Все о ПРА — электромагнитном пускорегулирующем аппарате
Все о ПРА — электромагнитном пускорегулирующем аппарате
1. Общее описание электромагнитных ПРА :
Электромагнитныe ПРА для трубчатых люминесцентных и компактных люминесцентных ламп внутреннего применения. Иногда их называют: дроссель для ламп дневного света. Класс защиты от поражения электрическим током — I, степень защиты от воздействия от окружающей среды — IP 20. Применяется для двухламповых светильников. Простой монтаж и подключение.
Область применения:
- магазины,
- офисные центры,
- гостиницы,
- промышленные помещения.
Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель), подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами электромагнитного дросселя для ламп дневного света является его простота и дешевизна. Недостатки электромагнитного балласта — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск пра (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Электромагнитный дроссель также может издавать низкочастотный гул.
Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.
Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.
2. Регламентирующие нормативные документы для электромагнитных ПРА- DIN VDE 0100 Предписание по устройству силовых электроустановок с номинальным напряжением ДО 1000 В
- EN 60598-1 Осветительные приборы — часть 1: Общие требования и испытания
- EN 61347-1 Устройства управления для ламп — часть 1: Общие требования и требования безопасности
- ЕN 61 347-2-8 Устройства управления для ламп — часть 2-8: Особые требования к электромагнитным ПРА для люминесцентных ламп.
- ЕN 60921 ПРА для трубчатых люминесцентных ламп. Требования к рабочим характеристикам.
- ЕN 50294 Методы измерения общей потребляемой мощности соединения ПРА — лампа.
- ЕN 61000-3-2 Электромагнитная совместимость. Предельно допустимые токи высших гармоник в питающей сети.
- ЕN 61547 Осветительные приборы и системы общего назначения. — Требования к электромагнитной совместимости и устойчивости к электромагнитным помехам.
З. Общие данные ПРА
Электромагнитные (индуктивные) ПРА являются активными компонентами, которые совместно со стартерами нагревают электроды ламп, обеспечивают напряжение зажигания и стабилизируют ток лампы в течение ее работы. Для компенсации реактивного тока необходимы конденсаторы последовательного или параллельного соединения.
При установке в светильники нужно обращать внимание на напряжение и частоту сети, габаритные размеры и температурные пределы, а также возможное генерирование шумов.
Электромагнитные ПРА оптимизированы в отношении к их магнитным полям и магнитным нагрузкам так, чтобы они обычно не ощущались. Поскольку магнитные колебания могут воздействовать в зависимости от конструкции светильников на другие области, то нужно учитывать при проектировании светильников.
Необходимо сделать конструкцию жесткой, чтобы вибрации не распространялись.
Срок службы индуктивного ПРА определяется выбором материала и изоляцией обмотки.
Предельная температура обмотки обозначает ту величину температуры (tw), которую выдерживает изоляция при непрерывной работе при номинальных условиях в течение 10 лет. Эта предельная температура обмотки не должна быть превышена в светильнике в реальных условиях, тогда можно достигнуть работы ПРА на весь срок службы. Установленная в светильнике температура обмотки электромагнитного балласта состоит из температуры окружающей среды, температурных условий в светильнике и потери мощности дросселя. Мерой потери мощности ПРА является Δt, значение которой находится на маркировке балласта. В дополнение к этому, потеря мощности схемы соединения дросселя и люминесцентной лампы измеряется по норме ЕN 50294. Этот метод измерений является основой классификации энергопотребления ПРА.
Кроме этого, применяется европейская директива 2000/55/ЕС «Предельные допустимые величины потребления мощности схемами люминесцентных ламп».
При включении электромагнитного балласта возникают кратковременные высокие импульсы тока из-за паразитарных нагрузок, которые суммируются в зависимости от количества светильников в осветительной установке. Эти высокие токи при включении системы нагружают автоматы защиты электропроводки, поэтому необходимо использовать соответствующим образом подобранные автоматические выключатели.
Индуктивные ПРА конструктивно вызывают токи утечки, которые отводятся заземлением светильника (устройство заземления). Максимально допустимая величина тока утечки у светильников класса защиты I составляет 1 мА.
4. Электромагнитная совместимость (ЭМС/ ЕМV)Помехи:
Измерение напряжения помех должно проводиться у светильников с электромагнитными ПРА на
контактных зажимах, поскольку частота напряжения ламп этих систем ниже 100 Гц. Это низкочастотное напряжения помех, как правило, не критично у электромагнитных дросселей, если конструкция ПРА согласована в этом отношении.
Невосприимчивость к помехам:
Благодаря жесткой конструкции и специально отобранным материалам, электромагнитные ПРА обеспечивают высокую степень защиты от помех и не подвержены отрицательному влиянию присутствующих помех в сети.
Гармоники сети:
Люминесцентные лампы имеют пик перезажигания после каждого N-прохода тока ламп, лампы
гаснут на короткое время (почти незаметно глазом). За счет этих пиков перезажигания люминесцентных ламп создаются гармоники сети, которые сглаживаются с помощью импеданса ПРА. С помощью правильной конструкции, то есть выбора рабочей точки магнитного ПРА, ограничиваются гармоники сети на предельные значения нормы Е N 6100-3-2
5. Схемы соединения люминесцентных ламп с электромагнитными пускорегулирующими аппаратами (ПРА)6. Температурный режим ПРА
Предельные значения температур:
При нормальной работе температура обмотки tw не должна превышать 130º С. При аномальном режиме работы предельное значение температуры обмотки tw =232º С: Эти значения должны быть проверены методом «изменения сопротивления» в течение работы.
Повышение температур:
Ток лампы, который протекает через ПРА, обуславливает потерю мощности, что приводит к повышению температуры обмотки. Критерием для этого повышения является значение Δt как для нормальной так и для аномальной работы. Значение Δt определяется по стандартной схеме измерений и указывается на маркировке в градусах Кельвина.
Пример: Δt =55К/140К
Первое значение Δt указывает на превышение температуры для нормального режима при рабочем токе лампы. Второе значение (здесь 140К) означает превышение температуры обмотки, что является результатом протекания тока, когда разрядный промежуток лампы короткозамкнут. Ток, который течет в этом режиме, является током нагрева для электродов лампы.
7. Срок службы электромагнитного балластаПри условии, что температура обмотки будет соответствовать указанному предельному значению, можно рассчитывать на срок службы 10 лет. Интенсивность отказов < О,О2% / 1.000 час.
8. Коэффициент мощности ПРАИндуктивные ПРА: λ ≤ 0,5. Параллельно компенсированные дроссели для ламп дневного света:
λ ≤ 0,9
9. Рекомендации по монтажу электромагнитных дросселей- Положение встраивания: Любое
- Место монтажа: электромагнитные ПРА спроектированы для установки в светильниках или в подобных приборах.
- Независимые ПРА не нужно встраивать в корпус.
- Крепление дросселей: Предпочтительно с помощью винтов М4
Клеммные колодки (универсальные контактные зажимы)
- Применять медный провод (негибкий провод)
- Поперечные сечения для соединения безвинтового зажима 0,5—1,0 мм²
- Длина зачищенного конца проводника 8 мм
- Поперечное сечение соединительного надреза (IDС — зона) 0,5 мм² , с изоляцией максимум Ø2 мм, снятие изоляции не обязательно, монтаж возможен только со специальным инструментом.
Безвинтовые контактные зажимы
- Встроенные контактные зажимы могут присоединять только жесткие проводники. Жесткие проводники:
- 0,5—1,0 мм². Длина зачищенного конца проводника 8 мм.
- Соединение проводников
- Соединение между сетью, дросселем и люминесцентными лампами должно производиться согласно представленным схемам соединения.
схема подключения, принцип работы, замена,
Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.
Для чего нужна пускорегулирующая аппаратура
Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.
Схема, поясняющая устройство ЛДСПеред нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.
Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников. Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться. Само же УФ излучение практически полностью поглощается стеклом и люминофором.
Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.
Стартеры для запуска ДЛС
Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение. Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.
Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.
ЭмПРА для ЛДС мощностью 36 Вт
Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.
к содержанию ↑Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.
Схема подключения люминесцентной лампы
Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.
Схема подключения одной люминесцентной лампыКак это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет. За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты. За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.
Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.
Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует. В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя. Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком велик.
Наглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселемПару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.
Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.
Схема подключения двух люминесцентных ламп к одному дросселю
Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуСобирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.
Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.
к содержанию ↑Зачем нужен дроссель в схеме
В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.
Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.
Дроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводомПочему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим. Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро. Именно за счет такого постоянного перемагничивания ток ограничивается.
Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.
к содержанию ↑Преимущества и недостатки электромагнитного дросселя
Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:
- Относительно невысокую стоимость.
- Простоту конструкции.
- Долговечность.
Недостатков у этого прибора, увы, немного больше. Это:
- Большие массогабаритные показатели.
- Мерцание лампы с удвоенной частотой питающей сети.
- Гудение.
- Низкий КПД из-за большого индуктивного сопротивления.
- При отрицательных напряжениях может не запустить лампу.
- Долгий запуск (от 1 до 3 сек.).
- При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.
Можно ли обойтись без него
Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.
ЭПРА для люминесцентных ламп
Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:
- Имеет небольшие массогабариты.
- Не гудит.
- Не вызывает мерцания лампы с частотой сети.
- Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
- Запускает ЛДС практически мгновенно.
к содержанию ↑Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.
Типовые неисправности — замыкание, перегрев, обрыв
А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:
- Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
- Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
- Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.
Как проверить электромагнитный дроссель
Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:
Схема проверки дросселяВажно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).
Итак, собираем схему, включаем. В результате видим:
- Лампа не горит. В балласте обрыв.
- Горит на полную яркость. Замыкание.
- Моргает или горит вполнакала. Балласт, возможно, исправен.
Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуВозможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений. Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».
Вот и подошла к концу беседа об электромагнитных дросселях. Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.
ПредыдущаяЛюминесцентныеОсобенности энергосберегающих люминесцентных ламп
СледующаяЛюминесцентныеСхема подключения и характеристики люминесцентных ламп на 18 Вт
Спасибо, помогло!Не помоглоэлектромагнитный дроссель на 26Вт Электромагнитные ПРА (ЭмПРА) для газоразрядных ламп
Архив светильников со старого сайта. Актуальный каталог Вы можете посмотреть здесь: https://artlight.ru/catalog/- название раздела
- Электромагнитные ПРА (ЭмПРА) для газоразрядных ламп
- мощность
- 26W
- степень защиты
- IP 20
электромагнитный дроссель для люминесцентных ламп, 26Вт
- название раздела
- Электромагнитные ПРА (ЭмПРА) для газоразрядных ламп
- мощность
- 26W
- степень защиты
- IP 20
- номер раздела
- 1066
- название раздела
- Профильная система освещения
- номер раздела
- 1066
- название раздела
- Профильная система освещения
- номер раздела
- 1066
- название раздела
- Профильная система освещения
- степень защиты
- IP 20
- номер раздела
- 1041
- название раздела
- Светильники PAR
- мощность
- max 75W
- степень защиты
- IP 20
Pagri. Дроссель электромагнитный (балласт)
Электромагнитный балласт (дроссель для ламп)
Электромагнитный балласт является индуктивным сопротивлением (дросселем). Он включается последовательно с лампой. Схема требует применения и пускового устройства – стартера.
Классическая схема включения люминесцентной лампы с применением электромагнитного балласта включает в себя стартер (пускатель) для люминесцентных ламп.
Стартер служит для регулирования процесса зажигания. Стартер представляет собой компактную газоразрядную лампу с двумя металлическими электродами внутри колбы. Один из электродов (или оба) — биметаллический, при нагреве способный деформироваться (изгибаться).
В нерабочем состоянии электроды разомкнуты.
Стартер соединен с лампой параллельно.
При подаче напряжения сети на электроды лампы и пускателя ток через люминесцентную лампу не протекает, падение напряжения на балласте нулевое, и все сетевое напряжение приложено к лампе и стартеру. Его недостаточно для зажигания лампы, а в пускателе возникает разряд, и через него начинает протекать ток.
Биметаллический электрод разогревается, изгибается и замыкает цепь с жёстким электродом.
Вследствие этого ток в общей цепи возрастает, и его становится уже достаточно для разогрева лампы.
Замкнувшись, электроды прекращают разряд в стартере, тут же остывают и размыкаются.
Этот мгновенный разрыв цепи тока приводит к скачкообразному повышению напряжения на дросселе, что и приводит к поджигу лампы.
Основные достоинства электромагнитного балласта:
— простота схемы;
— низкая стоимость.
В то же время у запуска люминесцентных ламп с помощью электромагнитного балла-ста есть существенные недостатки:
1. Люминофор не обладает инерционностью нити накала, поэтому мерцает с двойной частотой переменного тока (50 Гц). Поэтому глаза быстрее устают под светом такой лампы, можно даже испортить зрение.
2. Запускается схема сравнительно долго (с новой лампой 1-3 сек, по мере службы лампы время увеличивается).
3. Дроссель потребляет больше электроэнергии, чем электронный балласт.
4. Дроссель издает неприятный гул (двойная частота сети).
5. Мерцание люминофора создает эффект стробирования, поэтому предметы, вращающиеся или колеблющиеся с частотой, которая равна либо кратна частоте мерцания, кажутся наблюдателю неподвижными. Особенно это опасно для оператора токарного/сверлильного станка, циркулярной пилы и т.п. Поэтому в производстве, где имеются движущиеся я деталей станков и механизмов.запрещено использование люминесцентных ламп без дополнительного источника света от ламп накаливания.
|
Торговая сеть ATOM electric работает на рынке электротехнической продукции с 2003 года и предлагает своим клиентам товары оптимального соотношения цена-качество.
|
Электромагнитный пускорегулирующий аппарат ПРА 1И150ДНаТ46-004 независимый IP54 УХЛ1 GALAD 01536
Технические характеристики Дросселя 1И 150 ДНаТ 46-004 220В с ИЗУ нез. GALAD 01536
Применение — Натриевая лампа высокого давления.
С устройством зажигания — Да.
Подходит для лампы мощностью с — 150 Ватт.
Номинальное напряжение с — 220 Вольт.
Подходит для лампы мощностью по — 150 Вт
- Количество ламп 1
- Модель/исполнение Стандартный
- Способ монтажа ПРА
- Ширина 0.105 м.
- Код товара GALAD#1536
- Высота 0.105 м.
- Глубина 0.23 м.
- Мощность 150 Вт
- Номин. напряжение 220 В
- Номинальный ток 1.8 А
- Класс защиты I
- Вес 3 кг.
- Номинальное напряжение 220 В
- Корпус Металлический корпус
- Подходит для 1 лампы мощностью: 150 Вт
- Коэффициент мощности 0.43
- Тип изделия Пускорегулирующий аппарат
- Степень защиты IP54
- Применение Натриевая лампа высокого давления
- Номинальное напряжение с 220 В
- Номинальное напряжение по 220 В
- Климатическое исполнение УХЛ0
- Тип источника света ДНАТ
- Входное напряжение 230 В
- Потери мощности 21 Вт
- Мощность ламп 150 Вт
- Тип управления освещением Отсутствует
- Ток сети 1.8 А
- Подходит для лампы мощностью с 150 Вт
- Подходит для лампы мощностью по 150 Вт
- Рабочий ток лампы 1.8 А
- Пусковой ток лампы 3 А
Электромагнитный дроссель для светильников | Компания Июнь
Существуют электромагнитные дроссели и электронные дроссели для ламп.
Электромагнитный дроссель представляет собой индуктивное сопротивление, состоящее из железного сердечника с медной проволокой. Основные недостатки: большая потеря мощности с выделением тепла. При долгом использовании электромагнтиных дросселей такая конструкция расшатывается и начинает дребезжать, что полностью исключается в электронных дросселях.
Дроссель или индуктивное сопротивление включается последовательно с лампой. Схема включения подразумевает также наличие стартера.
Какие основные преимущества при использовании электронного или электромагнитного дросселя для ламп?
- Лампа с электронным дросселем не мерцает и меньше гудит при запуске, в отличие от электромагнитного дросселя;
- Запуск лампы с электронным дросселем происходит почти мгновенно, т.е. сразу после нажатия кнопки. Следует учесть, что существует два вида запуска ламп: холодный старт и горячий старт. При холодном старте запуск ламп быстрый, но в то же время сокращается срок службы лампы;
- Электромагнитный дроссель для лампы стоит на порядок дешевле, чем электронный дроссель, а также проще схема подключения. Но в то же время мерцание в электромагнитных лампах происходит чаще, и глаза устают быстрее. Запуск лампы с магнитным дросселем происходит медленнее, и по мере увеличения срока службы лампы, это время становится больше;
- Экономичность электронных намного превышает экономичность электромагнитных дросселей;
- Светового потока от электронного дросселя гораздо больше, поэтому при закупке можно значительно сэкономить на количестве ламп, а в целом – на электроэнергии;
- В целом, преимущество электронных дросселей для ламп очевидно по сравнению с их аналогами. Основная причина того, что электромагнитные все еще присутствуют на рынке — это их дешевизна по сравнению с электронными.
штуцеры
НОВИНКА! ‣ — Пакеты электронных компонентов Amazon. Посетите страницу Amazon Electronic Component Packs.
Что такое дроссели?
Дроссели — это фиксированные катушки индуктивности, в первую очередь предназначенные для «дросселирования» переменного тока, в том числе высокочастотного, от линий питания постоянного тока. «ВЧ дроссель» спроектирован так, чтобы иметь высокий импеданс в большом диапазоне частот.
Это сильно отличается от фиксированных катушек индуктивности, которые предназначены для использования в настраиваемых схемах.В некоторых очень случайных приложениях вы можете заменить дроссели на фиксированные катушки индуктивности, но, как правило, и, конечно, есть исключения из этого правила, я бы не стал.
Единственным исключением могут быть приложения, в которых используются некритические фильтры верхних частот или фильтры нижних частот.
С другой стороны, я, конечно, не стал бы рассматривать использование дросселя в приложении с фиксированной катушкой индуктивности, таком как качественный узкополосный фильтр или в каскадах определения частоты LC-генератора.
Мое главное возражение касается «Q» штуцера.Вторичные возражения касаются термической устойчивости штуцера. Типичные формованные дроссели, которые можно купить довольно дешево, не совсем предназначены для того, чтобы служить памятником ни высокой добротности, ни термической стабильности, ни высоким допускам.
Другие возражения относятся к собственной резонансной частоте (SRF). Дроссель, как и любой дроссель, также демонстрирует некоторую степень собственной емкости или «распределенной емкости». Эта емкость в сочетании с расчетной индуктивностью являются резонансными на определенной частоте.
Резонансные частоты дросселя
На низких частотах эта емкость практически не влияет, и дроссель может быть изображен как «A» на рисунке 1. Сопротивление — это внутреннее сопротивление дросселя как при переменном, так и постоянном токе. Когда рабочая частота повышается, «распределенная емкость» начинает становиться значительной в точке, где L и C образуют параллельный резонансный контур, как в «B».
Рисунок 1. — резонансные частоты дросселя
Еще раз увеличивая рабочую частоту, мы обнаруживаем, что реактивное сопротивление дросселя определяется емкостью до такой степени, что теперь он представляет собой последовательный резонансный контур «C».В этот момент производительность дросселей серьезно ухудшается.
Литые дроссели
Типичный экономичный дроссель, который имеет тенденцию выглядеть как резистор и имеет цветовую кодировку, аналогичную следующей на рисунке 2, который представляет собой таблицу цветовых кодов дросселей.
Таблица цветовых кодов дросселей
Рисунок 2. — Таблица цветовых кодов штуцера
Вообще говоря, эти дроссели предназначены для миниатюризации, и какой бы тип дросселя вы ни собирались использовать, всегда дважды проверяйте его, чтобы убедиться, что он может выдерживать ожидаемый ток.Самое главное !, вы не хотите, чтобы он функционировал как «вспышка», каламбур.
Простые маломощные дроссели часто можно дешево изготовить, намотав витки провода, способного пропускать достаточный ток, на корпусный резистор подходящего размера. Формирователь пластикового типа также может быть использован при использовании отрезка, например, спицы. На более высоких частотах рассмотрите небольшой дроссель с воздушной обмоткой. Дроссели тоже дешевые.
Самодельные дроссели часто легко наматываются на ферритовые тороиды с высокой проницаемостью, ферритовые бусины или даже сердечники бинокулярного типа, используемые для балунов.Просто не забудьте использовать калибр, который будет комфортно выдерживать ожидаемый ток через ваши дроссели. Также помните, что чем выше проницаемость сердечника, тем меньше требуется витков и тем меньше «распределенной емкости» возникает в ваших дросселях.
Если позволяет ваш бюджет, подумайте о создании комплекта LC-метра, чтобы иметь возможность измерять индуктивность ваших дросселей, катушек индуктивности или даже проверять емкость конденсаторов.
КНИГА — Справочник по индуктору Клетуса Дж. Кайзера
Ссылка на страницу
НОВИНКА! — Как перейти по прямой ссылке на эту страницу
Хотите создать ссылку на мою страницу со своего сайта? Нет ничего проще.Знания HTML не требуются; даже технофобы могут это сделать. Все, что вам нужно сделать, это скопировать и вставить следующий код. Все ссылки приветствуются; Искренне благодарю вас за вашу поддержку.
Скопируйте и вставьте следующий код для текстовой ссылки :
<а
href = "https://www.electronics-tutorials.com/basics/chokes.htm" target = "_ top"> посетите страницу Ian Purdie VK2TIP "Chokes"
, и он должен выглядеть так:
посетите Ian Purdie VK2TIP «Chokes» Страница
ВЫ ЗДЕСЬ: ГЛАВНАЯ> ОСНОВНЫЕ НАПРАВЛЕНИЯ> ЗАМЕТКИ
автор Ян К.Purdie, VK2TIP сайта www.electronics-tutorials.com заявляет о моральном праве на
быть идентифицированным как автор этого веб-сайта и всего его содержания. Copyright © 2000, все права защищены. См. Копирование и ссылки.
Эти электронные учебные пособия предназначены для индивидуального частного использования, и автор не несет никакой ответственности за применение, использование, неправильное использование любого из этих проектов или учебных пособий по электронике, которое может привести к прямому или косвенному ущербу или убыткам, связанным с этими проектами или учебными пособиями. .Все материалы предоставляются для бесплатного частного и общественного использования.
Коммерческое использование запрещено без предварительного письменного разрешения www.electronics-tutorials.com.
Авторские права © 2000, все права защищены. URL — https://www.electronics-tutorials.com/basics/chokes.htm
Обновлено 15 мая 2000 г.
Связаться с ВК2ТИП
ВЧ дроссельпротив индуктора — Блог о пассивных компонентах
Дроссели и ВЧ дроссели в основном представляют собой электрические компоненты одного и того же типа.Разница в конструкции связана с функцией, которую устройство будет выполнять в цепи. Большинство инженеров больше знакомы с индукторами — некоторые думают, что оба устройства могут использоваться взаимозаменяемо — которые распространены в частотно-избирательных системах, таких как тюнер для радиоприемников или фильтров.
Катушки индуктивности
Стандартный индуктор создается путем плотной обмотки проводов (катушек) вокруг твердого стержня или цилиндрического кольца, называемого сердечником индуктора. Когда ток циркулирует по проводам, создается магнитный поток, который противоположен изменению тока (сопротивляется любому изменению электрического тока), но пропорционален значению тока.Кроме того, в катушке индуцируется напряжение из-за движения магнитного потока. Сила магнитного потока зависит от типа сердечника.
Катушки индуктивности классифицируются в зависимости от типа сердечника, на который намотана катушка. На рисунке 1 показаны символы, используемые для различения некоторых типов.
Рисунок 1: Символы индуктивности. Источник: www.electronics-tutorials.ws
Единицы
Как мы видели, катушки индуктивности сопротивляются изменению тока (переменного тока), но легко пропускают постоянный ток.Эта способность противодействовать изменениям тока и взаимосвязи между потоком тока и магнитным потоком в катушке индуктивности измеряется показателем качества, называемым индуктивностью, с символом L и единицами измерения Генри (H), в честь американского ученого и первого секретаря Смитсоновского института. , Джозеф Генри.
RF Дроссели
Мы можем думать о ВЧ дросселях как о применении катушек индуктивности. Они спроектированы как фиксированные катушки индуктивности с целью перекрытия или подавления высокочастотных сигналов переменного тока (AC), в том числе сигналов от радиочастотных (RF) устройств, и обеспечения прохождения низкочастотных сигналов и сигналов постоянного тока.Строго говоря, в идеале ВЧ дроссель — это индуктор, который отклоняет все частоты и пропускает только постоянный ток. Для этого дроссель (или катушка индуктивности) должен иметь высокий импеданс в диапазоне частот, который он предназначен для подавления, как мы можем видеть, проверив формулу для значения импеданса, X L :
X L = 6,283 * f * L
Где f — частота сигнала, а L — индуктивность. Мы видим, что чем выше частота, тем выше импеданс, поэтому сигнал с высокой частотой встретит эквивалентное сопротивление (импеданс), которое заблокирует его прохождение через дроссель.Низкочастотные сигналы и сигналы постоянного тока будут проходить с небольшими потерями мощности.
Дроссели обычно состоят из катушки из изолированных проводов, намотанных на магнитный сердечник, или круглой «бусинки» из ферритового материала, нанизанной на провод. Их часто наматывают сложными узорами, чтобы уменьшить их внутреннюю емкость.
Обычно ВЧ-дроссели можно увидеть на компьютерных кабелях. Они известны как ферритовые шарики и используются для устранения цифрового радиочастотного шума. Как показано на Рисунке 2, ферритовые бусины имеют цилиндрическую или торообразную форму и обычно надеваются на провод.
Рис. 2. Ферритовый шарик. Источник: Wuerth Elektronik
Саморезонанс
Реальные катушки индуктивности и дроссели не являются 100-процентными индуктивными. При подаче питания появляются паразитные элементы, которые изменяют поведение устройства и изменяют полное сопротивление. Провода катушки, используемой для изготовления индуктора, всегда создают последовательное сопротивление, а расстояние между витками катушки (обычно разделенных изоляцией) создает паразитную емкость.Этот элемент является параллельным компонентом последовательной комбинации паразитного резистора и идеальной катушки индуктивности. Типичная эквивалентная схема катушки индуктивности показана на рисунке 3.
Рисунок 3: Эквивалентная схема индуктора
Реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора определяется по известным формулам:
X L = wL = 6,283 * f * L (1)
X C = 1 / (wC) = 1 / (6,283 * f * C) (2)
Из-за наличия реактивных сопротивлений значение полного импеданса цепи изменяется с частотой.С увеличением частоты реактивное сопротивление конденсатора падает, а емкость катушки индуктивности увеличивается. Существует частота, при которой реактивное сопротивление идеальной катушки индуктивности и паразитного конденсатора равны. Это называется собственной резонансной частотой параллельной резонансной системы. В параллельном резонансном контуре полное сопротивление на резонансной частоте является максимальным и чисто резистивным. На рисунке 4 показаны графики зависимости импеданса от частоты в соответствии с уравнениями 1 (красным) и 2 (синим).Общий импеданс (черный) показывает резонансную частоту в точке, где оба импеданса равны. Импеданс в этой точке является чисто резистивным и имеет максимальное значение.
Рисунок 4. Импеданс в зависимости от частоты. Источник: Texas Instruments
Точный электромагнитный дроссель для точных измерений
Найдите наиболее подходящий. Дроссель электромагнитный от Alibaba.com для различных инженерных и промышленных целей. Эти предметы необходимы для измерения газов и жидкостей.Они помогают поддерживать запасы в наличии и используются в различных коммерческих контекстах для определения количества. Эти. Электромагнитный дроссель от надежных производителей и предназначен для обеспечения высочайшей точности измерений. Электромагнитный дроссель имеет различные типы датчиков, такие как циферблатные, линейные, ультразвуковые и суммирующие счетчики, среди многих других. Электромагнитный дроссельот Alibaba.com подходят для различных жидкостей с разным давлением и объемом.Их выбор зависит от того, будет ли измеряться объемный или массовый расход. Электромагнитный дроссель , предлагаемый на сайте, имеет широкий диапазон минимального и максимального давления, что считается желательным качеством, поскольку они могут использоваться для более широкий выбор жидкостей. Эти. Электромагнитный дроссель обладают высокой точностью. Для обеспечения прозрачности предусмотрены различные измерения точности.
Дроссель электромагнитный выпускается в одноразовом и многоразовом вариантах.Одноразовые варианты необходимы для определенных отраслей и типов использования, таких как поддержание гигиены пищевых продуктов. Эти. электромагнитный дроссель может быть как механическим, так и управляемым давлением, и использовать различные методы измерения. электромагнитный дроссель используются для измерения подачи воды в дома, а также для коммерческого использования, и поэтому необходимы для индивидуальных потребителей и предприятий предприятия.
Выбирал из ассортимента отлично. электромагнитный дроссель на Алибабе.com и получите измерения с высокой точностью в соответствии с вашим бюджетом. Эти прочные и долговечные изделия имеют конкурентоспособные цены и идеально подходят для. электромагнитный дроссель поставщиков, желающих купить оптом.
Что такое моторный дроссель и для чего он используется?
Дроссель — это пассивное устройство, которое увеличивает индуктивность цепи.
Изображение предоставлено: KEB America
Индуктивность — это свойство катушки с проводом, которая сопротивляется любому изменению тока, протекающего через нее. (Прямые провода также обладают небольшой индуктивностью.Другими словами, если ток через катушку увеличивается, магнитное поле катушки создает напряжение (ЭДС), которое препятствует изменению. Индуктивность устройства определяет количество ЭДС, генерируемой при заданном изменении тока:
Где:
ЭДС = индуцированное напряжение (В)
L = индуктивность (В * с / А = Генри, Гн)
dI / dt = время нарастания тока (А / с)
Дроссель двигателя — это общее название индуктивного устройства, установленного между выходом сервопривода или частотно-регулируемого привода (VFD) и выводами серводвигателя или асинхронного двигателя переменного тока.Его цель — уменьшить пики тока, возникающие на выходе привода из-за широтно-импульсной модуляции (ШИМ) напряжения.
Дроссель двигателя — это индуктивное устройство, устанавливаемое между приводом и двигателем, которое часто рекомендуется, когда длина кабеля двигателя превышает 25 метров.Изображение предоставлено: Force Control Industries
Широтно-импульсная модуляция — ключевой принцип работы большинства частотно-регулируемых приводов и сервоприводов. Он работает путем включения и выключения напряжения на управляющих транзисторах с очень высокой частотой — обычно в диапазоне 20 кГц — создавая импульсы напряжения.Частота переключения определяет ширину импульсов, а отношение времени включения к времени выключения определяет среднее напряжение, подаваемое на двигатель.
Без моторного дросселя длинные кабели могут привести к отраженным волнам, которые вызовут скачки напряжения на двигателе.Изображение предоставлено: KEB America
Однако ШИМ-управление вызывает резкие изменения сигналов привода, а также шум из-за высокочастотного переключения — проблемы, которые усугубляются при использовании длинных кабелей между приводом и двигателем.Как и катушки двигателя, кабели обладают полным сопротивлением, и если полное сопротивление кабеля значительно отличается от сопротивления двигателя, может возникнуть отраженная волна, посылая напряжение обратно через кабель от клемм двигателя к приводу. Это напряжение может, в худшем случае, добавиться к напряжению, подаваемому приводом, и привести к очень высокому напряжению на двигателе, что приведет к значительному нагреву двигателя и повреждению изоляции двигателя и подшипников.
Дроссель двигателя помогает решить эти проблемы, увеличивая время нарастания (dV / dt) сигналов привода.Это уменьшает острые углы или пики формы волны напряжения до закругленных краев, защищая двигатель от скачков напряжения и связанного с ними нагрева. Дроссель, расположенный между приводом и двигателем, также помогает уменьшить электромагнитные помехи от кабелей и вероятность отраженных волн.
Без дросселя двигателя производители приводов обычно рекомендуют максимальную длину кабеля двигателя около 25 метров (рекомендации различаются в зависимости от двигателя, привода и области применения).С моторным дросселем максимальная длина кабеля может быть значительно увеличена, часто до 50 или 100 метров.
Дроссели и реакторы являются индуктивными устройствами, и термины «дроссель», «реактор» и «индуктор» часто используются как синонимы.
При обсуждении систем моторного привода термин «реактор» чаще всего используется для обозначения индуктивного устройства, расположенного между основным источником питания и приводом. Термин «дроссель» чаще всего используется для обозначения индуктивного устройства, расположенного между приводом и двигателем.И «дроссель», и «реактор» — это обычно используемые термины для индуктивного устройства, размещенного после входных диодов (между входным выпрямителем и звеном шины постоянного тока) в частотно-регулируемом приводе.
Краткое знакомство с синфазным дросселем и его применением
В этой статье рассматриваются основы простого синфазного дросселя и его применения.
Дроссель — это силовой магнитный компонент, который используется в электронных схемах. Это индуктор, который используется для блокировки высокочастотного переменного тока (AC) в цепи, позволяя пропускать более низкие частоты или постоянный ток (DC).Дроссель обычно состоит из изолированного провода, намотанного на магнитопровод.
Дроссель с двумя обмотками по 47 миллигенри (мГн), рассчитанный на ток 0,6 АНазвание не возникло из ниоткуда — «подавление» означает блокировку высоких частот при одновременном разрешении более низких частот. Если устройство используется для блокировки, это называется дросселем. Однако, если устройство используется в фильтрах или LC-цепях, его называют просто индуктором.
Существует два различных типа дросселей: звуковые дроссели (AFC) и радиочастотные дроссели (RFC). AFC разработаны, чтобы специально блокировать звуковые частоты и частоты линии питания, позволяя проходить постоянному току. С другой стороны, RFC разработаны так, чтобы блокировать только радиочастоты, позволяя при этом пропускать постоянный ток и аудио.
Синфазные дроссели используются для предотвращения электромагнитных помех (EMI) и радиочастотного интерфейса (RFI) от линий электропитания, а также для предотвращения сбоев в работе электронного оборудования.
Синфазный дроссель PA441xNL. Изображение любезно предоставлено Pulse ElectronicsПрименение синфазных дросселей
Итак, теперь, когда вы знаете, что такое дроссель, для лучшего понимания мы объясним несколько приложений. Что касается автомобилей, то в шинах Controller Area Network (CAN) используются дроссели синфазного тока. Шина CAN — это устройство, которое позволяет микроконтроллерам и другим устройствам обмениваться данными друг с другом без главного компьютера.При разработке системы CAN необходимо соблюдать многочисленные стандарты EMI (электромагнитные помехи) и ESD (электростатический разряд), а также пытаться повысить надежность и уменьшить размер продукта. Синфазный дроссель может обеспечить защиту шины от помех EMI и ESD.
Если вы посмотрите на многие из ваших USB-кабелей, лежащих вокруг, вы увидите дроссель на контактах разъема кабеля. Этот дроссель используется для подавления высокочастотного шума в электронных схемах.Этот тип дросселя называется ферритовым дросселем или ферритовым дросселем. Синфазные дроссели могут использоваться в различных отраслях промышленности, например, в промышленности, электронике и телекоммуникациях, например, в линиях IEEE1394 для ПК, панельных соединениях для ЖК-панелей, а также в противодействии синфазному шуму, влияющему на сигналы в высокоскоростных линиях.
Реальный пример того, как заслонка может помочь предотвратить аварии или простои, — это кольцевая линия в Сингапуре. Произошло серьезное нарушение на линии, вызвавшее гигантскую задержку, Управление наземного транспорта (LTA) приказало телекоммуникационной компании отключить доступ к мобильной сети вдоль линии на несколько часов, чтобы они могли определить источник помехи сигнала.SMRT в настоящее время управляет сетью по всей железнодорожной линии и сообщила пассажирам, что у них будут задержки поездов. Поезда без машинистов теперь должны будут обслуживаться оператором, чтобы предотвратить дальнейшие задержки.
Итак, вопрос в том, что случилось с этой железнодорожной системой и как SMRT и LTA могут найти корень проблемы и предотвратить дальнейшие задержки.
Кольцевая линия использует поезда Alstom Metropolis C830, которые используют систему управления поездом на основе связи Urbalis (CBTC), которая питается от третьего рельса, а не от дополнительного источника.Эта система CBTC на поездах обеспечивает точное и плавное движение их поездов по всей линии, что в конечном итоге позволяет поездам работать в течение более длительных периодов времени и скорости с оператором или без него. Что касается радиочастотной технологии, поезда используют надежный стандарт IEEE 802.11b / g, работающий как в диапазоне частот 2,4 ГГц, так и в диапазоне 5,8 ГГц.
По состоянию на 3 сентября SMRT и LTA предположили, что в туннеле кольцевой линии есть помехи сигнала, которые находятся в том же рабочем диапазоне частот, что и система сигнализации поездов, что может быть корнем проблемы.Этот мешающий сигнал мог прервать связь между поездом и рельсом. Ниже приведена иллюстрация того, как работает система CBTC радио Urbalis.
Радиосистема CBTC Urbalis от Alstom. Изображение любезно предоставлено компанией Alstom. Нажмите, чтобы увеличить.В 2012 году метро Шэньчжэня отключило мобильную связь, чтобы проверить аналогичный случай на своих линиях, на которых возникли связанные проблемы. Они пришли к выводу, что мобильные точки доступа Wi-Fi работают на 2.Полоса пропускания 4GHz мешала сигналам линий.
Благодаря использованию на кольцевой линии электромагнитного экранирования поезда подвергаются меньшему воздействию помех, что в конечном итоге снижает вероятность возникновения дополнительных проблем. SMRT и LTA заявили, что существует возможность изменения частоты сигнала системы, чтобы предотвратить усиление помех сигнала.
EMI и ESD являются серьезной проблемой в современном взаимосвязанном мире. Скромный дроссель важен для надежной работы ВЧ оборудования.
ELECTRONIC CHOKE VS ELECTRICAL CHOKE ~ электрика и электроника
Здравствуйте, читатели! Сегодня я здесь с совершенно новой темой. Многие из них обнаруживают, что в настоящее время в ламповом освещении используются электронные балласты или дроссели. Большинство из них задавалось вопросом, что не так с самым старым типом дросселя. Давайте посмотрим на подробную информацию об обоих в этой статье.Щелкните этот текст, чтобы узнать больше о магнитных цепях. ДЕТАЛИ В ТРУБКЕ:
- БАЛЛАСТ
- СТАРТЕР (ЭЛЕКТРИЧЕСКИЙ ТИП)
- ВЫКЛЮЧАТЕЛЬ
- НАПОРНАЯ ТРУБКА
РАБОЧАЯ ТРУБКА:
На самом деле работа лампового света включает в себя следующий процесс:
- Когда мы включаем ламповый свет, максимальный ток течет через ламповый свет через балласт и стартер.Сначала не происходит разряда, поэтому не получается выходной сигнал.
- Сначала мы можем увидеть свечение в стартере, это связано с тем, что газы в стартере начинают ионизоваться из-за максимального напряжения, и, следовательно, биметаллическая полоса плавится и начинается проводимость к трубке.
- Затем напряжение постепенно снижается, так как падение напряжения создается в балласте, который является индуктором, снова оно отрывается от неподвижного контакта, и через ламповый свет проходит сильная волна тока.
- Получен газовый разряд в ламповой лампе.Ток вместо того, чтобы проходить через стартер, проходит через трубку, потому что лампа лампы имеет низкое сопротивление по сравнению с сопротивлением стартера.
- Таким образом, при разряде ртути образуется ультрафиолетовое излучение, которое, в свою очередь, возбуждает порошковое покрытие люминофора в свете трубки, тем самым доставляя белый видимый свет
- Таким образом, после зажигания лампы стартер может быть удален из лампы, так как он неактивен. (Стартер P.S используется только для ламповых ламп с электрическим балластом, а не для электронных устройств)
На самом деле балласт магнитного или электрического типа представляет собой индуктивную катушку.Это будет похоже на трансформатор, но это не трансформатор. Это просто медный провод, намотанный на материал сердечника, который делает его похожим на трансформатор. Как правило, индукторы известны своей способностью противодействовать любому изменению входного тока, проходящего через них, поскольку они имеют запаздывающий коэффициент мощности и поэтому используются в этой схеме.
Таким образом, проводя ток, проходящий через лампу, свет. Сильный ток, создаваемый для разряда, создается противодействующим током, накопленным в катушке индуктивности. Таким образом зажигая цепь. Из-за наличия воздушной среды ток через нее ионизируется, и сопротивление постепенно уменьшается, при этом ток продолжает увеличиваться.Катушка индуктивности теперь действует как реактивная нагрузка и ограничивает ток, как уже упоминалось выше.
Поскольку магнитные балласты не так сложны, как электронные балласты, и могут быть проблематичными, их заменяют электронные версии. Магнитные балласты находятся в розетке между вилкой лампочки и шнуром питания.
В магнитных балластах ток проходит через катушки с медным проводом, прежде чем перейти к лампочке. Большая часть тока улавливается создаваемым им магнитным полем, и только небольшие приращения передаются на лампочку.Пропускаемый ток зависит от толщины и длины медной катушки. Этот непостоянный ток вызывает мерцание лампочки, а также создает жужжащий звук.
Метод магнитного балласта создает огромное количество индуктивной реактивной мощности, одновременно превышающее величину активной мощности, но эту реактивную мощность можно легко и дешево снизить. компенсируется без риска каких-либо помех.
ЭЛЕКТРОННЫЕ БАЛЛАСТЫ:
Электронный балласт дается с нашим обычным A.Источник C с напряжением 220 В при частоте 50 — 60 Гц. Электронный балласт имеет выпрямитель, который сначала преобразует переменное напряжение в постоянное. С помощью конденсаторов фильтруется постоянный ток, полученный от выпрямителя. Отфильтрованный постоянный ток затем пропускается через серию индукционных катушек, которые отделены друг от друга. Теперь отфильтрованное постоянное напряжение подается на каскад высокочастотных колебаний, где колебания обычно представляют собой прямоугольную волну, а диапазон частот составляет от 20 кГц до 80 кГц. Следовательно, выходной ток имеет очень высокую частоту.
РАБОТАЕТ:
Как только напряжение постоянного тока фильтруется конфигурацией конденсатора, напряжение постоянного тока представляет собой высокочастотные катушки, колебания которых будут зависеть от входного напряжения и частоты. Небольшая индуктивность обеспечивается высокой скоростью изменения тока и высокой частотой генерации в электронной схеме. Формула индуктивности равна
I = L (dI / dT)
Обычно для накала требуется напряжение более 440+.когда переключатель включен, напряжение на лампе становится равным 1000 В. Когда процесс разряда превысит ограничение, ток будет течь через лампу и предотвратит короткое замыкание. В рабочем состоянии люминесцентной лампы электронный балласт действует как диммер для ограничения тока и напряжения.
ФИЛЬТР ЭМИ:
Он используется для однократного блокирования любых электромагнитных помех, если таковые имеются.
ВЫПРЯМИТЕЛЬ:
Он используется для преобразования A.От C до D.C
РЕЗОНАНСНЫЙ ВЫХОД ПОЛУМОСТА:
Преобразует постоянный ток в прямоугольное напряжение с высокой частотой.
Предусмотрена небольшая индуктивность, связанная с высокой скоростью изменения тока на высокой частоте, чтобы генерировать высокие значения. Обычно для зажигания процесса газового разряда в свете люминесцентных ламп требуется более 400 В. Когда переключатель включен, начальное напряжение на лампе становится около 1000 В из-за высокого значения, следовательно, газовый разряд происходит мгновенно.После начала процесса разряда напряжение на лампе снижается от 230 В до 125 В, а затем этот электронный балласт позволяет ограниченному току проходить через эту лампу. Этот контроль напряжения и тока осуществляется блоком управления электронного балласта. В рабочем состоянии люминесцентной лампы электронный балласт действует как диммер для ограничения тока и напряжения.
электронный балласт не производит — или не должен — производить значительное количество основных реактивных
мощность . Однако решающим аргументом в пользу его использования является экономия энергии, достигаемая не столько за счет более низких внутренних потерь в самом балласте, сколько
скорее за счет повышения эффективности лампы при работе на высокой частоте
от выходных клемм такого электронного балласта.По этой причине они подают меньше энергии в
лампы, чем магнитный балласт. Однако электронные балласты в несколько раз дороже.
чем простые пассивные магнитные модели и гораздо более восприимчивы к определенным помехам
и сами могут стать источником беспокойства. В отличие от магнитного
балласты, которые по закону физики могут следовать только одному принципу работы и только одному основному
конструкции, силовая электроника обеспечивает богатый выбор вариантов дизайна и принципов работы для
проектировать электронные схемы для работы люминесцентных ламп.
РАЗНИЦА МЕЖДУ НИМИ:
Еще одно отличие состоит в том, что электронные балласты изменяют частоту электрического тока без изменения напряжения. В то время как магнитные балласты в люминесцентных лампах работают с частотой 60 герц, электронные балласты значительно увеличивают эту частоту до 20 000 герц.
Из-за такой высокой частоты вы не увидите мерцания огней и не услышите жужжание люминесцентных ламп с электронными балластами.
Сравнение электронных балластов и магнитных балластов
Помимо того, что они не мерцают и работают тише, чем магнитные балласты, предпочтительнее использовать электронные балласты, потому что они имеют много других преимуществ. Они меньше по размеру и меньше весят. Они также полезны для окружающей среды и вашего банковского счета, поскольку они энергоэффективны и, следовательно, снижают ваш ежемесячный счет за электроэнергию.
Еще одно преимущество заключается в том, что электронные балласты могут использоваться в лампах, работающих в параллельном и последовательном режимах.Если одна из ламп погаснет, это не повлияет на другие лампы, даже если все лампы используют один и тот же балласт.
Кроме того, если вы хотите заменить свой магнитный балласт на электронный, это дешево и относительно легко.
10 ПРИЧИН, ПОЧЕМУ МЫ ПРЕДПОЧИТАЕМ ЭЛЕКТРОННЫЕ БАЛЛАСТЫ:
- Увеличивает срок службы лампы.
- Потери балласта меньше и в большинстве случаев незначительны.
- Вес не менее
- Минимальный размер
- Без вибрации при запуске
- В трубке нет мерцания
- Без интерфейса RF
- Слишком низкий уровень шума
- Работает только при напряжении питания.
- Запуск происходит мгновенно, поскольку электронный дроссель работает быстрее.
ДЛЯ ЛУЧШЕГО ПОНИМАНИЯ КОНЦЕПЦИИ БАЛЛАСТА ПОСМОТРЕТЬ ВИДЕО:
Синфазные дроссели
— MPS Industries, Inc.
Что такое синфазные дроссели (CMC)?
Это тип электромагнитного компонента, присутствующего в электрических цепях. Эти устройства работают, блокируя высокочастотный переменный ток (переменный ток), позволяя проходить низкочастотному постоянному току. Дроссельные индукторы названы из-за их способности блокировать (или подавлять) сигналы определенных частот. Типичный дроссель индуктивности представляет собой изолированный провод, намотанный на магнитный сердечник (два провода для однофазных или три / четыре провода для трехфазных).Хотя синфазные дроссели индуктивности обладают низким электрическим сопротивлением, что позволяет протекать как переменному, так и постоянному току с небольшими минимальными потерями мощности, их реактивное сопротивление ограничивает передачу переменного тока.
Эти индукторы в основном используются для предотвращения потенциально вредных электромагнитных помех (EMI) и радиочастотных помех (RFI) в различных электронных и электрических устройствах и компонентах.
Категории синфазных дросселей
Эти индукторы доступны во многих формах, большинство из которых подразделяются на категории по размеру, индуктивности, импедансу, IDC и DCR.Однако почти все дроссели классифицируются на две основные категории на основе требований FCC EMI / RFI: звуковые дроссели (AFC) и радиочастотные дроссели (RFC).
Дроссели звуковой частоты блокируют высокие звуковые частоты (обычно более 30 кГц), пропуская постоянный ток. AFC обычно состоят из ферромагнитных сердечников, которые увеличивают их индуктивность. Их конструкция похожа на трансформаторы; они состоят из железных сердечников с воздушным зазором.
Радиочастотные дроссели блокируют радиочастоты и позволяют беспрепятственно проходить аудио и постоянный ток.Обычно они состоят из ферритовых сердечников или железного порошка, что увеличивает индуктивность и повышает эффективность работы при более высокой полосе пропускания. Радиочастотные дроссели обычно наматываются по схеме, такой как обмотка корзины, чтобы минимизировать вторичные эффекты, включая собственную емкость и потери из-за эффекта близости.
В последнее время в дросселях синфазного тока устанавливаются нанокристаллические сердечники. Это более новый и популярный вариант с высокой проницаемостью — примерно в восемь-десять раз выше, чем у версий с ферритовым сердечником того же размера.Они предназначены для одно- или трехфазных приложений. Их особенности включают в себя компактный меньший размер, частотный диапазон до 300 Гц и повышенную эффективность подавления электромагнитных помех.
Приложения CMC
Синфазные дроссели имеют множество применений. CMC хорошо известны тем, что предотвращают электромагнитные помехи (EMI) и радиочастотные помехи (RFI) от различных источников, таких как линии электропередач, которые могут влиять на работу электронного оборудования.
Дроссели обычно используются в автомобильных контроллерах сети (CAN) и локальных сетях (LAN). Шина CAN — это устройство, которое обеспечивает связь между микроконтроллером и другими устройствами без использования главного компьютера. Чтобы эти устройства работали по назначению, необходимо минимизировать внешние факторы, такие как электромагнитные помехи и электростатический разряд. Синфазные дроссели могут помочь заблокировать эти нежелательные помехи, обеспечивая беспрепятственную работу CAN-шины.
Дроссели также используются для бытовых предметов, таких как силовые кабели и соединительные кабели USB. Эти дроссели, называемые дросселями с ферритовыми шайбами, выглядят как объекты цилиндрической формы, обычно рядом с контактами разъема. Дроссели с ферритовыми шариками предотвращают попадание электромагнитных помех в устройства и от устройств, подавляя высокочастотные шумы в электрических цепях. Спиральный провод над ферритовым валиком создает сопротивление для высокочастотных сигналов, в результате чего энергия либо отклоняется назад по кабелям, либо рассеивается в виде тепла низкого уровня.
Дифференциальные и синфазные дроссели
Имея схожие атрибуты, синфазные дроссели отличаются от дросселей дифференциального режима. Первый блокирует синфазные сигналы или шум, которые текут в одном направлении, а второй блокирует сигналы или шум, которые движутся в противоположных направлениях. Синфазные дроссели используются во многих электронных, телекоммуникационных и промышленных приложениях. Они подавляют или удаляют шум в сигнальных линиях и кабелях питания, а также фильтруют выходной сигнал, уменьшая шум, который может вернуться в линию питания.Дроссели дифференциального режима уменьшают высокочастотные переменные токи в цепях с низким постоянным или переменным током. Они используются по отдельности или сгруппированы вместе и разнесены в нескольких местах. Эти дроссели обычно используются в линии возврата питания и линии выхода источника питания.
Индивидуальные синфазные дроссели для вашего приложения
MPS Industries — ведущий производитель нестандартных синфазных дросселей и других электромагнитных компонентов. Наши решения доступны в различных размерах и могут использоваться во многих приложениях.Наша техническая команда посоветует вам, когда использовать дроссели общего режима и какой тип подходит для ваших нужд.
Чтобы узнать больше о дросселях или других наших продуктах и услугах, свяжитесь с нами или запросите ценовое предложение.