в течение 15 с дает оптимальную компактность для 3-х древесно-бетонных смесей.Это оптимальное время вибрации является обычным для бетонных смесей PSC.

    Величина напряжения уплотнения для производства арболита была определена на основе измерений механической прочности в течение 7 дней на трех образцах Ø10×20 см в соответствии с EN 12390–3 из-за сроков поставки продукции заводом-изготовителем. Испытания на сжатие также проводились через 28 дней и показали очень низкое изменение сопротивления (менее 1 МПа для образца, изготовленного без усилия уплотнения, и менее 2 МПа для образца, изготовленного с использованием усилия уплотнения), поскольку пористость образца была высокой. .Образцы были извлечены из формы и помещены в герметичные пластиковые пакеты через 24 часа после литья до желаемого испытания в соответствии с EN 12390–2. Результаты представлены на рис. 7.

    Рис. 7

    Изменение прочности на сжатие в зависимости от напряжения уплотнения ( слева ) и образцы PSC0 и PSC30 через 7 дней ( справа )

    Изготовление образцов методом виброуплотнения увеличивает механическую прочность смеси.Механическая прочность бетонных смесей PSC0, PSC30 и PSC60 увеличена до оптимальной для напряжения уплотнения 40 кПа (1,8 кН). За пределами этого напряжения механическая прочность снижалась. Поскольку устройство быстро достигает желаемого напряжения уплотнения, это снижение для PSC0, PSC30 и PSC60 можно объяснить скоростью введения высокой нагрузки, которая блокирует зернистую структуру бетона при вибрации.

    Уменьшение массы блоков является важным параметром при разработке арболитов ПСБ.Масса образцов измерялась в свежем состоянии. Эволюция массовой плотности в зависимости от напряжения уплотнения приведена на рис. 8. Уплотнение увеличивает плотность образцов для испытаний. При каждом напряжении уплотнения замена песка топольными опилками делает бетон более легким. Мы можем наблюдать уменьшение массы, когда напряжение увеличивается после 40 кПа, что согласуется с уменьшением прочности на сжатие бетона PSC через 7 дней после напряжения уплотнения.

    Рис. 8

    Изменение массовой плотности свежего бетона PSC0, PSC30 и PSC60 в зависимости от различных напряжений уплотнения

    Состав бетона PSC0 соответствует бетонным блокам, производимым компанией партнера по проекту. Эти образцы являются нашим эталонным тестом. Механическая прочность достигает 7 МПа через 7 дней без приложения напряжения уплотнения. Оно может утроиться при использовании процесса виброуплотнения с напряжением уплотнения 40 кПа.Этот результат почти такой же, как у Линга (2012). В его исследованиях наблюдалось увеличение прочности на сжатие бетонного блока, изготовленного путем виброуплотнения, в 2,5 раза по сравнению с традиционным производством. Включение опилок тополя в цементный композит значительно снижает его механические характеристики (уменьшение на 50% при замене опилок на 30%; рис. 7). Приложение силы уплотнения позволяет увеличить механическую прочность образцов бетона.

    Оптимизация рецептуры PSC

    Для оптимизации рецептуры древесного бетона из тополя были изучены коэффициенты замещения 30, 40, 50 и 60%. Изменение прочности на сжатие через 7 дней дается как функция уплотнения (рис. 9).

    Рис. 9

    Изменение прочности на сжатие PSC через 7 дней в зависимости от различных напряжений уплотнения

    Добавление опилок тополя в бетон PSC сильно влияет на его механические характеристики.Прочность на сжатие снижается в зависимости от степени замещения в бетоне из-за ингибирования древесины на реакцию гидратации цементного композита, полученного с помощью изотермической калориметрии (рис. 4). Снижение прочности достигает 50% для PSC30, 56% для PSC40 и 64% для PSC50 без напряжения уплотнения во время изготовления образцов. Сила PSC60 составляет почти 1/3 от силы PSC0 через 7 дней. Для всех PSC изготовление бетонных смесей методом виброуплотнения увеличивает их прочность на сжатие.

    Сравнение механической прочности PSC с опилками тополя и без них показывает, что наличие напряжения уплотнения значительно увеличивает прочность PSC на сжатие через 7 дней. Мы можем наблюдать, что скорость увеличения прочности на сжатие может быть замедлена в соответствии с коэффициентом замещения опилок. Виброуплотнение снижает ингибирующее действие древесины на реакцию гидратации цементного композита и приводит к улучшению пределов механических характеристик.Предлагаемый заменитель 50% песка тополевыми опилками в PSC, учитывая его механические свойства, может быть предложен для реализации древесного бетона в промышленных масштабах путем виброуплотнения.

    Зола опилок в качестве порошкового материала для самоуплотняющегося бетона, содержащего нафталинсульфонат

    Испытания проводятся для определения текучести портландцементной пасты Ashaka и ее совместимости с золой опилок в качестве порошкового материала для самоуплотняющегося цемента (SCC) смеси.Результаты исследования показали, что насыщение достигается при соотношении в / ц 0,4 и 0,42, при дозировках суперпластификаторов нафталинсульфоната 3,5% и 2% соответственно. Оптимальный уровень замены для смеси SCC составлял 10 мас.% Цемента на SDA и 2% от дозировки суперпластификатора. Достигнутое время распространения и истечения составило 26 см и 8 секунд и находится в указанном диапазоне от 24 см до 26 см и от 7 до 11 секунд, соответственно. Статистический вывод показал, что смесь, w / c, и взаимодействие между смесью и соотношением w / c являются значительными.

    1. Введение

    Суперпластификаторы часто добавляют на стадии смешивания бетона в небольших количествах, связанных с массой цемента, для увеличения текучести свежего бетона, увеличения прочности и продления срока службы затвердевшего бетона. Исследования показали, что на совместимость цемента и суперпластификаторов влияют такие факторы, как содержание фазы C 3 A и C 4 AF в клинкере ПК, общее количество щелочи, крупность цемента, а также тип и количество сульфата кальция [ 1].

    Сообщалось о проблемах совместимости суперпластификаторов и цемента, которые могут характеризоваться текучестью цементного теста и его потерей со временем [2, 3]. Добавление суперпластификатора снижает предел текучести пасты почти до нуля, но пластичность существенно не снижается [4]. Суперпластификатор нафталинсульфонат часто используется для улучшения реологии свежего бетона [5]. Termkhajornkit и Nawa [4] сообщили в своей работе, что поверхностный потенциал летучей золы отличается от обычного портландцемента (OPC) как по знаку, так и по величине, и, таким образом, это является причиной флокуляции летучей золы и цементного теста.Когда суперпластификатор нафталинсульфонат был введен в зольную цементную пасту, признаки были такими же и, следовательно, хорошо диспергировались из-за более высокого потенциального барьера. Адсорбция суперпластификаторов нафталинсульфоната на поверхность частиц цемента изменяет дзета-потенциал поверхности частиц на отрицательный и, таким образом, увеличивает его абсолютное значение [6, 7].

    Текучесть опилочно-золоцементного теста не сообщается. В этом исследовании было сочтено необходимым определить, во-первых, реологические свойства цементного раствора с использованием суперпластификатора нафталинсульфонат и, во-вторых, влияние SDA и его совместимость на свойства текучести.Зола опилок (ЗДД) была получена в результате сжигания древесных отходов мукомольной промышленности, и зола содержит в основном силикаты (67%). Методы получения, сжигания и характеристики SDA были полностью обсуждены в предыдущей статье, где он использовался с бетоном [8]. SDA обладает пуццолановыми свойствами и, таким образом, является многообещающим дополнительным материалом для производства бетона.

    2. Эксперимент

    Рисунок 1 представляет собой блок-схему, использованную при разработке смеси для самоуплотняющегося бетона; Использовался портландцемент «Ашака» стандарта BS 12 [9].Использовали АСД, полученный из термически активированных древесных отходов при температурах от 400 ° С до 600 ° С [8]. Физические и химические свойства портландцемента Ashaka и SDA приведены в таблице 1. Мелкодисперсный заполнитель представляет собой речной песок с удельным весом 2,57, влажностью 14,4% и насыпной плотностью 1472 кг / м 3 и зона 2 в таблице классификации в соответствии с BS 882 [10]. Суперпластификатор представлял собой коммерческий суперпластификатор нафталинсульфоната, производимый W.R. Grace and Co., США, названный Daracem 19. Он имеет удельный вес 1,18 и pH 9,5, а сухой экстракт по массе составляет 40%.

    кг / м 3 )37

    Оксиды Ashaka PC Зола древесных опилок

    SiO 9017 9017 9017 9017 9017 O 3 (%) 6,1 4,1
    Fe 2 O 3 (%) 2.3 2,3
    CaO (%) 62,1 10,0
    MgO (%) 1,2 5,8
    Na 0,9 2 O (%)
    K 2 O (%) 1,0 0,1
    SO 2 (%) 1,6 0,5
    P 2 O 0.5
    MnO (%) 0,01
    Удельный вес 3,15 2,29
    Потери при возгорании (%) 1,00 4,6
    1550 830
    Удельная поверхность по Блейну (м 2 / кг) 355 151
    Влагосодержание (%) —
    Величина pH 10,10

    Соединение с ложным потенциалом состав:
    С 3 S 46
    С 2 S 24
    С 3 А 12
    C 4 AF 7


    2.1. Тест на совместимость (тест на текучесть)

    В таблице 2 показаны пропорции смеси для теста на совместимость (тест на текучесть). Соотношение воды и связующего в пасте составляло от 0,3 до 0,42. Дозировка суперпластификатора варьировалась от 0 до 4 мас.% Цемента. Чтобы оценить совместимость портландцемента с суперпластификатором нафталинсульфонат, для измерения расхода использовался стандартный усеченный конус (рис. 2). Он имеет верхний внутренний диаметр 70 мм, нижний внутренний диаметр 100 мм и высоту 60 мм.Конус помещался на стеклянную пластину размером 750 мм × 750 мм и заполнялся навеской раствора. Верхняя поверхность раствора обрабатывалась шпателем, конус поднимался вертикально. Диаметр распространения раствора после подъема конуса измеряли в двух перпендикулярных направлениях (и) с помощью линейки, и записывали среднее значение. Результаты представлены в Таблице 3.

    901 762,8644 -08B4 9080 762,86 1080 90,180 M26 762,86 1480 90,180 M-93

    Тип SP Номер смеси Дозировка SP (%) Цемент (кг / м 3 ) Песок (кг / м 3 ) Вода (кг / м 3 ) Водоцемент

    NS M-01A 0.0 508,57 762,86 152,59 0,3
    M-02A 4,04 508,57 762,86 152,59 A 762,86 152,59 0,3
    M-04A 12,11 508,57 762,86 152,59 0,3
    M-05A14 508,57 762,86 152,59 0,3
    M-06A 20,18 508,57 762,86 152,59 152,59 152,59 0,3
    M-08A 28,25 508,57 762,86 152,59 0,3
    M-09180A29 508,57 762,86 152,59 0,3
    M-10A 36,32 508,57 762,86 152,59A 762,86 152,59 0,3

    NS M-01B 0,0 484,03 762,86 152,59
    M-02B 3,84 484,03 762,86 152,59 0,4
    M-03B
    M-03B 48480 -04B 11,53 484,03 762,86 152,59 0,4
    M-05B 15,38 484,03 762,86 762,86
    M-06B 19,22 484,03 762,86 152,59 0,4
    M-07B
    M-07B 23,06 484,03 484,03 26,91 484,03 762,86 152,59 0,4
    M-09B 30,75 484,03 762,86 762,86
    M-10B 34,60 484,03 762,86 152,59 0,4
    M-11B
    NS M-01C 0,00 479,39 762,86 152,59 0,42
    M-02C 1,92 47917539 762,86 152,59 0,42
    M-03C 3,84 479,39 762,86 152,59 0,42
    M-04C 5,75 479,39 762,86 152,59 152,59 0,42
    M-06C 9.59 479,39 762,86 152,59 0,42
    М-07C 11,51 479,39 762,86 152,59 152,59 152,59 152,59 152,59 0,42
    M-09C 15,34 479,39 762,86 152,59 0,42
    479,39 762,86 152,59 0,42
    M-11C 19,18 479,39 762,86 152,105 152,105 152,105 152,105 152,59 0,42
    M-13C 23,02 479,39 762,86 152,59 0,42
    479,39 762,86 152,59 0,42

    9017

    Диаметр потока (мм)

    M-01A 0,3 0,0 12,75
    M-02A 4,04 13.50
    M-03A 8,07 15,25
    M-04A 12,11 17,00
    M-05A 16,14 19,50
    M-07A 24,22 20,00
    M-08A 28,25 21,00
    M-09A
    M-09A
    801
    36.32 22,75
    M-11A 40,36 23,50

    M-01B 0,4 ​​ 0,0 14,78 14,78 16,00
    M-03B 7,69 17,25
    M-04B 11,53 17,75
    M-05B .22 20.25
    M-07B 23.06 21.75
    M-08B 26.91 23.50
    M-0916 30175 34,60 27,50
    M-11B 38,44 27,50

    M-01C 0,421 .92 19,50
    M-03C 3,84 20,50
    M-04C 5,75 21,50
    M-05C
    M-05C
    80 901
    9,59 23,00
    M-07C 11,51 23,50
    M-08C 13,43 24,50
    M00
    M-10C 17,26 26,50
    M-11C 19,18 28,00
    M-12C 21.106 21.106 28,00
    M-14C 24,93 28,00


    2.2. Тест на содержание порошка

    Тест на содержание порошка проводился сразу после достижения насыщения в результате испытания на совместимость (текучесть).Это было сделано с помощью тестов потока и V-воронки (рисунок 3). Пропорции смеси для испытания показаны в Таблице 4. Оптимальная дозировка 2% суперпластификатора нафталинсульфоната и содержание цемента 479 кг / м. 3 использовали при водном соотношении 0,42. Это были значения в точке насыщения из теста совместимости (текучести). Коэффициенты замещения SDA в тесте на содержание порошка варьировались от 0 до 20 мас.% Цемента. Всего было использовано 5 смесей (от PC-01N до PC-05N). PC-01N представлял собой контрольную смесь, содержащую NS без SDA (порошкового материала), в то время как PC-05N содержал SDA в количестве 20 мас.% цемента в качестве замены. Буква P обозначает порошковый материал. Для каждого уровня замены проводились два теста, и фиксировалось среднее значение. Результаты представлены в Таблице 5.


    Тип SP Номер смеси Цемент (кг / м 3 ) SDA (%) Песок (кг / м ) 3 ) Вода (кг / м 3 ) Дозировка SP (%) Водоцементное соотношение

    NS PC-01N (контроль) 4780 0719201 2.0 0,42
    PC-02N 445 5 719 201 2,0 0,42
    PC-03N 431 9017 431 9017 9017 2,0 0,42
    PC-04N 407 15 719 201 2,0 0,42
    PC-05N 384 9017 2.0 0,42

    5 901 901

    Тип SP Количество смеси% Содержание порошка в тесте — SDA
    Распространение раствора ()
    (см)
    V-образная воронка
    (сек)

    NS PC-01N 0 26,0 0,42
    PC-02N 5 24,8 6,5
    PC-03N 10 24,1 8.0 11,5
    PC-05N 20 20,2 18,0


    3. Результаты и обсуждение SD
    примерно 9 силикатов.Ему требуется больше воды для консистенции, и при добавлении в цемент он запускает пуццолановую реакцию с избытком Ca (OH) 2 , образующимся во время гидратации цемента. Таким образом, SDA задерживает гидратацию пасты и увеличивает время схватывания [9]. Было установлено, что несгоревший углерод (<5%) влияет на адсорбцию суперпластификаторов [4]; поэтому потери при прокаливании SDA не превышали 4,6%, и, таким образом, влияние несгоревшего углерода в этой работе не учитывалось.

    Результаты испытаний на текучесть показаны на рисунках 4 (a) –4 (c).Отношения между реологией строительного раствора при разных дозировках суперпластификатора довольно параллельны. Совместимость (текучесть) при водном соотношении 0,3 (рис. 4 (а)) увеличивалась с увеличением дозировки NS без какой-либо точки насыщения. Однако при соотношении 0,4 в / ц (рис. 4 (б)) текучесть также увеличивалась, но насыщение было достигнуто при дозировке примерно 3,5%. При соотношении w / c 0,42 (рис. 4 (c)) текучесть раствора существенно не увеличилась при дозировке 2%.Диаметр потока при этой дозировке составляет 28 см. Это точка насыщения, а 2% — пороговая дозировка. Можно сказать, что эти значения удовлетворяют требованиям кодов для материалов SCC [11].

    Период удобоукладываемости определяется взаимодействием порошковых материалов и добавки [12]. На рисунке 5 показан график уровней замещения в зависимости от потока и времени для смесей SDA (от PC-01N до PC-05N). Расход уменьшался по мере увеличения процента замены. Время достижения такого потока также увеличилось.Объяснение такому поведению может быть получено из работ Termkhajornkit и Nawa [4] по летучей золе. В таблице 6 показаны значения дзета-потенциалов и потока в системе, сообщенные Термхаджорнкитом и Навой [4]. Видно, что когда система не содержала суперпластификатора, дзета-потенциал OPC имел заряд, противоположный заряду летучей золы. Это стимулировало флокуляцию. Это означает, что общая потенциальная энергия частиц цемента и летучей золы стала ниже, чем между частицами OPC.Обратное было при применении суперпластификатора. Заряды были такими же, и, следовательно, происходило отталкивание и улучшение потока. SDA можно классифицировать как летучую золу класса C, и, таким образом, можно привести те же причины для поведения смесей SDA без и с нафталинсульфонатом. В коде [11] указано, что смесь, прошедшая испытание на SCC, должна быть смесью с диаметром распределения от 24 см до 26 см, а также временем истечения от 7 до 11 секунд. Из таблицы результатов испытаний на содержание порошка смесью, которая удовлетворяла обоим условиям, была смесь PC-03N, которая содержала 10% замену цемента суперпластификатором нафталинсульфоната.

    зола .

    Вид порошка SP Средний дзета-потенциал (мВ) Величина потока (мм)

    OPC Отсутствует 2,17 6,5
    MS / BA *
    −1 UL / BA * −21,1 115

    OPC Да −28.4
    MS / BA * −48,6
    UL / BA * −63,3


    4. Статистический анализ
    4.1. Тест на совместимость (тест текучести)

    В таблице 7 перечислены коэффициенты независимых переменных с их соответствующим стандартным отклонением (SD), значением скорости и вероятности, а значение указывает на значимость переменной в модели, соответствующей вероятность.Если значение меньше или равно 5% (≤ 0,05), переменная принимается как значимая на уровне 5%. Анализ таблицы 7 показывает, что только независимые переменные водоцементного отношения (в / ц) и дозировка нафталинсульфоната представляют значения ниже 5%; следовательно, оставшаяся переменная (репликация) не является статистически значимой. Стандартное отклонение () составляет 1,25, коэффициент корреляции% и adj = 92,8%. Уравнение регрессии выглядит следующим образом: расход = 8,11 + 3,38 w / c + 1.13 дозировок.



    Предиктор Коэффициент SD T P

    Константа 8.1076 0,3572 25,12 0,000
    Дозировка 1.13485 0,03469 32,71 0,000

    S = 1,260; R -кв = 93,0%; R -кв (прил.) = 92,8%.

    В таблице 8 представлен анализ дисперсии, степени свободы (DF), суммы квадратов (SS), средних квадратов (MD), () и вероятности (). Статистически подтверждается наличие регрессии на уровне значимости 5%. Степени свободы регрессии и остаточной ошибки равны 3 и 128 соответственно.На рисунке 6 представлен график остатков в зависимости от скорректированных значений. Этот график показывает, что дисперсия постоянна; то есть точки равномерно разбросаны около нуля.

    Остатки, показанные на Фигуре 7, показывают, что остатки и, следовательно, ответ подчиняются нормальному распределению.


    4.2. Тест на содержание мощности

    Статистический анализ для двух тестов (распространение и время V-воронки), проведенный для теста содержания мощности, показывает, что сочетание и константа в регрессионном анализе значимы для разброса, в то время как для V- Важна только воронка смеси.Они показаны в таблицах 9, 10, 11 и 12. Они могут быть представлены, соответственно, как spread = mix и time = mix with =% и%, соответственно. Графики нормальности и невязки показаны на рисунках.


    Источник DF Нерж. 514.871 2462.06 0,000
    Дозировка 10 1737.669 173.767 830.93 0.000
    W / C * дозировка 20 119,424 5,971 28,55 0,000
    Ошибка 96 20.076 0.209

    Итого 131 2907.333

    Predictor Коэффициент SD T P
    9017 9017 9017 9017 9017 9017 9017 9017
    967
    58,53 0,000
    Mix -1,7750 0,1084 −16,37 0,000
    Зам. 0,0700 0,1371 0,51 0,616

    S = 0,6856; R -Sq = 94,0%; R -Sq (прил.) = 93,3%.
    9080

    Источник DF SS MS F 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017 126.148 63.074 134.20 0,000
    Ошибка 17 7.990 0,470



    Predictor Коэффициент SD T P

    Константа −0.200 2,096 -0,10 0,927
    Mix 3,2000 0,3891 8,22 0,000
    Зам. 0,200 1,101 0,18 0,861

    S = 1,740; R -Sq = 90,6%; R -Sq (прил.) = 87,9%.
    результаты В ходе настоящего исследования можно сделать следующие выводы: (i) Оптимальная дозировка суперпластификатора 2% и содержание цемента 417 кг / м 3 с соотношением в / ц 0,42 достигли насыщения и соответствуют требованиям норм.(ii) Насыщение также было достигнуто при соотношении 0,4 в / ц, но с приблизительной дозировкой 3,5%, что не соответствовало спецификациям кодекса. (iii) Можно сделать вывод, что SDA имеет такой же дзета-потенциал, что и летучая зола класса C. ( iv) Смесь, прошедшая испытание SCC, представляет собой смесь с 10% заменой цемента и содержащую 2% суперпластификатора нафталинсульфоната. (v) Статистический анализ текучести показывает, что как в / ц, так и дозировка значительны при = 93% и поправках. = 92,8%. Уравнение регрессии имеет следующий вид: диаметр потока = дозировка в / ц.(vi) Эффекты как от в / к, так и от дозировки являются аддитивными.

    Конфликт интересов

    Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

    Строительство дома из опилок — Зеленые дома

    Статья о строительстве дома из опилок и о том, как этот дом сохранился тридцать лет спустя.

    Тридцать лет назад — сразу после Второй мировой войны, когда так много интересных вещей человеческого масштаба все еще делалось на стольких полях — парень из Айдахо построил дом из опилок и бетона.А Popular Mechanics , среди других публикаций, сообщил о строительстве этого дома. Подходит для Popular Mechanics .

    Беда только в том. . . С тех пор мы ждали следующего отчета, который расскажет нам, насколько хорошо это необычное здание выдержало испытание временем. И — поскольку не похоже, что кто-то еще заинтересован в этом продолжении, МАТЬ взялась за проект.

    Итак, вот оригинальная история Popular Mechanics , написанная 30 лет назад.. . и новости MOTHER о доме Уэйт Фриберг из опилок / бетона, как он выглядит и работает сегодня.

    Перепечатано с разрешения Popular Mechanics , авторское право © 1948 г., Х.Х. Виндзор.

    Любой, кто переживает возрождение старого желания использовать опилки и стружку вместо песка и гравия, чтобы получить более легкий и дешевый бетон, должен познакомиться с крошечной диатомовой водорослью — чудо-природным растением — и с тем, как Уолт Фриберг использовал ее для сокращения затрат. в своем новом доме в Москве, штат Айдахо.

    Стены, полы и крыша дома выполнены из этого опилочного бетона. Объединив древесные отходы и диатомитовую землю, каждый кубический дюйм которой содержит миллионы микроскопических чудесных растений, Фриберг вдвое сократил стоимость этих частей своего дома и получил превосходную изоляцию.

    Когда он вернулся на факультет сельскохозяйственной инженерии Университета Айдахо, Фриберг, ветеран армейских инженеров, стал искать дом.

    Он видел опилки и стружку, сжигаемые как отходы на мельницах в его местности.Он понял, что строительство дома из древесных отходов было давней мечтой. Большинство инженеров давно оставили надежды получить удовлетворительный древесный бетон. Когда смесь была бедной, чтобы использовать дешевые древесные отходы, полученный бетон не был прочным и горел почти так же быстро, как дерево. Когда смесь была достаточно густой, чтобы быть огнестойкой, дополнительный использованный цемент уничтожил большую часть экономии на песке и гравии, а также разрушил большую часть изоляционных свойств древесины.

    Но во время войны Фриберг кое-что узнал о диатомовых водорослях, что придало ему смелости снова открыть старый вопрос.Кизельгур использовался в промышленности как изолятор и огнезащитный состав. Он видел, как волшебный материал, добавленный к бетонной смеси при строительстве гигантских мелиоративных дамб в Калифорнии, значительно повысил ее работоспособность. Возможно, диатомит решит проблему опилок и бетона. Эта догадка оправдалась, и сегодня диатомовые водоросли находятся в центре внимания зданий.

    Отложения диатомовых водорослей широко распространены в США. Некоторые из крупнейших месторождений находятся в Орегоне, Калифорнии, Неваде и Вашингтоне.Из-за его стратегического значения во время войны велись интенсивные поиски новых месторождений. Были найдены многие. Хотя большинство новых слишком малы или недостаточно чисты для промышленного использования, они подходят для бетона из опилок и стружки.

    Во времена дедов диатомовая водоросль была просто интересным маленьким растением, на которое можно было смотреть в микроскоп. Школьные учителя поразили своих учеников чудесами природы, подняв небольшую щепотку диатомовой земли и сказав им, что она содержит тысячи и тысячи крошечных раковин.

    Однако за последнее десятилетие диатомовая водоросль заняла ведущее место в промышленности. Он используется в зубной пасте, лаке для серебра и лака для ногтей, в фильтрах очистки на сахарных заводах, в качестве изоляторов в высоковольтных двигателях и электрическом оборудовании, а также в качестве наполнителей в красках. Кизельгур имеет более сотни промышленных применений, в основном в химической, пищевой и фармацевтической областях.

    Фриберг обнаружил, что когда небольшая часть цемента была заменена некоторым количеством диатомовой земли и добавлена ​​немного обычной глины, в результате получился недорогой, обладающий высокими изоляционными свойствами, огнестойкий и легкий бетон.Стоимость, примерно вдвое меньшая, чем у обычного бетона, варьируется в зависимости от местности, в зависимости от наличия древесных отходов и расстояния от месторождения диатомитовой земли.


    Бетон Фриберга не выдерживает больших нагрузок. Но поскольку один дюйм его имеет изоляционную ценность от 12 до 14 дюймов обычного бетона, он отлично подходит для полов и стен, где требуется высокая изоляция и нагрузка может нести облицовка из кирпича или досок. Опилки-бетон можно распиливать, сверлить и забивать гвоздями, как и по дереву, и они обладают удивительной огнестойкостью.Вот смесь, которую он использовал: одна часть цемента, одна часть диатомитовой земли, три части опилок, три части стружки и одна часть глины. . . все измерения объема. Поскольку бетон из опилок имеет более высокую степень абсорбции, чем прямой бетон, Фриберг добавил в смесь одну часть глины.

    Сначала в бетономешалку загружается глина. Если она комковатая, перед использованием ее следует замочить на ночь. Затем засыпается диатомит, затем цемент. После тщательного перемешивания добавляют опилки и стружку.

    В своем доме Фриберг использовал опилки заводской обработки, выдержанные около года. В ходе экспериментов он обнаружил, что новые опилки нежелательны. Также нет опилок, которые стояли так долго, что они белые. Он говорит, что старение за один год — это правильно. При стружке возраст не важен. Он использовал их зеленые, возрастом от года и старше. Все они работали хорошо.

    В доме использовалась смесь опилок и стружки сосны, лиственницы и пихты. В отходах была кора.Фриберг не нашел возражений против этого, но обнаружил, что кедровые и твердые древесные отходы не подходят.

    Для использования диатомовых водорослей в домашних условиях не требуется специального оборудования. Литые блоки и кирпич Friberg в промышленном оборудовании для производства сборного железобетона. Он также отливал маленькие и большие плиты, используя простые формы, подобные тем, которые используются при строительстве домов из сырца. Поскольку бетон такой легкий, он вылил пол и крышу своего дома одной плитой.

    Для испытания бетонных опилок компания Friberg отлила плиты размером 32 на 48 дюймов и толщиной один дюйм.Ближе к краю этих плит он забил гвозди по восемь пенсов и просверлил ряды отверстий с помощью дрели. Расщепления не было. Потом пил пилой порезал полосы шириной в дюйм. С помощью шлифовальной машины он создал гладкую поверхность, которую можно было красить. Он проверил плиту на изоляционные свойства и обнаружил, что она равна футу или более бетону.

    Фриберг считает, что плита размером 3-5 / 8 на 32 на 48 дюймов, которую можно собирать и выдерживать в свободное время, будет полезна в хозяйственных постройках. Этот размер будет охватывать две стойки или балки пола или может быть распилен, чтобы поместиться между стойками.Фермеры Северо-Запада уже проявляют интерес к его использованию для молочных коровников и птичников, где существует большая потребность в недорогом материале, обладающем высокой изоляционной способностью.

    Когда-нибудь будет найден способ гидроизоляции бетона. До тех пор Фриберг рекомендует использовать его только в помещении. Есть еще одно ограничение. Обладая прочностью нагрузки от одной четверти до одной трети, чем у обычного бетона, он не может использоваться на тротуарах или проездах, а также для полов и стен, которые несут большие нагрузки.

    Но даже если эти ограничения никогда не будут полностью преодолены, Фриберг видит огромное поле для крошечной диатомовой водоросли, кучи опилок и стружки. Пол в его гостиной, например, представляет собой сплошной блок из недорогого материала. Прямо на него крепятся ковролин и линолеум. Крыша также представляет собой цельный блок, покрытый рубероидом и измельченной пемзой. В стенах его дома основную нагрузку несет слой обычных бетонных кирпичей. Утеплитель обеспечивают опилочно-бетонные кирпичи двойной толщины.

    Поскольку месторождения диатомита были исследованы во время войны, государственные геологические департаменты и шахтные школы имеют информацию об их местонахождении. Итак, если потенциальный строитель может найти удобную кучу опилок и стружки сосны, лиственницы или пихты и недалеко от месторождения диатомовой земли, Фриберг нашел способ собрать их вместе, чтобы произвести новый вид недорогого стройматериала.

    Дом Фрибергов 30 лет спустя

    Недавно сотрудники MOTHER Мартин Фокс и Трэвис Брок отправились в Москву, штат Айдахо, чтобы найти дом из древесного волокна / диатомита / бетона, о котором сообщал Popular Mechanics 30 лет назад (см. Предыдущий рассказ).Наши бесстрашные сотрудники хотели узнать: сохранилось ли первоначальное здание? Бетонная смесь осела, потрескалась или распалась? Как сооружение выдержало тридцать лет холодных зим в Айдахо?

    Ответы на эти вопросы — Мартин и Трэвис быстро усвоили — были «да», «нет» и «очень хорошо, спасибо».

    Оказывается, пара по имени Рэй и Барбара Харрисон 23 года назад купила необычный дом из опилок у строителя-новатора дома — Уэйта Фриберга.Рэй и его жена, которые вырастили семерых детей в особенном доме, утверждают, что дом на протяжении многих лет служил им хорошей службой. Основная структура по-прежнему в хорошем состоянии и не имеет признаков разрушения.

    Что касается тех «холодных зим в Айдахо», Рэй Харрисон говорит, что — отчасти благодаря отличным изоляционным свойствам опилок — бетонных стен — счета за отопление его семьи обычно составляют на 30-40 долларов в месяц меньше, чем у их соседей, которые живут в однотипные дома обычной постройки.Рэй, однако, быстро добавляет, что по крайней мере часть этой экономии тепла может быть отнесена на счет «пассивных» конструктивных особенностей солнечного тепла, которые Уолт Фриберг внедрил в дом.

    Например, северная сторона дома выстроена на склоне, а большие окна закрывают большую часть южной стороны дома. Более того, прямо над окнами, выходящими на южную сторону, находится серия алюминиевых отражателей, которые направляют в жилище даже больше энергии зимнего солнца, чем обычно проникает внутрь.(Те же самые отражатели несколько затемняют окна и помогают защищать от нежелательной жары летом). Ночью, семья Харрисонов; «закрыть» солнечное тепло в здании, натянув прочно изолированные шторы за окнами, выходящими на юг.

    Если вы до сих пор следили за этой историей, вам может быть интересно [1], были ли когда-либо построены какие-либо другие конструкции с использованием «древесно-волокнистого и диатомитового» бетона, разработанного Вальтером Фрибергом, и [2] что с этим случилось? во всяком случае, умный парень Фриберг.Что ж, Уолт — за эти годы — построил или помог построить около 30-40 зданий из опилок в северном Айдахо / восточном районе Вашингтона. . . и он все еще работает с материалом. Уолт говорит, что он считает, что с точки зрения стоимости материалов и энергии его необычная бетонная смесь сегодня даже более привлекательна, чем 30 лет назад.


    Первоначально опубликовано: январь / февраль 1978 г.

    IRJET-Запрошенная вами страница не найдена на нашем сайте

    IRJET приглашает статьи из различных инженерных и технологических дисциплин для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 7, Июль 2021 г. Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 7, июль 2021 Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 7, июль 2021 Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 7, июль 2021 Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 7, июль 2021 Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 7, июль 2021 Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 7, июль 2021 Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 7 (июль-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 7, июль 2021 Публикация продолжается…

    Обзор статей


    IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы управления качеством.


    ОЦЕНКА РАЗМЕРНОЙ СТАБИЛЬНОСТИ ЦЕМЕНТА — ДОСКА СО СВЯЗАННЫМИ ДИСКАМИ ИЗ ПОСТ

    ОЦЕНКА РАЗМЕРНОЙ СТАБИЛЬНОСТИ ЦЕМЕНТА — СВЯЗАННОЙ ДОСКИ ИЗ ОСТАТКОВ ПОСЛЕ УРОЖАЯ БАНАНА И ОПЫЛОВ

    0488-A2

    АДЖАИ, БАБАТУНДЕ 1


    РЕФЕРАТ

    Тонкие (толщиной 6 мм) плотные однородные цементно-стружечные плиты были изготовлены из смешанных измельченных хлопьев стебля банана и опилок смешанных пород древесины.Влияние весовой пропорции двух типов лигно-целлюлозных материалов на пяти уровнях смешивания: 0: 100, 25: 75, 50: 50, 75: 25 и 100: 0 опилок к хлопьям стебля банана; и соотношение смеси цемента на двух уровнях 2,0: 1,0 и 3,0: 1,0 на набухание по толщине и свойства водопоглощения экспериментальных плит были оценены в исследовании. Каждая плита была изготовлена ​​при стандартной концентрации химических добавок 3,5% от веса цемента в плите и плотности 1150 кг / м 3 на основе номинальной сухой массы в печи.Результаты показали, что технически невозможно изготавливать плиты из чистых банановых волокон без добавления частиц опилок. Все плиты, изготовленные на уровне шляпки, не склеились, так как цементное вяжущее не схватывалось после 24 часового цикла прессования. Следовательно, все такие доски рассыпались в процессе извлечения из формы. Панели, полученные из остальных комбинаций обработки, показали значения водопоглощения, которые находились в диапазоне от 3,69 до 22,22%, и значения набухания по толщине от 0,27 до 6,50% после выдержки в воде в течение 48 часов перед испытанием.Увеличение содержания древесного волокна (опилок) проявилось в производстве экспериментальных плит с более стабильными размерами. Результат показывает, что для того, чтобы измельченные банановые волокна подходили для производства цементных плит, предварительная обработка будет обязательной.


    ВВЕДЕНИЕ

    В результате антропогенного воздействия на лесные массивы значительно сократилось доступное количество ценных и хозяйственных пород деревьев. Чрезмерная эксплуатация лиственных пород Нигерии из естественных и плантационных лесов требует сосредоточения внимания на альтернативных источниках сырья, по крайней мере, для использования в производстве листовых материалов, которые могут заменить пиломатериалы (пиломатериалы) и фанеру для некоторых конкретных конечных целей в частности для изготовления различных марок мебели.К таким потенциальным панельным продуктам относятся ДСП и ДВП. Эти альтернативные источники сырья — это, в частности, отходы лесозаготовок; отходы, образующиеся при промышленной переработке древесины на лесопильных, фанерных и мебельных заводах; а также сельскохозяйственные остатки. Это сырье было коммерчески переработано в целлюлозу / бумагу; смоляные и цементно-стружечные плиты; и древесноволокнистые плиты в разных странах (Коллманн и др. 1975, Сандерманн 1970, Симатупанг и др. 1978). Выгодное использование этого сырья для производства изделий из древесины с добавленной стоимостью существенно минимизирует периодическую нехватку древесного сырья и снижает эксплуатационную нагрузку на лесные ресурсы в различных регионах мира.Среди сельскохозяйственных остатков, которые использовались до сих пор, есть жмых, стебли кукурузы и хлопковые стебли, в то время как лабораторные исследования были сосредоточены на использовании многих других (Sandermann 1970, Bison 1981, Elten 1981, Dada and Badejo 1981, Ajayi, 1982 ). Синтетический клей является основным связующим компонентом в деревообрабатывающей промышленности. Он обеспечил водонепроницаемые и устойчивые к насекомым / грибкам скрепления, которые позволили расширить использование древесностружечных плит в мебели и конструкциях в разных странах. Нехватка этой группы клеев в некоторых странах и высокая стоимость в других, поскольку они являются побочными продуктами нефтехимической промышленности, способствовали использованию цемента для производства ДСП, особенно в развивающихся странах (Moslemi 1989, Badejo 1984, Oyagade 1995, Ajayi 2000).В Нигерии инфляция и проблемы с обменом валют привели к частым трудностям, возникающим при производстве древесностружечных плит на связующей смоле. Было отмечено, что связующее на основе смолы составляет около 65% затрат на сырье для производства древесностружечных плит (Omoluabi, 1982). Поэтому необходимо искать альтернативное связующее, например цементное тесто. Идея использования цемента в качестве вяжущего существовала еще в 1930 году, когда при производстве картона использовался магнезитовый цемент в качестве вяжущего (Maloney, 1977).

    Типы панелей, производимых с использованием цемента в качестве связующего, зависят от геометрии древесных частиц и типов используемых минеральных связующих. Доступны различные типы плит, в том числе древесноволокнистые плиты excelsior, гипсокартонные плиты и цементно-стружечные плиты. Древесно-цементные плиты обладают некоторыми присущими им свойствами, которые делают их универсальными в качестве конструкционного материала для потолка, кровли, полов, перегородок, облицовки, опалубки и элементов стеновых панелей для недорогого жилья во многих странах (Lee, 1991).Цементно-стружечная плита имеет много преимуществ перед смолой-древесно-стружечной плитой, поскольку они обладают высокой устойчивостью к возгоранию, низким поглощением влаги и набуханием при длительном замачивании в воде или воздействии влаги, высокой устойчивостью к насекомым, плесени и грибкам (Dinwoodie and Пакстон, 1991; Симатупанг, 1987, Сандерманн, 1970).

    Несмотря на отличные характеристики цементно-стружечных плит, многие породы древесины и сельскохозяйственные остатки могут плохо сцепляться с цементом для образования подходящей панели из-за присутствия в древесине некоторых химических веществ, которые препятствуют правильному схватыванию цементного вяжущего (Davis, 1966). , Weatherwax и Tarkow, 1967, Simatupang et al, 1991, Fuwape, 1992; Ajayi, 2000;).Эти химические вещества включают сахар, крахмал, гемицеллюлозы заболони и экстрактивные, особенно фенольные соединения (Biblis and Lo, 1968). В то время как картон производился из разных пород древесины в коммерческих целях в разных странах, сельскохозяйственные остатки использовались аналогичным образом, по крайней мере, в лабораторных условиях (Sandermann 1970, Simatupang et al, 1978, Elten 1981). Послеуборочные остатки банановых стеблей являются потенциальным сырьем для производства ДСП в некоторых районах страны, например. Огун, Ондо, Экити, Эдо и Кросс-Ривер доступны в больших количествах.Таким образом, целью данного исследования является инициирование лабораторных исследований по использованию хлопьев остатков банановых стеблей в производстве цементных плит и изучение осуществимости этого, если бы остатки были объединены и смешаны с остатками опилок лесопиления при различном перемешивании. соотношения.

    МАТЕРИАЛЫ И МЕТОДЫ

    Стебли бананов, использованные в этом исследовании, были собраны с плантационной фермы, созданной при Федеральном технологическом университете, Акуре, Нигерия. После этого они были разрезаны на заготовки и отправлены в лесной цех Института лесоводства Нигерии для дальнейшей обработки.Позже заготовки были измельчены на хлопья на шипорезном станке, на котором были надрезные ножи, которые давали однородные хлопья размером 50 мм в длину и 25 мм в ширину. После этого хлопья сушили до содержания влаги 12% и упаковывали в мешки для дальнейшего исследования. Позднее хлопья были подвергнуты предварительной обработке горячей водой в алюминиевой ванне при температуре 80 90 165 o 90 166 ° C в течение периода выдержки в течение 1 часа. Этот процесс предварительной обработки проводился для облегчения удаления сахаров и других химических веществ, присутствующих в сырье, которые, возможно, могут замедлить или полностью замедлить схватывание цементного вяжущего.После окончания периода замачивания горячую воду сливали, а материалы (хлопья) сушили на воздухе до содержания влаги 12% перед использованием. Затем они хранились в полиэтиленовых пакетах для изготовления картона. Опилки смешанных пород были собраны на лесопилке Научно-исследовательского института лесного хозяйства Нигерии (FRIN) в Ибадане. С частицами опилок обращались, обрабатывали и хранили так же, как с хлопьями остатков банана.

    Эксперимент был разработан с учетом следующих производственных переменных:

      я.Плотность плиты при 1150 кг / м 3
      ii. Пропорция примешивания опилок к банановым хлопьям составляет 0: 100, 25:75, 50: 50,75: 25, 100: 0 от веса этого линго-целлюлозного сырья в картоне.
      iii. Соотношение смеси цемента и древесины составляет 2,0: 1,0, 3,0: 1,0 в зависимости от веса в сухом состоянии и объема плиты.
      iv. Концентрация добавки на уровне 3,5% от веса цемента в каждой плите.
      v. Давление прессования: 1,23 Н / мм 2 .
      vi. Размер платы: 350 мм (ширина) на 350 мм (длина) на 6 мм (толщина)
      План эксперимента представлял собой факторный эксперимент 2 × 5 в полной рандомизированной схеме, комбинация которого дала 10 обработок.

    В соответствии с каждым уровнем соотношения смешивания, используемым с уровнем плотности картона, необходимое количество опилок и банановых хлопьев отвешивали и помещали в пластиковую емкость. Раствор хлорида кальция и воды добавляли равномерно и перемешивали. Деревянные формы размером 350 мм x 350 мм помещали на герметизирующую оболочку с несущими листами полиэтилена, чтобы предотвратить прилипание сформированных досок к плитам. После этого композиция была разложена на тарелке; деревянный пресс использовался для придавливания композиции внутри формы.Позже он был покрыт другим полиэтиленовым листом, после чего на него была помещена верхняя металлическая пластина, перенесена в пресс и подвергнута холодному прессованию под давлением 1,23 Н / мм 2 до толщины 6 мм в течение 24 часов. перед тем, как вынуть их из форм для отверждения. После прессования извлеченные из формы плиты были упакованы в полиэтиленовые мешки еще на 28 дней, чтобы улучшить дальнейшее отверждение цементного вяжущего. Возможная утечка воды из досок внутри пакетов была предотвращена за счет надлежащего запечатывания пакетов.

    Образцы для испытаний были вырезаны на дисковой пиле. Края были обрезаны, чтобы избежать эффекта краев на досках во время испытаний. Доска была дополнительно разрезана на различные образцы для испытаний для оценки в соответствии со стандартом BS 5669: (1979). Проверяемыми параметрами являются водопоглощение и набухание по толщине. Данные, полученные в ходе эксперимента, были проанализированы с использованием описательного статистического анализа, который дал обобщение исходных данных; представление таблицы, в котором показаны вариации переменных на разных уровнях рассматриваемых факторов и двухсторонний дисперсионный анализ для факторных экспериментов, в которых оценивается важность различных источников вариации зависимых переменных.

    РЕЗУЛЬТАТ И ОБСУЖДЕНИЕ

    Сводка средних значений водопоглощения, измеренных в каждой из комбинаций обработок, использованных в этом исследовании, представлена ​​в таблице 1. Средние значения, полученные для водопоглощения (WA) после 48-часового погружения, варьировались от 3,69 до 22,22%. Наименьшее значение водопоглощения 3,69% было получено при соотношении смешивания цемента и целлюлозных материалов и соотношении 100: 0 опилок к банановым хлопьям, что означает, что увеличение содержания опилок в плите привело к снижению водопоглощения. .

    Таблица 1: Средние значения водопоглощения и толщины при набухании Цементно-стружечные плиты с использованием банановых хлопьев и опилок.


    Источник DF SS MS F 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017 204.90 102,45 33,83 0,000
    Ошибка 7 21,20 3,03

    Пропорция смешивания

    Соотношение смеси цемент / древесина

    Плотность платы

    Концентрация добавки (%)

    Водопоглощение (%)

    Толщина Набухание (%)

    Опилки

    Банановые хлопья

    0: 100

    2.0: 1.0

    1150

    3,5

    25: 75

    2,0: 1,0

    1150

    3,5

    50:50

    2,0: 1,0

    1150

    3.5

    22,22

    6.50

    75: 25

    2,0: 1,0

    1150

    3,5

    13,57

    6,03

    100: 0

    2,0: 1,0

    1150

    3,5

    10.37

    4,59

    0: 100

    3,0: 1,0

    1150

    3,5

    25: 75

    3,0: 1,0

    1150

    3,5

    8,23

    3.73

    50:50

    3,0: 1,0

    1150

    3,5

    5,63

    0,84

    75: 25

    3,0: 1,0

    1150

    3,5

    5.60

    0,67

    100: 0

    3.0: 1.0

    1150

    3,5

    3,69

    0,27

    Это наблюдение согласуется с отчетом Fuwape (1992), Oyagade (1990) и Ajayi (2000). Результат показал, что пропорция смешивания и содержание цементного вяжущего положительно влияют на водопоглощающие свойства цементно-стружечной плиты. По мере увеличения содержания цемента становится доступным достаточное количество цементного вяжущего для тщательного покрытия банановых хлопьев.Хотя водопоглощение (WA) уменьшалось с увеличением доли опилок и хлопьев в смеси, уменьшение значений водопоглощения указывало на то, что вода не могла легко проникнуть в плиту, когда доля опилок в плите высока. Картон с соотношением компонентов смеси 0: 100 оказался более пористым и быстрее впитал больше воды из-за повышенного количества банановых хлопьев, присутствующих в нем. Промежуточная полость заполнялась водой по-разному, что увеличивало количество воды, постоянно скапливающейся в этих пустотах, и в конечном итоге увеличивало вес досок (Ajayi 2000).

    Результат показал, что по мере увеличения соотношения опилок и банановых хлопьев водопоглощение снижалось. Наблюдаемое снижение водопоглощения с увеличением содержания цемента, вероятно, объясняется увеличением массы цементного геля, охватывающей и проникающей в древесные частицы (Oyagade, 1988; 1995). Заполнение просвета клеток древесины цементным гелем может уменьшить объем просвета клеток, доступного для воды, и, следовательно, всей плиты.

    Результаты дисперсионного анализа для теста показывают, что соотношение материалов к цементу и взаимодействие между пропорцией смешивания и соотношением смешивания сильно влияли на водопоглощение (Таблица 2).Таким образом, установлено, что пропорция смешивания влияет на результат получаемого WA.

    Таблица 2: ANOVA для водопоглощения (48 часов)

    Источник отклонения

    Степень свободы

    Сумма квадратов

    Средние квадраты

    Коэффициент отклонения (F)

    Значения P

    A

    3

    317.380

    105,79

    62,635 *

    0,023

    B

    1

    182,436

    182,436

    108.014 *

    0,016

    AB

    3

    472,826

    157.609

    93,315 *

    0,008

    Ошибка

    16

    27.029

    1,689

    Итого

    26

    999.671

    * = Значительно (p <0.05), нс = Несущественно (p ≥ 0,05)
    A = пропорция смешивания, B = пропорция смешивания
    Набухание по толщине после 48-часового погружения в воду

    Среднее набухание по толщине после 48-часового погружения в воду представлено в таблице 1. Значения, полученные для набухания по толщине (TS), варьировались от 0,27 до 6,50%. Представленный результат достаточно хорошо сравнивается с данными, описанными в литературе: от 1,8 до 3,1% у Геймера и др. (1993), от 0,98 до 3,62% у Бадеджо (1990) и Аджайи (2000).Значения набухания по толщине уменьшались по мере увеличения соотношения цемент / смесь с увеличением пропорции смешивания. Увеличение соотношения опилок и банановых хлопьев улучшило изменение размеров плит. Плиты, полученные при пропорции смешивания 50:50 и 75:25, оказались более стабильными и были улучшены за счет комбинации опилок и банановых хлопьев для получения более стабильных размеров плит по сравнению с панелями, полученными при использовании обычных банановых хлопьев.

    Результат показывает, что увеличение доли опилок в смеси с банановыми хлопьями привело к уменьшению набухания по толщине.Значения набухания по толщине (TS) увеличиваются с увеличением содержания хлопьев в картоне и уменьшением содержания опилок. Аналогичным образом, значения набухания по толщине (TS) уменьшались при увеличении отношения цемента к волокну. Цементно-стружечные плиты, изготовленные в соотношении 100: 0 опилок к банановым хлопьям, при соотношении цемента к целлюлозным материалам 3,0: 1,0 давали наименьшее значение разбухания по толщине (TS) 0,27%. Дисперсионный анализ для теста показывает, что пропорции смешивания, а также взаимодействия между различными образцами с соотношением смешивания не являются значимыми при уровне вероятности 5% (Таблица 3).

    Таблица 3: ANOVA для набухания по толщине (48 часов)

    Источник отклонения

    Степень свободы

    Сумма квадратов

    Средние квадраты

    Коэффициент отклонения (F)

    Значения P

    A

    3

    12,385

    4.128

    15.066 нс

    0,850

    B

    1

    50,547

    50,547

    184,478 *

    0,038

    AB

    3

    89,453

    29,818

    108.825 нс

    0,257

    Ошибка

    16

    4.389

    0,274

    Итого

    26

    156,775

    * = Значительно (p <0.05), нс = Несущественно (p ≥ 0,05)
    A = пропорция смешивания, B = пропорция смешивания

    ЗАКЛЮЧЕНИЕ

    Результаты этого исследования показали, что производство картона возможно из банановых хлопьев, смешанных с опилками. Однако использование банановых хлопьев без опилок оказалось невозможным. Исследование также показало, что пропорция смешивания влияет на стабильность размеров. Значения, полученные для водопоглощения и набухания по толщине после 48-часового цикла пропитывания водой, варьировались от 3.69 до 22,22% и 0,27 — 6,50% соответственно. Эти результаты показывают, что увеличение пропорции смешивания и содержания цемента привело к улучшению стабильности размеров плит. Результат, полученный в результате этого исследования, показывает, что картон можно успешно производить из банановых хлопьев при смешивании с опилками при пропорциональном уровне опилок / хлопьев 50:50 и 75:25. Такие плиты можно использовать для внутреннего строительства, где нет риска длительного намокания окружающей среды. Это исследование является предварительным, поэтому рекомендуются дальнейшие исследования.

    ССЫЛКИ

    Аджайи Б. (1982). Исследование физико-прочностных свойств ДСП на основе кукурузных стеблей. HND, Диссертация, Школа Лесного Хозяйства, Рез. Inst. Нигерии.

    Аджайи Б. (2000). Прочность и стабильность размеров цементно-стружечных плит, произведенных из Gmelin arborea и Leucecina Leucocephala. Кандидатская диссертация, Кафедра лесного хозяйства и технологии древесины стр. 11 — 40.

    Бадеджо, С. О. и Дада С. А. (1978): Влияние удельного веса и содержания смолы на прочность на изгиб, водопоглощение и набухание по толщине МДФ.Нигерийский журнал лесного хозяйства 8 (1 и 2): 56-59.

    Badejo, S. O.O. (1984). Влияние горячей воды и предварительной химической обработки на физико-механические характеристики прочности древесно-цементных плит, изготовленных из трех лесных плантаций Нигерии. Серия семинаров, ТОМ.1, № 142П ФРИН, 1984.

    Бадеджо, С. О. (1990): Лесопильные отходы в Нигерии и их использование. Приглашенный доклад, Материалы национального семинара по лесохозяйственным стратегиям самообеспечения в производстве древесины.Научно-исследовательский институт лесного хозяйства Нигерии, Ибадан, 12-15 июля 1990 года.

    Biblis, E.J. и Ло, К. (1988). Влияние сахаров и других экстрактивных веществ древесины на схватывание южной сосново-цементной смеси. Лесопромышленный журнал 6пк 28-34.

    Британский институт стандартов: B.S. 5669: 1979. Спецификация на древесно-стружечные плиты и методы испытаний древесностружечных плит BSI, Лондон.

    Бистон-Верке, Ко (1981). Установки древесно-цементных плит. Техническая литература, весна 1, Западная Германия

    Дэвис, Т.К. (1966): Влияние синевы на схватывание эксельсиорцементной смеси. Для. Prod. J. 16 (6): 49-50

    Динвуди, Дж. М. и Пакстон Б. Х. (1991): Долговременные характеристики цементно-стружечных плит. В процессе. Конференция по неорганическим древесно-волокнистым композиционным материалам. Для. Prod. Res. Soc. Мэдисон W / S. pp45-54. В Муслеми, А.А. (ред.).

    Fuwape, J. A. (1992) Сорбционные свойства древесины — цементных частиц — плиты в зависимости от соотношения цемент / древесина. J. Ind.Акад. Wood Sci. 23 (1): 1-9.

    Geimer, R.L .; Souza, M. R .; Мослеми А. А. и Суматупанг Н. Х. (1993). Применение диоксида углерода для быстрого производства цементно-стружечных плит. Стр. 31 — 41 в Муслеми, А. А. (Ред.) Неорганические древесные и волокнистые композиционные материалы. Vol. 3 Forest Prod. Res. Soc. Мэдисон, Висконсин, стр. 32 — 34. In Moslemi A. A. (Ed).

    Kollmann, F.F. П., Куензи Э. В. и Стамм А. Дж. (1975): Принципы науки и технологии древесины, Том II. Древесные материалы.Springer Verlag Inc. Press, Нью-Йорк.

    Ли, А. В. К. (1991). Последняя разработка в области производства древесноволокнистых плит из клееного бруса. В. прок. Второй международный турнир по неорганической древесине и волокнистым композиционным материалам Forest Prod. Res. П. Мэдисон. WIS. Стр. 103 — 107.

    Мэлони, Т. (1977): Современное производство древесностружечных плит и древесноволокнистых плит сухим способом. Миллер Фримен, Сан-Франциско.

    Муслеми, А.А. (1989): Древесина — изделия из цементных панелей: совершеннолетие.В: Proc. Волокно и ДСП на неорганических связующих, лесопродукция. Res. Soc. Мэдисон, Висконсин, стр. 12–18.

    Омолуаби А.Б. (1982). Перспективы спроса на ДСП в Нигерии. M.sc. кандидатская, кафедра леса, Рез. Manag. Университет Ибадана, Нигерия.

    Оягаде, А. О. (1988). Толщина Набухание и водопоглощение цементно-стружечных плит под влиянием трех переменных процесса. Лесной журнал 18 (1 и 2): 20-27.

    Оягаде, А.О. (1990). Влияние соотношения цемент / древесина на соотношение между плотностью цементно-стружечных плит и свойствами изгиба. Тропический журнал для. Sc. 7pp.

    Оягаде, А. О. (1995). Влияние щелочности портландцемента на стабильность размеров цементно-древесно-стружечных плит. Нигерийский журнал. 24 (1 и 2) стр. 21 — 25.

    Зандерманн, В. (1970). Технические процессы производства древесноволокнистых цементных плит и их приспособление для утилизации сельскохозяйственных отходов.ЮНИДО. ID / WG 82/4. 1970.

    Simatupang, M. H .; Seddiq, N .; Хабигхорст К. и Геймер Р. Х. (1991). Технология быстрого производства древесно-минеральных композитных плит. Proc. Второй Int. Неорганическая связанная древесина и волокнистые композиционные материалы. Для. Prod. Res. Soc. Мэдисон. WIS. Стр. 18 — 27. В Муслеми А.А. (Ред).

    Симатупанг, М. Х., Шварц, Х. Г. и Брокер, Ф. В. (1976): Небольшие предприятия по производству древесных композитов на минеральной связке. 8 th World Forestry Congress, FID-11 / 21-3, Джарката, Индонезия, 16-28 окт.1978, Специальная бумага.

    Симатупанг, М. Х. (1987): Процесс производства и долговечность древесных композитов на цементной основе. Proc. 4 th Внутр. конф. по долговечности строительных материалов и строительных компонентов т.1. Пергамон, Оксфорд, стр 128-135.

    Weatherwax R.C. и Tarkow, H. (1967): Эффект схватывания древесины портландцемента: гниющая древесина как ингибитор. Для. Prod. J. 17 (7): 30-32.


    1 Департамент лесного хозяйства и деревообрабатывающей промышленности,
    Федеральный университет университета, П.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *