Энергия конденсатора онлайн калькулятор – Расчет запасаемой энергии в конденсаторе

калькулятор для онлайн расчета и формула

Конденсатор – это компонент электрической цепи, который состоит из двух проводящих обкладок, разделенных слоем диэлектрика. Обычно из них выходит два вывода для включения в электрическую цепь. Особенностью конденсатора является его возможность накапливать энергию, за счет удерживания носителей зарядов в электрическом поле. Ёмкость конденсатора, единица измерения которой микрофарады, определяет количество запасаемой энергии, а её единица измерения в любом виде – Джоуль. Интересно то, что формула для расчёта подобна формуле вычисления кинетической энергии:

W=(CU2)/2

То есть в вычислениях участвует напряжение и ёмкость. Но вычисление накопленной энергии используется также часто, как определение времени заряда конденсатора. Это особенно важно при расчете времени коммутации полупроводниковых ключей в электронике, или времени протекания переходных процессов. Такие возможности даёт наш онлайн калькулятор для расчета энергии в конденсаторе:

Для этого в интерфейс нужно внести емкость, напряжение которое к нему прикладывают и сопротивление, через которое происходит заряд. В результате калькулятор предоставит информацию о том, сколько энергии и за какое время зарядится.

Расчёты и практика показывает, что время заряда не зависит от приложенного напряжения, оно связано с величиной сопротивления цепи. Даже если нет в схеме резисторов и зарядка происходит от источника питания – ёмкость не зарядится мгновенно, в любом случае есть переходное сопротивление контактов, проводников, источника питания.

Чтобы рассчитать время заряда, обратите внимание на формулу:

Tзаряда=3-5t

t=RC

То есть, чем больше сопротивление или ёмкость, тем дольше происходит зарядка. На этом ответ на вопрос «Как посчитать, сколько энергии накапливается в ёмкости?» можно окончить. Наш онлайн-калькулятор предоставит всю описанную выше информацию и проведет расчеты сразу после клика по кнопке «Вычислить».

Нравится(0)Не нравится(0)

samelectrik.ru

Онлайн калькулятор расчета запасаемой энергии в конденсаторе

Конструктивно конденсатор представляет собой емкостной элемент, состоящий из двух параллельно расположенных пластин, пространство между которыми заполнено диэлектриком.

Устройство конденсатора

Принцип работы конденсатора заключается в способности накапливать определенную величину заряда на пластинах и отдавать их обратно в сеть при прохождении через него переменного тока. Для цепи постоянного тока конденсатор представляет собой разрыв, но пластины все равно способны накапливать заряд. Основным параметром конденсатора является емкость, выражающаяся в Фарадах и способность накапливать заряд, выражаемая величиной энергии в Джоулях.

Если емкость конденсатора указывается на корпусе элемента и является его паспортным значением, то количество запасаемой энергии можно определить путем вычислений. Наиболее простым способом вычисления является использования онлайн калькулятора.

Для этого выполните такую последовательность действий:

  • Внесите в первую графу калькулятора значение напряжения на конденсаторе в Вольтах;
  • Укажите во втором поле величину емкости элемента в микрофарадах;
  • Внесите значения сопротивления конденсатора и нажмите кнопку “Рассчитать”.

В результате онлайн калькулятор расчета запасаемой энергии в конденсаторе выдаст значение заряда и времени, расходуемого на полный заряд емкостного элемента, подключенного к цепи.

Расчет величины заряда, накапливаемого в конденсаторе, и времени, необходимого для накопления этого заряда производится по таким формулам:

Где,

  • W – это количество запасаемой энергии в конденсаторе;
  • U – величина напряжения, приложенного к конденсатору;
  • C – емкость конденсатора.

Для определения времени, затрачиваемого на накопление этого количества запасаемой энергии, в калькуляторе используется формула: Tзар = R*C

Где

  • Tзар  – период времени, необходимый для накопления заряда, зависящий от параметров элемента;
  • R – величина омического сопротивления конденсатора;
  • C – емкость конденсатора.

 

Понравилась статья? Поделиться с друзьями:



www.asutpp.ru

Конденсатор в цепи постоянного тока

Калькуляторы рассчитывают параметры разрядки и зарядки конденсатора от источника постоянной ЭДС через сопротивление. Формулы, по которым идет расчет, приведены под калькуляторами.

Заряд конденсатора от источника постоянной ЭДС
Точность вычисления

Знаков после запятой: 2

Постоянная времени RC-цепи, миллисекунд

 

Время зарядки конденсатора до 99.2%, миллисекунд

 

Начальный ток, Ампер

 

Максимальная рассеиваемая мощность, Ватт

 

Напряжение на конденсаторе, Вольт

 

Заряд на конденсаторе, микроКулон

 

Энергия конденсатора, миллиДжоуль

 

Работа, совершенная источником, миллиДжоуль

 

save Сохранить share Поделиться extension Виджет

Разряд конденсатора через сопротивление

Начальное напряжение на конденсаторе, Вольт

Точность вычисления

Знаков после запятой: 2

Начальная энергия конденсатора, миллиДжоуль

 

Начальный заряд конденсатора, микроКулон

 

Постоянная времени RC-цепи, миллисекунд

 

Начальный ток, Ампер

 

Максимальная рассеиваемая мощность, Ватт

 

Конечный заряд конденсатора, микроКулон

 

Конечная энергия конденсатора, миллиДжоуль

 

Конечное напряжение конденсатора, Вольт

 

save Сохранить share Поделиться extension Виджет

Понять приводимые ниже формулы поможет картинка, изображающая электрическую схему заряда конденсатора от источника постоянной ЭДС (батареи):

Итак, при замыкании ключа К в цепи пойдет электрический ток, который будет приводить к заряду конденсатора.
По закону Ома сумма напряжений на конденсаторе и резисторе равна ЭДС источника, таким образом:

При этом заряд и сила тока зависят от времени. В начальный момент времени на конденсаторе нет заряда, сила тока максимальна, также как и максимальна мощность, рассеиваемая на резисторе.

Во время зарядки конденсатора, напряжение на нем изменяется по закону

где величину

называют постоянной времени RC-цепи или временем зарядки конденсатора.
Вообще говоря, согласно уравнению выше, заряд конденсатора бесконечно долго стремится к величине ЭДС, поэтому для оценки времени заряда конденсатора используют величину

— это время, за которое напряжение на конденсаторе достигнет значения 99,2% ЭДС.
Заряд на конденсаторе:

Энергия, запасенная в конденсаторе:

Работа, выполненная источником ЭДС:

planetcalc.ru

Калькулятор резистивно-емкостной цепи, Радиотехнические калькуляторы, Конвертер величин

Данный калькулятор позволяет рассчитывать максимальный ток Imax в начале заряда конденсатора, максимальную энергию Emax и максимальный заряд конденсатора Qmax, когда он полностью заряжен при данном напряжении, а также постоянную времени RC-цепи.

Пример. Рассчитать постоянную времени, максимальную энергию, максимальный ток и максимальный заряд для цепи, состоящей из последовательно соединенных резистора 2 кОм и конденсатора 5 мкФ. Цепь подключена к источнику постоянного напряжения 10 V. Обратите внимание: напряжение не нужно для расчета постоянной времени RC-цепи.

Входные данные

Напряжение V

микровольт (мВ)милливольт (мВ)вольт (В)киловольт (кВ)мегавольт (мВ)

Емкость C

фарад (Ф)микрофарад (мкФ)нанофарад (нФ)пикофарад (пФ)

Сопротивление R

миллиом (мОм)ом (Ом)килоом (кОм)мегаом (МОм)

Выходные данные

Постоянная времени

τ с

Макс. энергия

E Дж

Макс. ток

I А

Макс заряд

Q Кл

Введите величины в поля для ввода, выберите единицы измерения и нажмите кнопку Рассчитать.

Постоянная времени определяется по формуле

где τ — постоянная времени в секундах, R — сопротивление в омах и C — емкость в фарадах. Постоянная времени RC-цепи определяется как время, которое требуется, чтобы конденсатор зарядился до 63,2% его максимально возможного заряда при условии, что начальный заряд нулевой. Отметим, что конденсатор зарядится до 63,2% за время τ и почти полностью (до 99,3%) зарядится за время 5τ.

Энергия E, которую хранит полностью заряженный до напряжения V конденсатор, при условии, что время заряда T ≫ τ, определяется формулой

где C — емкость в фарадах и V — напряжение в вольтах.

Максимальный ток I определяется по закону Ома:

Максимальный заряд Q определяется по формуле

где C — емкость в фарадах и V — напряжение в вольтах.

Фильтрующие электролитические конденсаторы на системной плате компьютера

Применение

Частотный разделитель ADSL — это фильтр нижних частот и три соединителя в корпусе

Конденсаторы часто используются в различных электрических и электронных устройствах и системах. Вероятно, вы не найдете ни одно электронное устройство, в котором не содержится хотя бы один конденсатор. Конденсаторы используются для хранения энергии, обеспечения импульсов энергии, для фильтрации питающего напряжения, для коррекции коэффициента мощности, для развязки по постоянному току, в электронных частотных фильтрах, для фильтрации шумов, для запуска электродвигателей, для хранения информации, для настройки колебательных контуров, в различных датчиках, в емкостных экранах мобильных телефонов… Этот список можно продолжать до бесконечности.

Резистивно-емкостные (RC) цепи обычно используются в качестве простых фильтров нижних и верхних частот, а также простейших интегрирующих и дифференцирующих цепей.

Резистивно-емкостные фильтры нижних частот

Пример двухкаскадного RC-фильтра нижних частот с неинвертирующим операционным усилителем с единичным коэффициентом передачи, который используется в качестве буфера между двумя каскадами фильтра

Фильтры нижних частот пропускают только низкочастотные сигналы и подавляют высокочастотные сигналы. Частота среза определяется компонентами фильтра.

Такие фильтры широко используются в электронике. Например, их используют в сабвуферах для того, чтобы не подавать на них звуки высоких частот, которые они не могут воспроизводить. Фильтры нижних частот используются также в радиопередатчиках для блокировки нежелательных высокочастотных составляющих в передаваемом сигнале. У тех, кто пользуется ADSL подключением к Интернету, всегда установлены частотные разделители с такими фильтрами нижних частот, которые предотвращают возникновение помех в аналоговых устройствах (телефонах) от сигналов DSL и воздействия помех от аналоговых устройств на оборудование DSL, подключенное к обычной телефонной линии.

Фильтры нижних частот используются для обработки сигналов перед их аналого-цифровым преобразованием. Такие фильтры улучшают качество аналоговых сигналов при их дискретизации и необходимы для подавления высокочастотных компонентов сигнала выше частоты Найквиста таким образом, чтобы он удовлетворял требованиям теоремы Котельникова для данной частоты дискретизации, то есть максимальная частота не должна быть выше половины частоты выборки.

На верхнем рисунке показан простой фильтр нижних частот. В нем используются только пассивные компоненты, поэтому он называется пассивным фильтром нижних частот (ФНЧ). В более сложных пассивных ФНЧ используются также катушки индуктивности.

В отличие от пассивных фильтров нижних частот, в активных фильтрах используются усилительные устройства, например, транзисторы или операционные усилители. В пассивные фильтрах также часто имеются операционные усилители, применяемые для развязки. В зависимости от количества конденсаторов и катушек индуктивности, влияющих на крутизну частотной характеристики фильтра, они обычно называются «фильтрами первого порядка», «второго порядка» и так далее. Фильтр, состоящий только из одного резистора и одного конденсатора, называется фильтром первого порядка.

Простой пассивный RC-фильтр верхних частот

RC-фильтры верхних частот

Фильтры верхних частот пропускают только высокочастотные составляющие сигналов и ослабляют низкочастотные составляющие. Фильтры верхних частот используются, например, в разделительных фильтрах звуковых частот (кроссоверах) для подавления низкочастотных составляющих в сигналах, подаваемых на высокочастотные динамики («пищалки»), которые не могут воспроизводить такие сигналы и к тому же обладают малой мощностью по сравнению с мощностью низкочастотных сигналов.

Активный фильтр верхних частот с операционным усилителем

Фильтры верхних частот часто используются для блокировки постоянной составляющей сигналов в тех случаях, когда она нежелательна. Например, в профессиональных микрофонах очень часто используется «фантомное» питание постоянным напряжением, которое подается по микрофонному кабелю. В то же время микрофон записывает переменные сигналы, такие как человеческий голос или музыка. Постоянное напряжение не должно появляться на выходе микрофона и не должно поступать на вход микрофонного усилителя, поэтому для его блокировки используется фильтр верхних частот.

Простой полосовой фильтр, собранный из двух каскадов — фильтра нижних частот (C2, R2) и фильтра высоких частот (C1, R1)

Если фильтр нижних частот и фильтр верхних частот стоят друг за другом, они образуют полосовой фильтр, который пропускает частоты только в определенной полосе частот и не пропускает частоты за пределами этой полосы. Такие фильтры широко используются в радиоприемниках и радиопередатчиках. В приемниках полосовые фильтры используются только для селективного пропускания и усиления сигналов радиостанции в требуемой узкой полосе частот. При этом сигналы других радиостанций за пределами этой полосы подавляются. Передатчики могут передавать радиосигналы только в определенном разрешенном для них диапазоне частот. Поэтому в них используются полосовые фильтры для ограничения полосы передаваемого сигнала таким образом, что он вписывался в допустимые пределы.

www.translatorscafe.com

Калькулятор импеданса конденсатора, Радиотехнические калькуляторы, Конвертер величин

Отметим, что величина импеданса идеального конденсатора равна его реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в емкостной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Здесь

XC — реактивное сопротивление конденсатора в омах (Ом) ,

ZLC — импеданс конденсатора в омах (Ом),

ω = 2πf — угловая частота в рад/с,

j — мнимая единица.

f — частота в герцах (Гц),

С — емкость в фарадах (Ф), и

Для расчета выберите единицы измерения и введите емкость и частоту. Импеданс конденсатора будет показан в омах.

График зависимости реактивного сопротивления конденсатора XC и текущего через него тока I от частоты f для нескольких величин емкости показывает обратную пропорциональную зависимость от частоты реактивного сопротивления

Конденсатор представляет собой пассивный электрический элемент с двумя выводами, состоящий, в основном, из двух электрических проводников, часто в форме тонких металлических пластин, разделенных диэлектриком, например, пластмассовой пленкой, керамикой, бумагой или даже воздухом. Конденсаторы используются для хранения энергии в форме электрического заряда.

Если незаряженный конденсатор подключить к источнику постоянного напряжения, он заряжается до приложенного напряжения и его зарядный ток экспоненциально уменьшается от максимального значения в начальной точке заряда до нуля. В то же время, напряжение на конденсаторе увеличивается до напряжения источника постоянного тока.

Таким образом, когда напряжение на конденсаторе становится максимальным, ток через него достигает минимума. Скорость изменения тока определяется постоянной времени цепи, в которую включен конденсатор. Полностью заряженный конденсатор блокирует ток и действует как временный накопитель энергии.

Идеальный конденсатор поддерживает полный заряд в течение неограниченно долгого времени даже в том случае, если отключить источник постоянного напряжения. Однако в реальной жизни конденсаторы, особенно электролитические, не могут хранить энергию постоянно, так как у них имеется относительно низкое сопротивление утечки и, следовательно, большой ток утечки.

Если к конденсатору приложить синусоидальное напряжение, он заряжается сначала в одном направлении, а затем в противоположном. Полярность его заряда изменяется со скоростью изменения переменного напряжения. Как уже упоминалось выше, когда напряжение достигает максимума, ток становится минимальным и когда напряжение достигает минимума, ток достигает максимума. Ток через конденсатор пропорционален скорости изменения напряжения, причем ток максимален, когда напряжение изменяется быстрее всего, а это происходит, когда синусоида напряжения пересекает нулевую точку. На рисунке показан график напряжения на конденсаторе, заряда на нем и протекающего через него тока выглядит.

В чисто емкостной цепи величина тока зависит от скорости изменения напряжения. Ток заряжает конденсатор и когда ток медленно понижается до нуля, конденсатор полностью заряжен и напряжение на нем достигает максимума. VC — напряжение, QC — заряд, IC — ток, φ = –90° = –π/2 — фазовый сдвиг. 1 — конденсатор начинает заряжаться, ток достиг положительного максимума, скорость его изменения нулевая и напряжение на конденсаторе, а также его заряд — нулевые; 2 — конденсатор полностью заряжен, ток через него равен нулю, скорость его изменения в этот момент максимальна, а напряжение на конденсаторе и его заряд в этот момент максимальны и положительны; 3 — конденсатор заряжается в противоположном направлении, ток через него достиг отрицательного максимума, скорость его изменения нулевая, напряжение и заряд конденсатора также нулевые; 4 — конденсатор полностью заряжен, ток через него нулевой, скорость его изменения максимальна, а заряд и напряжение на конденсаторе достигли своих отрицательных максимумов

Как мы видим, напряжение на конденсаторе отстает от тока в нем по времени и фазе на 90°, так ток должен течь достаточно долго, чтобы на конденсаторе возник заряд и, соответственно, возросло напряжение. Можно также сказать, что ток опережает напряжение. Величина этого опережения зависит от соотношения величин реактивного сопротивления и активного сопротивления в цепи. Если сопротивления в цепи нет, то отставание (опережение) будет на 90° (ток нулевой, когда напряжение максимально). Этот угол называется фазовым сдвигом.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример. День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении емкости, только в природной аналогии. Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают конденсаторы.

День зимнего солнцестояния

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления конденсатора пропускаемому через него сигналу на определенной частоте. Емкостное реактивное сопротивление обратно пропорционально частоте приложенного переменного напряжения. Приведенные выше формула и график показывают, что реактивное сопротивление конденсатора XС мало при высоких частотах и велико при низких частотах (катушки индуктивности ведут себя с точностью до наоборот). При нулевой частоте (при постоянном напряжении) емкостное реактивное сопротивление становится бесконечно большим и прерывает протекающий ток. С другой стороны, при очень высоких частотах конденсатор проводит очень хорошо — отсюда правило, которое мы выучили в школе: конденсаторы не пропускают постоянный ток и пропускают переменный. Если частота очень высокая, конденсаторы пропускают сигнал очень хорошо.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно конденсатор противодействует прохождению тока через него. Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс конденсаторов от частоты зависит. С увеличением частоты импеданс конденсатора уменьшается и наоборот.

Этот калькулятор предназначен для расчета импеданса идеальных конденсаторов. Реальные конденсаторы всегда имеют некоторую индуктивность и сопротивление. Для расчета импеданса реальных конденсаторов пользуйтесь калькулятором импеданса RLС-цепей.

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

www.translatorscafe.com

Калькулятор расчета емкости конденсатора — онлайн

Основной функцией каждого конденсатора является накопление электрического заряда и его одномоментная отдача в нужное время. Данные приборы используются во многих электрических схемах, существенно улучшая качество их работы. Для правильного выбора и оптимизации данных устройств используйте онлайн калькулятор расчета емкости конденсатора. Достаточно ввести в таблицу исходные данные, чтобы получить определенные результаты.

Как рассчитать емкость конденсатора

Расчеты, производимые с помощью онлайн калькулятора, позволяют вычислить емкость конденсатора в течение нескольких секунд. Кроме этого параметра, можно определить показатели заряда, мощности, тока, энергии и прочих качеств конденсатора, необходимых в конкретном устройстве.

Наиболее часто встречаются электролитические конденсаторы, применяемые в схеме асинхронного электродвигателя. Конструкции этих устройств могут быть полярными или неполярными. В первом случае отмечается более высокая емкость, поэтому перед подключением конденсатора к двигателю, необходимо в обязательном порядке выполнить расчеты. С помощью проводимых вычислений устанавливается необходимая емкость, соответствующая конкретному двигателю.

Особое значение придается дополнительным расчетам при эксплуатации трехфазных электродвигателей. В обычном режиме конденсатор функционирует нормально, однако при включении в однофазную сеть, его емкость заметно снижается. Это приводит к увеличению частоты вращения вала. Предварительные расчеты и правильное подключение позволяют избежать подобных ситуаций.

При запуске асинхронного двигателя, работающего от напряжения 220 вольт, требуется конденсатор с высокой емкостью. В связи с этим, невозможно обойтись без проведения расчетов с помощью онлайн калькулятора. Проведение расчетов полностью зависит от способа соединения обмоток электродвигателя. Данное соединение может быть выполнено двумя способами – звездой и треугольником. В первом случае применяется формула Ср=2800хI/U, а для второго случая используется немного измененная формула Ср=4800хI/U.

Следует учитывать, что в цепочке соединенных конденсаторов емкость пускового устройства должна быть примерно в три раза выше, чем в рабочем приборе. Для расчета применяется формула Сп=2.5хСр, в которой Сп и Ср являются соответственно пусковым и рабочим конденсатором.

Методика расчета заряда конденсатора

В начальной стадии заряд любого прибора имеет нулевое значение. После подключения к гальваническому элементу или другому источнику постоянного тока происходит зарядка конденсатора.

В таблицу калькулятора вводятся такие данные, как значение ЭДС источника тока в вольтах, сопротивление, измеряемое в омах, емкость прибора в микрофарадах и время зарядки в миллисекундах. В результате вычислений появляются точные данные, характеризующие заряд конкретного конденсатора и определяющие его оптимальное использование в той или иной схеме.

electric-220.ru

Энергия конденсатора онлайн калькулятор. Энергия поля конденсатора

При заряде конденсатора внешний источник расходует энергию на разделение зарядов на положительные и отрицательные. Которые будут находиться на обкладках конденсатора. Следовательно, исходя из закона сохранения энергии, она никуда не пропадает, а остается в конденсаторе. Энергия в конденсаторе запасается в виде силы взаимодействия положительных и отрицательных зарядов находящихся на его обкладках. То есть в виде электрического поля. Которое сосредоточено между пластинами. Это взаимодействие стремится притянуть одну обкладку к другой, поскольку, как известно разноименные заряды притягиваются.

Как известно из механики F=mg , аналогично в электрике F=qE , роль массы играет заряд, а роль сили притяжения напряжённость поля.

Работа по перемещению заряда в электрическом поле выглядит так:A=qEd1-qEd2=qEd

C другой же стороны работа также равна разнице потенциальных энергий A=W1-W2=W.

Таким образом используя эти два выражения можно сделать вывод что потенциальная энергия накопленная в конденсаторе равна:

Формула 1 — Энергия заряженного конденсатора

Не трудно заметить, что формула очень похожа на потенциальную энергию из механики W=mgh .

Если провести аналогию с механикой: Представим камень, находящийся на крыше здания. Здесь взаимодействует масса земли с массой камня посредством силы тяжести, а здание высотой h противодействует силе гравитации. Если здание убрать камень упадет, следовательно, потенциальная энергия перейдет в кинетическую.

В электростатике же есть два разноименных заряда стремящихся притянутся друг к другу им противодействует диэлектрик толщиной d находящийся между обкладками. Если обкладки замкнуть между собой то потенциальная энергия заряда перейдет в кинетическую то есть в тепло.

В электротехнике формула для энергии в таком виде не применяется. Ее удобно выразить через емкость конденсатора и напряжение, до которого он заряжен.

Так как заряд конденсатора определяется зарядом одной из его пластин то напряжённость поля, создаваемая ею, будет равна E/2 . Поскольку общее поле складывается из полей создаваемых обеими обкладками заряжении одинаково, но с противоположным знаком.

Следовательно, энергия конденсатора будет иметь вид: W=q(E/2)d

Вся энергия заряженного конденсатора накапливается в электрическом поле между его пластинами. Энергию, сосредоточенную в конденсаторе, можно вычислить следующим методом. Давайте представим себе, что мы заряжаем емкость не сразу, а потихоньку, перенося электрические заряды с одной его металлической пластины на другую.

Во время переноса первого заряда работа, совершенная нами, будет относительно небольшой. На уже на перенос второго электрического заряда мы истратим больше энергии, так как из-за переноса первого заряда, между металлическими пластинами конденсатора возникнет разность потенциалов, которую нам необходимо преодолевать, третий, четвертый и каждый последующий за ними одиночный заряд будет переносить значительно труднее и на их перенос придется расходовать все больше и больше энергии. Пусть мы перекинем таким образом некоторое определенное количество зарядов, которое мы условно обозначим латинской букв

tdsl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *