Какую нагрузку выдерживает бетонная плита толщиной 10 см: Сколько может выдержать плита перекрытия?

Содержание

Сколько может выдержать плита перекрытия?

Максимальная нагрузка на пустотные плиты перекрытия может быть рассчитана даже тем, кто никогда ранее не сталкивался со строительством и подобными задачами в целом. Здесь работает простая арифметика, на требующая глубоких знаний ни в строительстве, ни в высшей математике.

В первую очередь необходимо определить, с какой плитой мы имеет дело.

Блок: 1/9 | Кол-во символов: 368
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Хранение строительных материалов

При производстве ремонта используют сухие смеси (М:300, пескобетон, штукатурки, наливные полы и т.д.). Как правило, это мешки с весом 30-50 кг.

Материалов требуется много и часто их хранят в одном месте, например складируют друг на друга. Так удобно строителям — площадь остается свободной и есть простор для работы. Этого никогда нельзя допускать.

В момент доставки мало кто задумывается о несущей возможности плиты перекрытия, а зря.

Все дома имеют запас прочности — он зависит от типа дома, конструктивного решения и возраста постройки. Ниже я привожу виды несущих плит.

В каждом случае нужно делать просчет допустимой нагрузки на плиту перекрытия. Важно просчитать все по формуле и учесть индивидуальные характеристики (возможные прогибы, целостность арматуры, износ и т.д.).

Чтобы не вдаваться в сложные расчеты привожу усредненные данные для типовых домов.

Для типового домостроения применяют плиты перекрытия с нагрузкой до 400 кг/кв.м. В крупнопанельных домах (поздние версии) допустимая нагрузка — 600 кг/кв.м.

Эти величины включают в себя как постоянные (перегородки, стяжка), так и временные (мебель, человек) нагрузки. Нельзя допускать перегруз — это приведет к обрушению. 18 мешков наливного пола — это уже 800 кг.

Конструкции дома не должны работать на износ, поэтому не нагружайте плиту перекрытия своего дома.

Горе-строители могут настаивать и спорить — им удобно сразу завести все черновые материалы. На первый взгляд это кажется логичным — происходит экономия на доставках, но экономия должна быть рациональной.

В своих проектах я разделяю доставки материалов по весу и всегда слежу, чтобы нагрузки распределялись равномерно на плиту перекрытия. Т.е. я не разрешаю строить «горы» из строительных смесей.

так нельзя

Блок: 2/4 | Кол-во символов: 1780
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Особенности

Пустотная плита перекрытия изготавливается из прочного бетона в совокупности со стальной арматурой высокого качества, которая может быть предварительно напряжена. Данная конструкция имеет форму прямоугольника, она оснащена сквозными воздушными круглыми камерами. Данная особенность определяет легкость пустотелых плит, поэтому они могут снижать общую нагрузку на фундамент и стенки. Их перемещение с использованием техники не доставляет дискомфорта, так как для этого имеются специальные петли.

Конструкция пустотелых плит более легкая, нежели у полнотелых, но при этом их прочность и надежность находится на высоком уровне. Присутствие полостей воздуха в данном изделии способствует тепло- и звукоизоляции. Изготовление плит данного вида осуществляется двумя путями:

  • безопалубочным, который подразумевает применение вибрационных трамбовок;
  • заливанием стационарных опалубок из металла бетонной смесью, после чего залитую конструкцию отправляют на виброуплотнение и обработку теплом.

Благодаря наличию полостей в форме цилиндра улучшаются такие эксплуатационные возможности плит:

  • увеличение прочности;
  • улучшение теплоизоляции;
  • облегчение процедуры прокладывания коммуникаций инженерами;
  • уменьшение влияния внешних звуков.

Блок: 2/8 | Кол-во символов: 2471
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Блок: 2/6 | Кол-во символов: 2690
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Материалы и конструкционные находки

Вес, который может выдержать плита перекрытия напрямую зависит от марки цемента, из которого она сделана.

Изготавливаются плиты перекрытия из бетона на основе цемента марки М300 или М400. Маркировка в строительстве — это не просто буквы и цифры. Это закодированная информация. К примеру, цемент марки М400 способен выдержать нагрузку до 400 кг на 1 куб.см в секунду.

Но не следует путать понятия «способен выдержать» и «будет выдерживать всегда». Эти самые 400 кг/куб.см/сек — нагрузка, которую изделие из цемента М400 выдержит какое-то время, а не постоянно.

Цемент М300 представляет из себя смесь на основе М400. Изделия из него выносят меньшие одномоментные нагрузки, зато они более пластичны и выдерживают прогибы, не проламываясь.

Армирование придает бетону высокую несущую способность. Пустотная плита армируется нержавеющей сталью класса АIII или АIV. У этой стали высокие антикоррозийные свойства и устойчивость к температурным перепадам от — 40˚ до + 50˚, что очень важно для нашей страны.

При производстве современных железобетонных изделий применяется натяжное армирование. Часть арматуры предварительно натягивают в форме, затем устанавливают арматурную сетку, которая передает напряжение от натянутых элементов на все тело пустотной плиты. После этого в форму заливают бетон. Как только он затвердеет и обретет нужную прочность, натяжные элементы обрезают.

Такое армирование позволяет железобетонным плитам выдержать большие нагрузки, не провисая и не прогибаясь. На торцах, которые опираются на несущие стены, используется двойное армирование. Благодаря этому торцы не «проминаются» под собственным весом и легко выдерживают нагрузку от верхних несущих стен.

Блок: 3/9 | Кол-во символов: 1711
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Оплатить три доставки вместо одной — дешевле чем восстанавливать дом

При завозе строительных материалов нельзя допускать халатности и складывать все в одной точке. Профессиональные строители это знают, а дилетанты загрузят все в лифт и застрянут в лучшем случае.

Заранее просчитайте какие материалы потребуются и определите временные рамки для доставок.

Блок: 3/4 | Кол-во символов: 360
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Преимущества и слабые стороны плит с полостями

Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Блок: 4/6 | Кол-во символов: 3875
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Как правильно делать ремонт (распределение нагрузок):

  • Произведите демонтаж (уберите лишнее) и утилизацию строительного мусора. Это важно, чтобы подготовить фронт работы.
  • Продумайте и просчитайте пирог полов. Если требуется большой слой, то используйте легкие материалы (пеноплекс, керамзит). Эти материалы не дают большую нагрузку на плиту перекрытия и позволяют обеспечить звукоизоляцию.
  • Перегородки собирайте из легких материалов. Не используйте кирпич для возведения внутренних перегородок — вес кирпичной перегородки (пустотелый кирпич) составляет 200-220 кг/кв.м. Соответственно маленькая кирпичная стена площадью в 10 кв.м будет весить более 2 т.

В своих проектах я всегда собираю перегородки из тонкого пеноблока (толщиной 50-75мм). Это позволяет экономить пространство (толщина кирпичной стены 120 мм) и не перегружать плиту перекрытия. Стены из пеноблока обладают схожими характеристиками с кладкой в полкирпича (крепость и звукоизоляция между помещениями).

  • Никогда не заливайте слой цементной стяжки более 4 см. Всегда должен быть «пирог» полов: снизу толстые слои легких материалов, а сверху цементная стяжка и тонкий слой самовыравнивающегося наливного пола (0,4 — 0,9 см).
  • Учитывайте вес финишных материалов. Натуральный камень может передавать нагрузку от 60 кг/кв.м. Если уже произвели работы и подняли уровень полов, то правильно заменить тяжелые финишные материалы на более легкие, например на керамогранит.
  • Следите, чтобы во время ремонта хранение сухих смесей не было организовано в одной точке. Разделите смеси на группы и храните их в разных комнатах.
  • Всегда обращайтесь к профессионалам и не экономьте на специалистах. Ремонт не прощает ошибок. Ремонт требует знаний и опыта, никогда не допускайте к работе дилетантов или тех, кто не понимает разницу между М:300 и М:500.

Источник

Блок: 4/4 | Кол-во символов: 1845
Источник: http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/

Виды нагрузок

Независимо от типа, любое перекрытие состоит из:

  1. 1. Верхней части – напольное покрытие, утепление полов, бетонные стяжки, если сверху расположен жилой этаж.
  2. 2. Нижней части, которая создается из обшивочных материалов, штукатурки, плиточных покрытий, к примеру, отделка потолка и подвесные конструкции, если снизу находится жилой этаж.
  3. 3. Конструкционной части, состоящей из монолитных или сборных плит.

Конструкционной частью является любой тип плит перекрытия, при этом верхняя и нижняя часть создают определенную статическую (перегородки, подвесные потолки, мебель) и динамическую нагрузку (нагрузка от перемещающихся по полу людей, домашних питомцев). Помимо этого также существуют точечные нагрузки и распределенные. Для жилых строений, помимо статических и динамических рассчитывают распределенные нагрузки, которые измеряются в килограмм-силах или Ньютонах на метр (кгс/м).

Блок: 5/9 | Кол-во символов: 896
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Маркировка

Каждый тип пустотелых плит перекрытий оснащается маркировкой, которая соответствует стандартам качества. Благодаря этому заказчик и проектировщик могут определить нужные параметры. На торце конструкции потребитель может увидеть маркировку, дату изготовления, массу и штамп ОТК.

В стандартной маркировке имеются несколько букв, которые обозначают серию, а также 3 группы цифр, определяющие размеры, несущую возможность. Обе группы имеют вид двух цифр, которые считаются обозначением длины, а также ширины в дециметрах. Данные показатели округляются до целых чисел в большую сторону. Последняя группа представлена в виде единой цифры, она определяет равномерность распределения нагрузок в кПа.

Показатель этот также округляется.

Пример маркировки: ПК 23-5-8. Ее расшифровка такая: плита имеет круглые пустоты, она характеризуется длиной в 2280, шириной в 490 миллиметров, при этом конструкция обладает несущей способностью в 7,85 кПа. Есть такие виды изделий, что оснащаются маркировкой, дополненной латинскими обозначениями, что определяют типы прутьев. Один из примеров маркировки: ПК ,5 обозначает, что изготовление каркаса осуществлялось из напряженной арматуры. В качестве дополнения на пустотелых конструкциях имеются следующие обозначения:

  • т – бетон тяжелого типа;
  • а – наличие вкладышей для уплотнения;
  • э – формирование при помощи экструзионного метода.

Блок: 6/8 | Кол-во символов: 2646
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Разновидности конструкций

  • ПК характеризуется стандартной толщиной в 22 см, наличием сквозных полостей цилиндрической формы. Плиты изготавливаются из железобетона, который имеет класс не менее В15.
  • ПБ – этот вид изделий получают при помощи безопалубочного метода, используя конвейер. При изготовлении данных конструкций используется особый метод армирования, с его помощью отрезание происходит без потерь прочности. Так как плиты имеют ровную поверхность, последующая отделка полов, потолков осуществляется легче.
  • ПНО – облегченный вид конструкции, что произведен путем безопалубочного метода. Отличием от предыдущего вида можно назвать меньшую толщину в 0,16 метра.
  • НВ – внутренний тип настила, производимый из железобетона класса В40, имеющий армирование в один ряд, что является предварительно напряжённым.
  • НВК является внутренним типом настила, который имеет напряженное армирование в два ряда и толщину в 26,5 сантиметров.

При производстве конструкций для перекрытий предварительно напряженную арматуру подвергают сжимающей напряженности в пунктах, где будет осуществляться самое большое растяжение. По прохождению данной обработки преднапряженные круглопустотные конструкции становятся более прочными, устойчивыми. Характеристика таких приспособлений содержит обозначение «предварительно напряженная плита».

Стандартные габариты круглопустотных плит толщиной 0,22 м (ПК, ПБ, НВ) и 0,16 м (ПНО) характеризуются длиной 980-8990 мм, что в маркировке фиксируется как 10-90. Дистанция между соседствующими габаритами – 10-20 сантиметров. Ширина полноразмерного товара составляет 990 (10), 1190 (12), 1490 (15) миллиметров. Чтобы потребителю не приходилось резать изделия, применяются элементы добора, ширина которых составляет 500 (5), 600 (6), 800 (8), 900 (9), 940 (9) миллиметров.

ПБ характеризуются длиной до 12 метров. Если данный показатель составляет более 9 метров, то толщина должна соответствовать 22 сантиметрам или же несущая способность плиты будет меньше. Изделия серии НВК, НВКУ, 4НВК могут характеризоваться габаритами, которые не подходят к стандартным. Расстояние между пустотами плит назначается с использованием параметров оборудования, что используется на заводе. Согласно ГОСТ дистанция должна составлять меньше, чем следующие показатели:

  • для плит 1ПК, 1ПКТ, 1ПКК, 2ПК, 2ПКТ, 2ПКК, 3ПК, 3ПКТ, 3ПКК и 4ПК – 185;
  • для конструкций типа 5ПК – 235 миллиметров;
  • 6ПК – 233 миллиметров;
  • 7ПК – 139 миллиметров.

Оптимальным количеством пустот в данной конструкции считается 6 штук.

Блок: 5/8 | Кол-во символов: 4073
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Примерный расчет предельной нагрузки на пустотную плиту перекрытия

Для того чтобы самостоятельно рассчитать, какую максимальную нагрузку могут выдерживать плиты перекрытия, которые вы планируете использовать при строительстве, необходимо учесть все моменты. Допустим, что для обустройства перекрытий вы хотите использовать панели 1ПК63.12-8 (то есть, величина расчетной нагрузки, которую выдерживает одно изделие, составляет 800 кг/м²: для дальнейших расчетов обозначим ее буквой Q₀). Рассчитав сумму всех динамических, статических и распределенных нагрузок (от веса самой плиты; от людей и животных, мебели и бытовой техники; от стяжки, утеплителя, финишного напольного покрытия и перегородок), которую обозначаем QΣ, можно определить, какую нагрузку выдерживает ваша конкретная плита. Основной момент, на который надо обратить внимание: в результате всех расчетов (разумеется, с учетом повышающего коэффициента прочности) должно получиться, что QΣ ≤ Q₀.

Для того чтобы определить равномерно распределенную нагрузку от собственного веса плиты, необходимо знать ее массу (M). Можно воспользоваться либо величиной массы, указанной в сертификате завода-изготовителя (если его предоставили в месте продажи), либо справочной величиной из таблицы ГОСТ-а, которая составлена для изделий, изготовленных из тяжелых видов бетона со средней плотностью 2500 кг/м³. В нашем случае справочный вес плиты составляет 2400 кг.

Сначала вычисляем площадь плиты: S = L⨯H = 6,3⨯1,2 = 7,56 м². Тогда нагрузка от собственного веса (Q₁) составит: Q₁ = M:S = 2400:7,56 = 317,46 ≈ 318 кг/м².

В некоторых строительных справочниках рекомендуют при расчетах использовать суммарное усредненное значение полезной нагрузки на перекрытие жилых помещений – Q₂=400 кг/м².

Тогда суммарная нагрузка, которую необходимо выдерживать плите перекрытия, составит:

QΣ = Q₁ + Q₂ = 318 + 400 = 718 кг/м² ˂ 800 кг/м², то есть основной момент QΣ ≤ Q₀ соблюден и выбранная плита пригодна для обустройства перекрытий жилых помещений.

Для точных расчетов будут необходимы значения удельной плотности (стяжки, теплоизолятора, финишного покрытия), значение нагрузки от перегородок, вес мебели и бытовой техники и так далее. Нормативные показатели нагрузок (Qн) и коэффициенты надежности (Үн) указаны в соответствующих СНИП-ах.

Блок: 6/7 | Кол-во символов: 2267
Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Блок: 5/6 | Кол-во символов: 434
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Нагрузка на плиту перекрытия в панельном доме старой постройки

Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:

  • нагрузочную способность стен;
  • состояние строительных конструкций;
  • целостность арматуры.

При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.

Originally posted 2018-03-05 17:23:17.

Блок: 6/6 | Кол-во символов: 677
Источник: https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya

Способ пересчета нагрузок на квадратный м

Расчет нагрузок на плиту перекрытия делается на ее каждый погонный метр.

Нагрузку на ту же плиту перекрытия можно рассчитать и по-другому. Берем все ту же ПК-60-15-8.

При площади поверхности в 9 кв.м на 1 кв.м поверхности плиты приходится: 2850 кг : 9 кв.м = 316 кг/кв.м Вычитаем собственный вес из максимально допустимой нагрузки: 800 кг/кв. м — 316 кг/кв.м = 484 кг/кв.м.

Теперь вычитаем отсюда вес напольного покрытия, стяжки или утепления, то есть всего того, что ляжет на пол. Пусть оно будет приблизительно равно 150 кг/кв.м: 484 кг/кв.м — 150 кг/кв.м = 334 кг/кв.м.

Небольшая разница в 1 кг получается за счет того, что здесь не проводилось деление, которое в первом случае приводит к периодической дроби. Из остающихся 334 кг/кв.м нужно вычесть 150 кг/кв. м, отпущенные на мебель и людей, а потом распланировать перегородки и двери из расчета 184 кг на 1 кв.м.

Блок: 7/9 | Кол-во символов: 912
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Сколько может выдержать плита перекрытия?

Не стоит устанавливать в старых домах слишком массивную сантехнику или другие предметы, которые приведут к утяжелению конструкции. Помимо этого статические нагрузки со временем могут накапливаться, что в свою очередь может привести к прогибам и провисанию плит перекрытия. Чтобы не ошибиться в измерениях, рекомендуется пригласить специалиста для проведения детальных расчетов. Расчеты должны соответствовать установленным нормам (СНиПу).

Блок: 7/9 | Кол-во символов: 482
Источник: https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/

Точечная нагрузка с точностью до грамма

Этот вид нагрузки требует особой осторожности. От того, сколько будет подвешено или нагружено на одну точку, будет зависеть срок службы всего перекрытия.

Некоторые справочники предлагают рассчитывать предельно допустимую точечную нагрузку по следующей формуле: 800 кг/кв.м × 2 = 1600 кг То есть на одну точку можно навесить или поставить 1600 кг. Однако более разумным будет подсчет точечной нагрузки в соответствии с коэффициентом надежности.

Для жилых помещений он обычно равен 1-1,2. Исходя из этого, получаем: 800 кг/кв.м × 1,2 = 960 кг Такой расчет более безопасен, если речь идет о длительной нагрузке на одну точку. Однако следует помнить, что точечную нагрузку лучше располагать ближе к несущим стенам, возле которых армирование плиты усилено.

Блок: 8/9 | Кол-во символов: 793
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Правила монтажа

Для осуществления надежного монтажа пустотных плит перекрытия стоит точно соблюдать все правила. В случае если площадь опоры недостаточна, могут деформироваться стены, а в ситуации с излишком площади возможно увеличение теплопроводности. При установке плит данного вида стоит брать во внимание максимальную глубину опоры:

  • для кирпичного сооружения – 9 сантиметров;
  • для газобетонного и пенобетонного – 15 сантиметров;
  • для конструкций из стали – 7, 5 сантиметров.

В данном процессе стоит учитывать, что глубина заделки панели в стене не должно быть более чем 16 см для легкого блочного и кирпичного здания, а также 12 см для конструкции из бетона и железобетона.

До того как начать установку плит, окраинные пустоты необходимо заделать легкой смесью из бетона на глубину 0,12 метра.

Категорически не рекомендуется осуществлять монтаж плит без использования раствора. На рабочей поверхности укладывается слой раствора не меньше чем в 2 миллиметра. Благодаря данному мероприятию нагрузка на стену передается равномерно. Обустраивая плиты на хрупкую стену, необходимо сделать процедуру армирования, благодаря которой не будет выгибания блоков. Для того чтобы уменьшить теплопроводность плит перекрытия, стоит снаружи утеплить конструкцию.

Покупая пустотные панели перекрытий, стоит обращать внимание на их качество, внешний вид и наличие сертификатов, так как от них будет зависеть безопасность. Использование пустотных плит обеспечивает небольшую нагрузку на весь периметр сооружения, гарантирует высокую прочность и надежность сооружения.

Этот вид конструкций способствует меньшей осадке здания, нежели при использовании полнотелых вариантов, к тому же цена на них приемлемая.

О том, как правильно уложить плиты перекрытия, вы можете узнать из видео ниже.

Блок: 8/8 | Кол-во символов: 4118
Источник: http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/

Нагрузки при ремонтах старых квартир

Плиты перекрытия можно делать своими руками. Чтобы сделать их прочнее делается армирование.

Планируя роскошные ремонты в старых домах, лучше заранее изъять старое утепление полов и напольное покрытие. Затем следует хотя бы приблизительно оценить его вес. Новые стяжки, плиты или паркет, которые придут им на смену, желательно подобрать так, чтобы вес нового напольного «одеяния» был примерно равен массе прежней верхней части перекрытия.

Следует быть особо осторожным, размещая в старых квартирах новую сантехнику с увеличенными объемами — ванны на 500 л и более, джакузи. Лучше всего пригласить специалиста и попросить его провести детальные расчеты. Следует помнить, что кратковременная нагрузка и постоянная статическая нагрузка отличаются друг от друга.

Статические нагрузки имеют свойство накапливаться, приводя со временем к значительным прогибам и провисаниям плиты. А кратковременная нагрузка всего лишь испытывает ее на прочность.

В заключение хотелось бы сказать, что только точное соблюдение всех правил и тщательность в расчетах обеспечат плитам перекрытия долгую жизнь.

Блок: 9/9 | Кол-во символов: 1153
Источник: https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html

Кол-во блоков: 21 | Общее кол-во символов: 33856
Количество использованных доноров: 6
Информация по каждому донору:
  1. https://1popotolku.ru/perekrytie/skolko-vyderzhivaet-plita-perekrytiya.html: использовано 4 блоков из 9, кол-во символов 4569 (13%)
  2. https://shtyknozh.ru/nagruzka-na-plitu-perekrytija/: использовано 3 блоков из 9, кол-во символов 1746 (5%)
  3. http://www.stroy-podskazka.ru/perekrytiya/vse-o-pustotnyh-plitah/: использовано 4 блоков из 8, кол-во символов 13308 (39%)
  4. https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html: использовано 2 блоков из 7, кол-во символов 2572 (8%)
  5. https://pobetony.expert/raschet/nagruzka-na-plitu-perekrytiya: использовано 4 блоков из 6, кол-во символов 7676 (23%)
  6. http://trustload.com/%D0%B4%D0%BE%D0%BF%D1%83%D1%81%D1%82%D0%B8%D0%BC%D0%B0%D1%8F-%D0%BD%D0%B0%D0%B3%D1%80%D1%83%D0%B7%D0%BA%D0%B0-%D0%BD%D0%B0-%D0%BF%D0%BB%D0%B8%D1%82%D1%83-%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D1%80%D1%8B/: использовано 3 блоков из 4, кол-во символов 3985 (12%)

Поделитесь в соц.сетях:

Оцените статью:

Загрузка…

ᐉ Какую нагрузку выдержит монолитное перекрытие? — Стены, перекрытия, фасады

Вы уверены? Обычно арматурные сетки располагают по нижним полкам швеллеров (чтобы выполнить защитный слой бетона толщ. 20-30 мм), и тогда арматура будет правильно работать совместно с бетоном в растянутой (в нижней) зоне плиты. Если же арматурные сетки будут по середине высоты сечения плиты, тогда значительно уменьшается рабочая высота сечения плиты ho — важнейший параметр при расчете ж.б. изгибаемых элементов (для плиты толщ. 140 мм для рабочей арматуры d14 мм при защитном слое 20 мм ho=113 мм, при защитном слое 65 мм (арматура по центру сечения) ho=68 мм — уменьшение ho на 40%). Другими словами в направлении между швеллерами (L=1,2 м) с плитой думаю будет все нормально, а вот по длинной стороне (L=5,0 м) плита может запросто не пройти по деформациям т.е. бетон в нижней растянутой зоне может треснуть (от растягивающих усилий даже от собственного веса) и в данном сечении плиты бетон уже будет исключен из работы в растянутой зоне и все будет держаться только на арматуре.

Окончательную точку в этом деле может поставить визуальный осмотр на наличие трещин и расчет плиты (по несущей способности и по деформациям — заодно можно будет определить максимально допустимые нагрузки).

 

В том что так наварены уверен. Присутствовал лично. Фото есть. Почему сделали именно так, сказать затрудняюсь, тогда не задавался вопросом насколько это правильно, строители сказали что так будет лучше видимо. Вопрос в том, как дальше возможно эксплуатировать перекрытие. Я планирую строить 2 этаж и по перекрытию делать межкомнатные перегородки, вот и засомневался можно ли ими нагружать плиту и вообще можно ли ходить по нему и ставить мебель. По моим подсчетам сама плита должна весить около 10 тонн. Трещин нету визуально. Швеллера визуально ровные без прогибов. Прошлым летом ремонтировали кровлю, вчетвером ходили по плите плюс сварка, строители (другие) заверили чтоб не переживал, но понимаю что это необъективно. Как рассчитать несущую способность плиты? Можете подсказать?

 

Добавлено через 7 минут

Вы уверены? Обычно арматурные сетки располагают по нижним полкам швеллеров (чтобы выполнить защитный слой бетона толщ. 20-30 мм), и тогда арматура будет правильно работать совместно с бетоном в растянутой (в нижней) зоне плиты. Если же арматурные сетки будут по середине высоты сечения плиты, тогда значительно уменьшается рабочая высота сечения плиты ho — важнейший параметр при расчете ж.б. изгибаемых элементов (для плиты толщ. 140 мм для рабочей арматуры d14 мм при защитном слое 20 мм ho=113 мм, при защитном слое 65 мм (арматура по центру сечения) ho=68 мм — уменьшение ho на 40%). Другими словами в направлении между швеллерами (L=1,2 м) с плитой думаю будет все нормально, а вот по длинной стороне (L=5,0 м) плита может запросто не пройти по деформациям т.е. бетон в нижней растянутой зоне может треснуть (от растягивающих усилий даже от собственного веса) и в данном сечении плиты бетон уже будет исключен из работы в растянутой зоне и все будет держаться только на арматуре.

Окончательную точку в этом деле может поставить визуальный осмотр на наличие трещин и расчет плиты (по несущей способности и по деформациям — заодно можно будет определить максимально допустимые нагрузки).

 

Да не переживайте, все нормально. Так как вы разделили бетон швеллером, то можно считать как бетонные плиты шириной 1.2 м*6 м, толщиной 10 см(тогда арматура для расчетов получается в нижней части), то есть кг до 600-700/м спокойно должно выдерживать. Но если вы собираетесь ставить перегородки, а потом на них еще что-то нагружать, то надо считать.

 

В том то и загвоздка что собираюсь. Само по себе оно держится уже лет пять как и без видимых изменений. А вот как быть со 2 этажом? Ломаю голову. Либо знать что оно выдержит и спокойно строить, либо оставлять так же одним помещением (не вижу смысла) либо как то усиливать перекрытие.

 

Добавлено через 1 час 44 минуты

Да не переживайте, все нормально. Так как вы разделили бетон швеллером, то можно считать как бетонные плиты шириной 1.2 м*6 м, толщиной 10 см(тогда арматура для расчетов получается в нижней части), то есть кг до 600-700/м спокойно должно выдерживать. Но если вы собираетесь ставить перегородки, а потом на них еще что-то нагружать, то надо считать.

 

То есть швеллер в расчет прочности не принимается?

Нагрузка на плиты перекрытия: примеры расчета, максимально допустимые

Для обустройства перекрытий между этажами, а также при строительстве частных объектов применяются железобетонные панели с полостями. Они являются связующим элементом в сборных и сборно-монолитных строениях, обеспечивая их устойчивость. Главная характеристика – нагрузка на плиту перекрытия. Она определяется на этапе проектирования здания. До начала строительных работ следует выполнить расчеты и оценить нагрузочную способность основы. Ошибка в расчетах отрицательно повлияет на прочностные характеристики строения.

Нагрузка на пустотную пелиту перекрытия

Виды пустотных панелей перекрытия

Панели с продольными полостями применяют при сооружении перекрытий в жилых зданиях, а также строениях промышленного назначения.

Железобетонные панели отличаются по следующим признакам:

  • размерам пустот;
  • форме полостей;
  • наружным габаритам.

В зависимости от размера поперечного сечения пустот железобетонная продукция классифицируется следующим образом:

  • изделия с каналами цилиндрической формы диаметром 15,9 см. Панели маркируются обозначением 1ПК, 1 ПКТ, 1 ПКК, 4ПК, ПБ;
  • продукция с кругами полостями диаметром 14 см, произведенная из тяжелых марок бетонной смеси, обозначается 2ПК, 2ПКТ, 2ПКК;
  • пустотелые панели с каналами диаметром 12,7 см. Они маркируются обозначением 3ПК, 3ПКТ и 3ПКК;
  • круглопустотные панели с уменьшенным до 11,4 см диаметром полости. Применяются для малоэтажного строительства и обозначаются 7ПК.

Виды плит и конструкция перекрытия

Панели для межэтажных оснований отличаются формой продольных отверстий, которая может быть выполнены в виде различных фигур:

  • круга;
  • эллипса;
  • восьмигранника.

По согласованию с заказчиком стандарт допускает выпуск продукции с отверстиями, форма которых отличается от указанных. Каналы могут иметь вытянутую или грушеобразную форму.

Круглопустотная продукция отличается также габаритами:

  • длиной, которая составляет 2,4–12 м;
  • шириной, находящейся в интервале 1м3,6 м;
  • толщиной, составляющей 16–30 см.

По требованию потребителя предприятие-изготовитель может выпускать нестандартную продукцию, отличающуюся размерами.

Основные характеристики пустотных панелей перекрытий

Плиты с полостями пользуются популярностью в строительной отрасли благодаря своим эксплуатационным характеристикам.

Расчет на продавливание плиты межэтажного перекрытия

Главные моменты:

  • расширенный типоразмерный ряд продукции. Габариты могут подбираться для каждого объекта индивидуально, в зависимости от расстояния между стенами;
  • уменьшенная масса облегченной продукции (от 0,8 до 8,6 т). Масса варьируется в зависимости от плотности бетона и размеров;
  • допустимая нагрузка на плиту перекрытия, равная 3–12,5 кПа. Это главный эксплуатационный параметр, определяющий несущую способность изделий;
  • марка бетонного раствора, который применялся для заливки панелей. Для изготовления подойдут бетонные составы с маркировкой от М200 до М400;
  • стандартный интервал между продольными осями полостей, составляющий 13,9-23,3 см. Расстояние определяется типоразмером и толщиной продукции;
  • марка и тип применяемой арматуры. В зависимости от типоразмера изделия, используются стальные прутки в напряженном или ненапряженном состоянии.

Подбирая изделия, нужно учитывать их вес, который должен соответствовать прочностным характеристикам фундамента.

Как маркируются плиты пустотные

Государственный стандарт регламентирует требования по маркировке продукции. Маркировка содержит буквенно-цифровое обозначение.

Маркировка пустотных плит перекрытия

По нему определяется следующая информация:

  • типоразмер панели;
  • габариты;
  • предельная нагрузка на плиту перекрытия.

Маркировка также может содержать информацию по типу применяемого бетона.

На примере изделия, которое обозначается аббревиатурой ПК 38-10-8, рассмотрим расшифровку:

  • ПК – эта аббревиатура обозначает межэтажную панель с круглыми полостями, изготовленную опалубочным методом;
  • 38 – длина изделия, составляющая 3780 мм и округленная до 38 дециметров;
  • 10 – указанная в дециметрах округленная ширина, фактический размер составляет 990 мм;
  • 8 – цифра, указывающая, сколько выдерживает плита перекрытия килопаскалей. Это изделие способно выдерживать 800 кг на квадратный метр поверхности.

При выполнении проектных работ следует обращать внимание на индекс в маркировке изделий, чтобы избежать ошибок. Подбирать изделия необходимо по размеру, уровню максимальной нагрузки и конструктивным особенностям.

Преимущества и слабые стороны плит с полостями


Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК 60.15-8, которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.
Многопустотная плита перекрытия ПК 60.15-8

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м

2

Методика расчета позволяет определить нагрузочную способность изделия.

Рассмотрим алгоритм вычисления на примере панели ПК 23.15-8 весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Максимальная нагрузка на плиту перекрытия в точке приложения усилий

Предельное значение статической нагрузки, которое может прилагаться в одной точке, определяется с коэффициентом запаса, равным 1,3. Для этого необходимо нормативный показатель 0,8 т/м2 умножить на коэффициент запаса. Полученное значение составляет – 0,8х1,3=1,04 т. При динамической нагрузке, действующей в одной точке, коэффициент запаса следует увеличить до 1,5.

Нагрузка на плиту перекрытия в панельном доме старой постройки

Определяя, какой вес выдерживает плита перекрытия в квартире старого дома, следует учитывать ряд факторов:

  • нагрузочную способность стен;
  • состояние строительных конструкций;
  • целостность арматуры.

При размещении в зданиях старой застройки тяжелой мебели и ванн увеличенного объема, необходимо рассчитать, какое предельное усилие могут выдержать плиты и стены строения. Воспользуйтесь услугами специалистов. Они выполнят расчеты и определят величину предельно допустимых и постоянно действующих усилий. Профессионально выполненные расчеты позволят избежать проблемных ситуаций.

классификация, формулы для расчетов, расчет плиты перекрытия

Плита перекрытия — это горизонтальная строительная конструкция, которая разделяет этажи друг от друга. Эта конструкция является несущей, она распределяет нагрузки и обеспечивает жесткость здания. Монолитная плита перекрытия — это конструкция, изготовленная на месте строительства здания путем заливки арматуры бетонной смесью.

Нельзя изменять проект дома без согласования с архитектором, потому что эти плиты проектируются специально для конкретного здания, так как для них нужно определить расположение арматуры и способ опоры.

Сталь намного прочнее бетона, именно потому арматурная сетка находится внизу плиты. Эта сетка не должна быть впритык к опалубке, расстояние между арматурой и опалубкой должно быть больше 3 см. Арматуру используют сечением 8−12 мм. Бетон должен иметь толщину не менее 10 см. Плита должна быть забетонирована за один раз. Опалубка выполняется в виде дна и стен будущей плиты. Для долговечности, прочности и надежности перекрытия используют бетона марки М200 и выше. Для этого лучше покупать готовую бетонную смесь на заводе.

Этот тип перекрытий имеет преимущества перед готовыми железобетонными плитами:

  • монолитное перекрытие используют в тех случаях, когда сложно организовать работу подъемного крана на стройплощадке, а также если здание имеет нестандартные размеры и архитектурные формы;
  • благодаря прочной связи элементов плиты обеспечивается высокая жесткость конструкции;
  • экономия денежных средств на электроэнергию, погрузочно-разгрузочные работы, сварочные работы по устранению стыков, меньшие затраты на материалы;
  • все необходимые материалы есть в свободной продаже;
  • нижняя поверхность плиты гладкая и ровная, поэтому проводить штукатурные работы легче;
  • отсутствие стыков повышает звукоизоляцию здания;
  • материал не горит и не подвержен гниению;
  • такой метод построения здания позволяет делать выносные конструкции (балконы), основание которых — единая плита с межэтажным перекрытием. Это повышает прочность и надежность балкона.

Главный недостаток такого типа перекрытия состоит в повышенной сложности работ в холодное время года. Необходимая прочность достигается через 28 дней. Из-за высокой влажности и пониженной температуры бетон будет застывать дольше, что увеличивает сроки строительства. Для исполнения монолитного перекрытия требуются специалисты высокого класса, так как плиты надо усиливать дополнительными опорами.

Еще один недостаток заключается в том, что перед тем, как заливать арматуру бетоном, нужно сделать опалубку. Обычно это занимает много времени и древесного материала. В настоящее время этого недостатка можно избежать. На рынке стройматериалов продают или сдают в прокат готовые элементы щитовой опалубки (фанерные плиты).

Классификация монолитных плит перекрытия

Монолитное перекрытие бывает балочным, безбалочным и ребристым (кессонным).

Балочное перекрытие укладывают двумя способами, в зависимости от типа плиты: ребристая она или гладкая. Если плита ребристая, то балки укладывают перпендикулярно ребрам. Если гладкая, то для достижения большей жесткости балки укладывают перпендикулярно друг другу.

Используют два типа балок: главные (с большим диаметром сечения) и второстепенные (с меньшим диаметром). Балки делают стальными или монолитными. Монолитные балки, в свою очередь, могут иметь разные схемы устройства. Они могут быть уложены в несколько рядов или слоев. Иногда плиту дополнительно усиливают в месте балки дополнительной арматурной сеткой. Стальные балки подпирают само перекрытие или могут находиться в самой монолитной плите. Несущий элемент в балке — двутавр.

При устройстве безбалочного перекрытия используют колонны с капителями. Последние выполнены в виде перевернутой пирамиды. Сечение арматурных штырей 8−12 мм. Капители имеют выпуски штырей с двух сторон, которые входят в сами плиту и укрепляют конструкцию. Плиты имеют каркас в два слоя арматуры. В этом случае плиты имеют толщину от 1/35 до 1/30 длины пролета. В последнее время распространена технология одновременного бетонирования колонн и плит.

Кессонное перекрытие отличается от ребристого количеством направлений ребер: они располагаются в обоих направлениях. Преимущества такого устройства перекрытия в легкости конструкции и прочности на изгиб из-за сетки ребер. При строительстве широкого пролета на месте стыка колонны и перекрытия устанавливается дополнительное арматурное усиление. Штыри колонны проникают в полость опалубки. Кессонное устройство предполагает верхний ряд сплошной арматурной сетки. Диаметр сечения штырей 8 мм.

Расчет параметров монолитной плиты перекрытия

Проект стоит доверить проверенным специалистам, которые грамотно его составят. В проекте приведены расчеты максимальной нагрузки на поперечное сечение плиты. Расчеты будут производиться с учетом индивидуальных предпочтений хозяина будущего здания. Помимо расчетов, в проекте специалисты предоставят свои рекомендации, какие материалы использовать.

Очень важно не допустить ошибку в проекте, поскольку от прочности перекрытия зависит надежность строения. Перекрытие может выдержать определенную нагрузку, выраженную в килограммах на один квадратный метр. Поэтому важно не изменять самостоятельно проект без согласования с архитектором. Любой перенос внутренних перегородок может негативно повлиять на распределение нагрузки на плиту перекрытия. Если превысить нагрузку, то бетон может не выдержать и треснуть, и появится риск обрушения основания этажа. Поэтому в расчетах учитываются характеристики используемых материалов, их общий вес, а также закладывается запас прочности монолитного перекрытия.

В случае усиления монолитного перекрытия железобетонными балками, которые пропускают под перекрытием, рассчитывают такие параметры, как высота, длина и ширина. Для расчетов параметра плиты необходимо знать толщину и площадь заливки бетона.

Расчеты монолитного перекрытия состоят из расчетов его отдельных элементов. В первую очередь делается опалубка. Она должна быть качественной с ровным дном и боковыми стенками. Лучше всего использовать толстую ламинированную фанеру. Для подпорок используют брус сечением 10 на 10 см.

На втором этапе делается армирующая сетка. Для нее используют металлические прутки сечением 8−12 мм, которые перевязывают проволокой. Размер ячеек должен быть 20 см. Ячейки не должны быть частыми, поскольку это увеличивает массу плиты.

Запас прочности рассчитывается исходя из характера эксплуатации здания: нагрузка на перекрытие у частного дома и промышленного здания совершенно разная.

Разработаны специальные компьютерные программы для расчета перекрытий. Однако они не учитывают характеристик используемых материалов. Поэтому прибегнуть к помощи проектировщика придется в любом случае. Это позволит правильно сделать все расчеты и не переплатить за строительство.

Прочность перекрытия рассчитывается исходя из двух факторов: нагрузки плиты и прочности арматуры. Причем прочность арматуры должна быть больше нагрузок на плиту.

Нагрузка на 1 квадратный метр перекрытия рассчитывается исходя из следующих данных:

  • собственный вес перекрытия;
  • временная нагрузка на перекрытие.

В качестве наглядного примера будут приведены расчеты для жилого помещения размерами 6 на 10 метров. Балки расположены на расстоянии 2,5 метра друг от друга. Толщина перекрытия будет равна 80 мм, что отвечает требованиям формулы L/35 (где L — шаг балок): 2,5/35=0,071 (71 мм).

Временная нагрузка для жилого дома по нормативам составляет 150 кг/м2. Коэффициент запаса 1,3. Итого получается нагрузка 195 кг/м2.

Нагрузка от собственного веса перекрытия рассчитывается таким образом: толщина плиты 20 см умножается на величину 2500 — получается 500 кг/м2.

Максимальная нагрузка на монолитную плиту будет равна q=195+500=695 кг/м2.

После получения этих данных просчитывается шаг балок. Это необходимо для оптимального использования материалов (бетона и металла) и правильного распределения нагрузок на балки. Балки должны укладываться через равные расстояния. Обязательно надо выполнять следующее условие: L 1 /L 2 >2, где L 1 — это длина балки, а L 2 — расстояние (шаг) между балками. Длина балок 6 метров. Условие выполнено: 6/2,5=2,4.

Для расчета максимального изгибания плиты необходимы такие данные:

  • расчетное сопротивление бетона R b = 7,7 МПа;
  • арматура класса А400С;
  • расчетное сопротивление арматуры R s = 365 МПа.

Расстояние от арматуры до края плиты 35 мм.

Максимальный изгибающий момент рассчитывается так:

М = q*L 2 2/11. М=695*2,52/11=395 кг/м.

Перекрытие с нижней армированной сеткой должно выполнять следующее условие: a m <a r. Параметр a r нормативный и равен 0,440 для указанных материалов.

am=M/(Rb*b*h02), где

b — ширина перекрытия 6 м,

h 0 — расстояние от края плиты до центра тяжести арматуры, 0,08−0,035=0,045 м.

am=395/(77000*6*0,0452)=0,042.

0,042>0,440.

В противном случае, когда a m >a r, надо повышать марку бетона или увеличивать сечение арматуры.

При значении am=0,042 коэффициент, а равен 0,98.

Площадь рабочей арматуры

Аs = М/(R s * а*h 0) = 395/(36500000*0,98*0,045) = 0,000245 м2 =2,45см2.

На один метр монолитной плиты приходится 5 стержней диаметром 80 мм и площадью 2,45см2.

Погонная нагрузка на балку

695*2,5=1737,5 кг/м.

Балки опираются на стену на 20 см. Расчетная длина балки 6+2*0,2=6,4 м.

Максимальный момент в сечении балки

Мр=q*L2/8.

Мр=1737,5*6,42/8=8896 кг/м.

Требуемый момент сопротивления

Wтр=Мр/(1,12*R).

Wтр=8896/(1,12*21)=378 см3.

Для такого сопротивления подходит двутавр № 27 с моментом сопротивления W=371 см3 и инерцией I=5010 см4.

Прочность балки проверяется таким образом:

R=Mp/1,12*Wtp

R=8896/(1,12*378)=21.

Расчетная R равна нормативной, что говорит о хорошей прочности балки.

Все константы и формулы можно найти в пособии к СНиП 2.03.01−84 «Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры».

Как видно, все формулы достаточно сложные и требуют определенных знаний, поэтому правильным решением будет обратиться к проверенной фирме, которая имеет высококвалифицированных специалистов в области проектирования и строительства.

Плита толщиной 10 см. Самодельная плита перекрытия. Результаты реальны или нет?

Какую нагрузку выдерживает бетонная плита толщиной 10 см?

Регистрация: Сергей Пермь Живу здесь. Сергей Пермь. Может стоит увеличить толщину?

Сергей Пермь , ExiT Живу здесь. Скажите, а зачем для плиты перекрытия гаража верхняя арматура. Не понимаю ИМХО, не нужна она там.

Какие плиты перекрытия установлены в Вашем доме, к примеру вот такие пустотные плиты перекрытия выдерживают вес в кг на квадратный метр. Возраст дома, желательно провести строительную экспертизу, чтобы точно знать о допустимой нагрузки на плиту перекрытия, чем старше дом, тем эта цифра меньше. Вес финишного напольного покрытия, так к примеру кафель с клеем весит гораздо больше чем линолеум, или ковролин. Далее на плиту перекрытия оказывает воздействие не только Ваша стяжка, но и вес штукатурки потолка у соседей снизу.

ExiT , Сам не понимаю вот и пытаюсь разных мнений послушать. Jon4rever Участник. Как то все запутанно Jon4rever , Я домовитый! Нагрузка кг для необслуживаемого чердака ещё нормально.

Можно ли в квартире залить стяжку толщиной 10 см, выдержит ли плита перекрытия такой вес?

Калюжкин сам себе строитель. Толщина 10 см.

Обычной стяжки из ЦПС было б достаточно 5см.. Взвесь, сколько ведро её весит, этой твоей стяжки, посчитай объём на полу и узнаешь, сколько ты навалил на плиту лишних кг.

Ну 12 см точно перебор, подсунули бы слой эппс 5 см и было бы норм. Если думать жопой то получается ситуация как у вас, снимай и делай облегченную. Да еще бывает и плиты переворачивают при монтаже, что увеличивает риск складывания. Сейчас у вас потихоньку плита начнет прогибаться, и при достижении критческого напряжения просто лопнет и провалится. Считаете вес сухой стяжки по плотности на м 2 и умножаете на высоту.

Общая масса по площади всего пола.

Как выбрать газовый конвектор?

Кроме прелестей с перегрузом, стяжка усиливает распространение ударного шума.. Сто еще добавится от финишного покрытия и мебели.. Если честно — это перебор, хоть и не выходит за пределы допустимого…. Непонятно, для чего так много?

Выдержит ли бетонная стяжка h20см нагрузки

Для увеличения сметы? Для выравнивания полов вполне достаточно стяжки толщиной см.

Масса такой стяжки получается ок. Можно ли залить стяжку поверх плитки кафель и не снимать её, будет ли надёжной такая стяжка?

Плита перекрытия 8 см.

Можно ли индукционную плиту подключить к обычной розетке? Можно ли самостоятельно дозалить перекрытие гаража?

Можно ли использовать плиты ПЖК для перекрытия пола индивидуального кирпичного дома? Можно ли посуду для индукционной плиты использовать на газовой плите, почему?

Лучшие ответы

Можно ли заливать дистиллированную воду в систему отопления? При какой температуре она замерзает? Можно ли нарезать штробы в готовой стяжке и уложить трубы тёплого водяного пола в штробу?

Тема в разделе » Каменные дома «, создана пользователем oleg , Искать только в заголовках Сообщения пользователя: Имена участников разделяйте запятой.

Можно ли на деревянном перекрытии делать кирпичные перегородки? Можно ли как-то повысить звукоизоляцию в квартире — стены, потолок, пол? Статистика проекта за месяц. Соединение с сервером Ким Чен Ын [K] 7 месяцев назад Старый дом, полы были деревянные, убрали лаги, доски, хотим залить стяжку.

Расчет толщины для плитного фундамента: пошаговая инструкция, примеры

Плитный фундамент представляет собой сплошную железобетонную конструкцию, размещаемую под всей площадью здания и равномерно воспринимающей все возможные весовые нагрузки. Стандартная схема включает дренаж из утрамбованного песка и щебня, плиту из качественного раствора с объемным армированием и гидроизоляцию, в особо сложных условиях основание утепляют. Главным требованием технологии заложения является выбор правильной толщины этих слоев, точное значение определяет расчет. Исходными данными служат параметры грунта, тип и вес постройки, в ходе вычислений важно соблюдать все нормы проектных стандартов.

Оглавление:

  1. От чего зависит толщина основы?
  2. Пример расчета фундамента
  3. Что нужно учесть?

Факторы, влияющие на толщину плитного фундамента

Этот тип основания относится к «плавающим», т.е. способным воспринимать и равномерно перераспределять нагрузки. В частных постройках толщина варьируется от 15 до 35 см, изменение в меньшую сторону не допускается по причине риска раскола плиты под воздействием собственного веса здания, в большую – из-за экономической нецелесообразности, увеличения общей массы и потери подвижности. Главным критерием влияния служит тяжесть конструкций, при использовании кирпича или плотных стройматериалов высота плитного фундамента возрастает на 5-10 см в сравнении с домами с газобетонными или каркасными стенами.

Вторым учитываемым фактором идут размеры будущей постройки. Следует помнить, что все фундаменты выдерживают не только нагрузку на сжатие, но и на изгиб, экстремум приходит на середину. Чем больше длина наружных стен, тем выше риск раскалывания монолитной плиты. Частично эта проблема решается увеличением числа внутренних перегородок с несущими способностями, но для полного исключения риска приходится наращивать толщину самого фундамента. Как следствие, при строительстве на узких участках составление проекта и выбор основания лучше доверить специалистам.

Помимо веса и типа здания при расчете фундаментной плиты (в том числе для проверки ее целесообразности) учитываются особенности грунта: глубина промерзания, несущие способности, однородность и уровень подземных вод. При высокой плотности слоев подбирается мелкозаглубленный вариант, в этом случае для его заложения достаточно вынуть около 50-70 см земли, единственным недостатком такого исполнения является отсутствие подвала. На неустойчивых грунтах фундаментная плита размещается ниже глубины промерзания на 60 см, тогда увеличивается вес постройки и на конструкцию действуют повышенные нагрузки.

Интенсивность влияния подземных вод учитывается при подборе марки бетона, материалов гидроизоляции и толщины дренажной подушки, при значительных рисках подтапливания целесообразно выбрать другой тип основания или провести его утепление влагостойкими материалами.

Последовательность и пример расчета

В ходе вычислений придерживаются следующей схемы:

1. Проводится анализ геологического состояния участка, в зависимости от его типа из таблиц выбирается величина оптимального удельного давления на грунт для плитных фундаментов. Также на этом этапе определяется требуемая глубина заложения основания. При строительстве на супесях и твердых глинах стоит провести сравнение с другими типами, воздействие морозного пучения на них будет максимальным, что приводит к необходимости значительного увеличения толщины плиты.

2. Рассчитываются все весовые нагрузки. Удельный вес любого стройматериала несложно найти в таблицах, исходя из размеров стен, кровли и перекрытий находится масса самого здания. К полученному значению прибавляется средняя нагрузка снежного покрова, выбираемая согласно региону проживания и углу наклона кровли (на скатных крышах свыше 60° она принимается равной нулю). Также обязательно учитывается эксплуатационная (полезная) нагрузка, в среднем для цокольных и межэтажных перекрытий она составляет 210 кг/см2, жилых чердаков – 105. Этот показатель рассчитывают для каждого этажа, по окончании они все суммируются.

3. Определяется площадь монолитной плиты (длина дома умножается на ширину) и величина удельной нагрузки на 1 м2 грунта (общие весовые делятся на полученное значение).

4. Находится оптимальный объем фундамента (путем деления на средний удельный вес армированного бетона – 2500 кг/м3) и его предварительная толщина. Показатель округляют до 5 см в ближайшую сторону.

5. Далее расчет плитного фундамента повторяют с учетом полученного веса основания, его прибавляют к общим весовым нагрузкам. Величину удельного давления на грунт (п.3 выше) сравнивают с оптимальным для данного участка, его допустимое отклонение – ±25 %.

6. Исходя из ожидаемых нагрузок находится марка бетона для заливки, с учетом толщины составляется схема армирования: подбираются диаметр прутьев и частота их расположения.

При отклонении расчетной толщины такой плиты от рекомендуемого диапазона (15-35 см) рассматриваются другие типы фундаментов или варианты ее усиления (ребрами жесткости или сваями). Составление проекта в последнем случае безоговорочно доверяется специалистам. В качестве примера представлен простой расчет двухэтажного дома из газобетона D600 8×8 м высотой в 6,5 м, с монолитным ж/б межэтажном и деревянным чердачном перекрытиях, кровлей из металлочерепицы при строительстве на пластичных глинах (оптимальная нагрузка для такого типа – 0,25кг/см2). Тип плиты – мелкое заложение, цокольное перекрытие отсутствует.

При толщине стен в 40 см объем коробки – 166,4 м3, с учетом удельного веса блоков в 180 кг/м3 ее масса равняется 29952 кг. При площади межэтажного перекрытия в 60 м2 оно весит 30000 кг, чердачного в 64 м2 – 9600. Удельный вес кровли – 30 кг/м3, общий согласно данным проекта: 30×84=2520 кг. Величина полезной нагрузки первого, второго этажей и чердака: 64×210+60×210+64×105=32760 кг. Масса снежного покрова для среднего региона РФ принимается равной 100 кг/м2, в данном случае общее значение: 84×100=8400 кг. В сумме весовые нагрузки достигают: 113232 кг.

Удельная нагрузка на 1 м2 грунта – 113232/64=1770кг/м2= 0,177 кг/см2. Разница между оптимальным равняется 0,25-0,177=0,073, требуемая масса монолитной плиты – 46720 кг. Объем – 46720/2500=18,688 м3, толщина – 0,292 м или 30 см, что соответствует норме. Поверка показывает, что при ее весе в 48000 кг и общем здания (113232+48000) =161232 кг, нагрузка на грунт – 0,252 кг/см2. Это отклонение минимальное, все требования соблюдены, расчет необходимой толщины считается завершенным. Далее с помощью онлайн-калькуляторов несложно составить схему армирования, подобрать диаметр продольных и вертикальных прутьев и определить количество стройматериалов.

Что следует учесть при возведении основания данного типа?

Помимо вышеперечисленных условий плитный фундамент требует соблюдения строительных стандартов, в частности, при выборе марки бетона и арматуры и расчете дренажной системы. Наличие подушки обязательно, этот слой защищает основу от подвижек грунта и влаги. Ее толщина зависит от веса и назначения здания, в идеале проводится ее расчет. Минимум для легких щитовых построек – 15 см, 25 – для гаражей, под дома из кирпича засыпается и уплотняется от 20 см щебня и 25-30 песка. Чем выше риск подтапливания, тем надежнее нужна дренажная система, при необходимости по периметру закладываются водоотводные трубы.

Фундамент-монолитная плита для жилых домов усиливается как минимум двумя продольными сетками арматуры диаметром в пределах 12-16 мм, поддерживаемыми вертикальными прутьями (от 6 мм и выше). Рекомендуемых шаг ячеек – от 20 до 30 мм. Соединения и стыки не свариваются, а обвязываются проволокой диаметром в 0,8-1,2 мм или пластиковыми хомутами. Минимальное отступление от края бетона составляет 5 мм, его нарушение приводит к коррозии и разрушению каркаса. С целью соблюдения этого требования под нижние ряды подкладывают специальные пластиковые стаканчики, сетки размещаются равноудаленно от центра и краев. Обязательным условиям является заливка бетона единым монолитом, с виброуплотнением и обеспечением правильных условий затвердевания.

пустотные плиты и их армирование

Кто не мечтает завести домик в деревне или отремонтировать с размахом квартиру в городе? Всякий, кто занимается частным строительством или ремонтом, должен задуматься о том, сколько выдерживает плита перекрытия. Сколько нагрузки, полезной или декоративной, она вынесет и не прогнется? Чтобы ответить на все эти вопросы, нужно сначала разобраться в конструкции плит и их маркировке.

Перед постройкой многоэтажного здания, нужно обязательно рассчитать, сколько может выдержать плита перекрытия.

Виды и достоинства данного изделия

Плиты перекрытия, изготовленные в заводских условиях с соблюдением температурного режима и времени затвердения, отличаются высоким качеством. Сегодня они выпускаются в двух модификациях: полнотелые и пустотные.

Полнотелые плиты, имеющие не только большой вес, но и большую стоимость, используют лишь при строительстве особо важных объектов. Для жилых домов традиционно берут пустотные плиты. В числе их достоинств – более легкий вес и меньшая цена, совмещенные с высоким уровнем надежности.

Надо отметить, что количество пустот рассчитано так, чтобы не нарушить несущие свойства. Пустоты также играют важную роль в обеспечении звуко- и теплоизоляции строения.

Размеры плит колеблются по длине от 1,18 до 9,7 м, по ширине – от 0,99 до 3,5 м. Но чаще всего при строительстве используются изделия длиной 6 м и шириной 1,2-1,5 м. Это излюбленный формат для строительства не только высотных домов, но и частных коттеджей. Для их установки требуется монтажный кран мощностью не более 3-5 тонн.

Вернуться к оглавлению

Материалы и конструкционные находки

Вес, который может выдержать плита перекрытия напрямую зависит от марки цемента, из которого она сделана.

Изготавливаются плиты перекрытия из бетона на основе цемента марки М300 или М400. Маркировка в строительстве – это не просто буквы и цифры. Это закодированная информация. К примеру, цемент марки М400 способен выдержать нагрузку до 400 кг на 1 куб.см в секунду.

Но не следует путать понятия «способен выдержать» и «будет выдерживать всегда». Эти самые 400 кг/куб.см/сек – нагрузка, которую изделие из цемента М400 выдержит какое-то время, а не постоянно.

Цемент М300 представляет из себя смесь на основе М400. Изделия из него выносят меньшие одномоментные нагрузки, зато они более пластичны и выдерживают прогибы, не проламываясь.

Армирование придает бетону высокую несущую способность. Пустотная плита армируется нержавеющей сталью класса АIII или АIV. У этой стали высокие антикоррозийные свойства и устойчивость к температурным перепадам от – 40˚ до + 50˚, что очень важно для нашей страны.

При производстве современных железобетонных изделий применяется натяжное армирование. Часть арматуры предварительно натягивают в форме, затем устанавливают арматурную сетку, которая передает напряжение от натянутых элементов на все тело пустотной плиты. После этого в форму заливают бетон. Как только он затвердеет и обретет нужную прочность, натяжные элементы обрезают.

Такое армирование позволяет железобетонным плитам выдержать большие нагрузки, не провисая и не прогибаясь. На торцах, которые опираются на несущие стены, используется двойное армирование. Благодаря этому торцы не «проминаются» под собственным весом и легко выдерживают нагрузку от верхних несущих стен.

Вернуться к оглавлению

Различные виды нагрузок

Всякое перекрытие состоит из трех частей:

  • верхняя часть, куда входят напольное покрытие, стяжки и утепление, если сверху расположен жилой этаж;
  • нижняя часть, состоящая из отделки потолка и подвесных элементов, если снизу тоже жилое помещение;
  • конструкционная часть, которая все это держит в воздухе.

Плиты перекрытия весят очень много, поэтому их нужно устанавливать только с помощью крана.

Плита перекрытия является конструкционной частью. Верхняя и нижняя часть, то есть отделка пола и потолка создает нагрузку, которую называют постоянной статической. К этой нагрузке относятся все подвешенные к перекрытию элементы – подвесные потолки, люстры, боксерские груши, качели. Сюда же относится то, что встанет на перекрытии – перегородки, колонны, ванны и джакузи.

Есть еще так называемая динамическая нагрузка, то есть нагрузка от перемещающихся по перекрытию объектов. Это не только люди, но и их питомцы, ведь сегодня некоторые люди обзаводятся экзотическими домашними любимцами, например, хряками, рысями или даже оленями. Поэтому вопрос о динамической нагрузке важен как никогда.

Помимо этого, нагрузки бывают распределенные и точечные. Например, если к перекрытию подвесить боксерскую грушу в 200 кг, то это будет точечная нагрузка. А если смонтировать подвесной потолок, каркас которого через каждые 50 см крепится подвесами к перекрытию, то это уже распределенная нагрузка.

При расчете точечной и распределенной нагрузки встречаются и более сложные случаи. К примеру, при установке ванны емкостью 500 л нужно учитывать не только распределенную нагрузку, которую создаст вес наполненной ванны на всю площадь опоры (то есть площадь между ножками ванны), но и точечную нагрузку, которую создаст каждая ножка на перекрытие.

Вернуться к оглавлению

Маркировка железобетонных изделий

Нарезанные плиты перекрытия обладают такой же стойкостью к нагрузкам как и обычные.

Все пустотные плиты перекрытия, выходящие с заводов, маркированы. Эта маркировка, как уже было сказано выше, несет закодированную информацию. Плиты перекрытия обозначаются аббревиатурой ПК.

Следующее после аббревиатуры число приблизительно равно длине, выраженной в дециметрах. Следующее число указывает ширину, также приблизительную и в дециметрах. А вот последнее число означает, сколько килограммов может вынести 1 кв.дм плиты, включая и ее собственный вес.

К примеру, плита перекрытия ПК-12-10-8 имеет длину 1180 мм (или 1,18 м, т.е. приблизительно 12 дм) и ширину 990 мм (то есть 0,99 м или примерно 10 дм). А вот максимально допустимая нагрузка равна 8 кг на 1 кв.дм. Или 800 кг/кв.м.

Надо отметить, что нагрузка в 800 кг на 1 кв.м практически стандартная для всех плит. Хотя выпускаются плиты, способные выдержать нагрузку в 1000 кг на 1 кв.м и даже 1250 кг на 1 кв.м. Последнее число в маркировке у них будет 10 и 12,5.

Высота плиты – величина постоянная, и практически всегда – за исключением особых случаев – равна 22 см.

Вернуться к оглавлению

Расчет предельно допустимых нагрузок

Плиты перекрытия могут иметь разные размеры и разную толщину, что влияет на их устойчивость к нагрузкам.

Чтобы узнать, сколько может вынести плита перекрытия, нужно сначала изготовить подробный чертеж дома (или квартиры). Затем следует высчитать общий вес всего, что понесет перекрытие. Сюда входят перегородки из гипсобетона, песочные и керамзитовые утепления полов, цементные стяжки, вес напольных плит или паркетного покрытия. Затем общий вес нагрузки следует поделить на количество плит, которые понесут все это на себе.

Несущие стены и опоры для крыши должны располагаться исключительно по торцам. Надо отметить, что внутренние части армируются так, чтобы нагрузка передавалась на торцы.

Середина плиты не может принять на себя вес серьезных конструкций, даже если снизу будут подведены опорные колонны или капитальные стены.

Теперь приступаем к общему расчету нагрузки, которую может выдержать плита. Для этого нужно знать ее вес. Возьмем, к примеру, плиту ПК-60-15-8, столь любимую нашими строителями. Согласно ГОСТ 9561-91, вес ее равен 2850 кг.

Для начала высчитаем площадь несущей поверхности плиты: 6 м × 1,5 м = 9 кв.м. Теперь нужно узнать, сколько килограммов нагрузки эта поверхность может вынести. Для этого площадь умножаем на максимально допустимую нагрузку, приходящуюся на 1 кв.м поверхности: 9 кв.м × 800 кг/кв.м = 7200 кг. Вычитаем отсюда вес самой плиты: 7200 кг – 2850 кг = 4350 кг.

После этого подсчитываем, сколько килограммов “съест” утепление полов, стяжка и укладка напольного покрытия. Обычно стараются уложить такое количество утеплителя или цементной стяжки, чтобы оно вместе с напольным покрытием весило не больше 150 кг/кв.м.

Таким образом, при 9 кв.м поверхности плиты она понесет: 9 кв.м × 150 кг/кв.м = 1350 кг. Вычитаем это число из получившейся ранее цифры и получаем: 4350 кг – 1350 кг = 3000 кг , что в пересчете на 1 кв.м дает 333 кг/кв.м.

Что означают эти 333 кг? Поскольку вес самой плиты и напольных покрытий уже вычтен, 333 кг на 1 кв.м – это та полезная нагрузка, которую можно на ней разместить. Согласно СНиП от 1962 года, не менее 150 кг/кв. м из этих 333 кг/кв.м должно быть отведено под будущие привнесенные нагрузки: статическую (мебель и бытовые приборы), и динамическую (люди, их питомцы).

Оставшиеся 183 кг/кв.м могут быть использованы для установки перегородок или каких-либо декоративных элементов. Если вес перегородок превышает рассчитанное значение, следует выбрать более легкое напольное покрытие.

Вернуться к оглавлению

Способ пересчета нагрузок на квадратный м

Расчет нагрузок на плиту перекрытия делается на ее каждый погонный метр.

Нагрузку на ту же плиту перекрытия можно рассчитать и по-другому. Берем все ту же ПК-60-15-8.

При площади поверхности в 9 кв.м на 1 кв.м поверхности плиты приходится: 2850 кг : 9 кв.м = 316 кг/кв.м Вычитаем собственный вес из максимально допустимой нагрузки: 800 кг/кв. м – 316 кг/кв.м = 484 кг/кв.м.

Теперь вычитаем отсюда вес напольного покрытия, стяжки или утепления, то есть всего того, что ляжет на пол. Пусть оно будет приблизительно равно 150 кг/кв.м: 484 кг/кв.м – 150 кг/кв.м = 334 кг/кв.м.

Небольшая разница в 1 кг получается за счет того, что здесь не проводилось деление, которое в первом случае приводит к периодической дроби. Из остающихся 334 кг/кв.м нужно вычесть 150 кг/кв. м, отпущенные на мебель и людей, а потом распланировать перегородки и двери из расчета 184 кг на 1 кв.м.

Вернуться к оглавлению

Точечная нагрузка с точностью до грамма

Этот вид нагрузки требует особой осторожности. От того, сколько будет подвешено или нагружено на одну точку, будет зависеть срок службы всего перекрытия.

Некоторые справочники предлагают рассчитывать предельно допустимую точечную нагрузку по следующей формуле: 800 кг/кв.м × 2 = 1600 кг То есть на одну точку можно навесить или поставить 1600 кг. Однако более разумным будет подсчет точечной нагрузки в соответствии с коэффициентом надежности.

Для жилых помещений он обычно равен 1-1,2. Исходя из этого, получаем: 800 кг/кв.м × 1,2 = 960 кг Такой расчет более безопасен, если речь идет о длительной нагрузке на одну точку. Однако следует помнить, что точечную нагрузку лучше располагать ближе к несущим стенам, возле которых армирование плиты усилено.

Вернуться к оглавлению

Нагрузки при ремонтах старых квартир

Плиты перекрытия можно делать своими руками. Чтобы сделать их прочнее делается армирование.

Планируя роскошные ремонты в старых домах, лучше заранее изъять старое утепление полов и напольное покрытие. Затем следует хотя бы приблизительно оценить его вес. Новые стяжки, плиты или паркет, которые придут им на смену, желательно подобрать так, чтобы вес нового напольного «одеяния» был примерно равен массе прежней верхней части перекрытия.

Следует быть особо осторожным, размещая в старых квартирах новую сантехнику с увеличенными объемами – ванны на 500 л и более, джакузи. Лучше всего пригласить специалиста и попросить его провести детальные расчеты. Следует помнить, что кратковременная нагрузка и постоянная статическая нагрузка отличаются друг от друга.

Статические нагрузки имеют свойство накапливаться, приводя со временем к значительным прогибам и провисаниям плиты. А кратковременная нагрузка всего лишь испытывает ее на прочность.

В заключение хотелось бы сказать, что только точное соблюдение всех правил и тщательность в расчетах обеспечат плитам перекрытия долгую жизнь.


Какой толщины должна быть бетонная плита?

🕑 Время чтения: 1 минута

Толщина бетонной плиты зависит от нагрузок и размеров плиты. Как правило, толщина плиты 6 дюймов (150 мм) рассматривается для жилых и коммерческих зданий с элементами армирования согласно проекту. Методы, используемые для определения толщины плиты, различаются для разных типов плит. Например, расчет толщины односторонней плиты отличается и проще, чем расчет толщины двусторонней плиты.

Выбор и расчет толщины плиты, включая плиты различных типов, является важным шагом в процессе проектирования.Если следовать надлежащей процедуре расчета толщины плиты, срок проектирования значительно сократится, помимо достижения надежной и экономичной толщины плиты.

Толщина односторонней плиты

Толщина односторонней плиты основана на прогиб , изгиб , сдвиг и иногда требования к огнестойкости .

1. Требования к отклонению

Apart от плит, которые сильно нагружены, например, плиты несут несколько метров грунта толщина плиты выбирается исходя из требований прогиба.Кодекс ACI устанавливает ограничения на толщину плиты. если прогиб не рассчитан и определен как приемлемый.

В противном случае толщина односторонних плит должна быть не менее L / 20 для простого поддерживаемые плиты; L / 24 для плит с неразрезным концом; L / 28 для плит с обоими заканчивается непрерывным; и L / 10 для консолей; где L — пролёт.

Эти значения могут использоваться при условии, что плиты не поддерживают или не прикреплены к перегородкам или другим конструкциям, которые могут быть повреждены из-за больших прогибов.

2. Требования к изгибу и сдвигу

Определение толщины плиты на основе изгиба и сдвига требования не часто. Однако эти требования должны быть проверены в конструкция, даже если толщина выбрана исходя из требований к прогибу.

Порядок проверки толщины плиты на соответствие требованиям изгиба следующим образом:
  1. Рассчитайте пробные факторизованные нагрузки на основе толщины плиты, рассчитанной на основе требований к прогибу.
  2. Вычислить моменты, используя подходящие методы, такие как метод коэффициента ACI.
  3. Поскольку для плит редко требуется коэффициент армирования более 0,01, проверьте, соответствует ли выбранная толщина плиты коэффициенту армирования 0,01. Используйте уравнение 1 для вычисления d:

Где:

d: эффективная глубина плиты, необходимая для выдерживания момента

Mu: момент, рассчитанный по нагрузкам

b: ширина плиты, полоса плиты 1 м (12 дюймов) считается

R: сопротивление изгибу (МПа), вычисленное с использованием следующего выражения:

Где:

p : коэффициент усиления принимается равным 0.01

фу: предел текучести стали, МПа

fc ‘: прочность бетона на сжатие, МПа

Процедура проверки толщины плиты на соответствие требованиям к сдвигу: следует:
  1. Вычислить предел прочности на сдвиг по нагрузкам, Vu
  2. Вычислить расчетную прочность плиты на сдвиг, уравнение 3. Если все пролеты равны, предел прочности на сдвиг возникает на внешней поверхности первой внутренней плиты, который вычисляется по уравнению 4, в противном случае — сдвиги. следует проверять на внешней поверхности первой внутренней плиты и типичной внутренней плиты, уравнение 5.

Где:

Vc: прочность бетона на сдвиг плиты

b: ширина плиты 1000 мм

d: эффективная глубина плиты

Vu: предельный сдвиг плиты

Вт: предельная распределенная нагрузка равна до 1,2 * статическая нагрузка плюс 1,6 * переменная нагрузка

л: пролет перекрытия

3. Требования к огнестойкости

Иногда плита толщина регулируется опасностью передачи тепла при пожаре.Для Этот критерий огнестойкости пола — это количество часов, необходимое для температура неэкспонированной поверхности повысится на заданную величину, обычно 121,1 ° C (250 ° F).

При повышении температуры на 121,1 ° C (250 ° F) плита толщиной 76,2 мм (3-1 / 2 дюйма) дает 1-часовую огнестойкость, 127-миллиметровая (5-дюймовая) плита обеспечивает 2-часовую огнестойкость, а плита 152,4 мм (6-1 / 4 дюйма) обеспечивает 3-часовую огнестойкость. Наконец, толщину плиты обычно округляют до ближайших 10 мм.

Двусторонняя плита Толщина

Как и в случае односторонней плиты, толщина двусторонней плиты должна удовлетворять требованиям к прогибу и сдвигу.

1. Требования к отклонению

Обычно толщина плиты выбирается таким образом, чтобы предотвратить чрезмерный прогиб при эксплуатации. Код ACI предоставляет метод расчета минимальной толщины двусторонней плиты, которая удовлетворяет прогибу.

Этот метод применим для различных типов двусторонних плит, таких как плоская плита, плоская плита, плиты на балках, плиты без внутренних балок. Чтобы просмотреть подробные сведения о вычислении минимальной толщины плиты, щелкните здесь.

Выбранная толщина плиты должна быть достаточной для сдвига как внутри, так и снаружи колонн.Код ACI разрешает использование более тонких плит, если расчетный прогиб находится в пределах указанных ограничений прогиба.

Процедура проверки адекватности Толщина плиты, способная выдержать сдвигающую силу, составляет:
  1. Определить факторная равномерная нагрузка.
  2. Проверить односторонние ножницы
  3. Проверить двухсторонний сдвиг штамповки

Если прочность плиты на сдвиг меньше, чем предел прочности на сдвиг, приложенный к плите, то для решения этой проблемы должны быть рассмотрены необходимые стратегии.Эти стратегии включают:

  1. Утолщите плиту по всей панели. Это может быть контрпродуктивным, поскольку вес плиты может значительно увеличить силу сдвига.
  2. Используйте откидную панель, чтобы утолщить перекрытие, прилегающее к колонне.
  3. Добавьте поперечную арматуру.

Все, что нужно знать о прочности бетона

Многие считают бетон прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки прочности бетона.

Возможно, что еще более важно, каждое из этих прочностных свойств придает бетону различные качества, что делает его идеальным выбором в различных случаях использования.

Здесь мы рассмотрим различные типы прочности бетона, почему они важны и как они влияют на качество, долговечность и стоимость бетонных проектов. Мы также демонстрируем разницу в прочности между традиционным бетоном и более новой инновационной технологией бетона — бетоном со сверхвысокими характеристиками (UHPC).

Терминология: Прочностные свойства бетона и почему они важны

Прочность бетона на сжатие

Это наиболее распространенное и общепринятое измерение прочности бетона для оценки характеристик конкретной бетонной смеси.Он измеряет способность бетона выдерживать нагрузки, которые уменьшают размер бетона.

Прочность на сжатие испытывают путем разрушения цилиндрических образцов бетона на специальной машине, предназначенной для измерения этого типа прочности. Он измеряется в фунтах на квадратный дюйм (psi). Тестирование проводится в соответствии со стандартом C39 ASTM (Американское общество испытаний и материалов).

Прочность на сжатие важна, поскольку это главный критерий, используемый для определения того, будет ли конкретная бетонная смесь соответствовать потребностям конкретной работы.

Бетон, фунт / кв. Дюйм

фунтов на квадратный дюйм (psi) измеряет прочность бетона на сжатие. Более высокое значение psi означает, что данная бетонная смесь прочнее, поэтому обычно она дороже. Но эти более прочные бетоны также более долговечны, то есть служат дольше.

Идеальный бетонный фунт на квадратный дюйм для данного проекта зависит от различных факторов, но абсолютный минимум для любого проекта обычно начинается от 2500 до 3000 фунтов на квадратный дюйм. Каждая бетонная конструкция имеет обычно приемлемый диапазон фунтов на квадратный дюйм.

Бетонные опоры и плиты на уровне грунта обычно требуют плотности бетона от 3500 до 4000 фунтов на квадратный дюйм. Подвесные плиты, балки и фермы (часто встречающиеся в мостах) требуют от 3500 до 5000 фунтов на квадратный дюйм. Традиционные бетонные стены и колонны, как правило, имеют диапазон от 3000 до 5000 фунтов на квадратный дюйм, в то время как для покрытия требуется от 4000 до 5000 фунтов на квадратный дюйм. Бетонным конструкциям в более холодном климате требуется более высокое давление на квадратный дюйм, чтобы выдерживать большее количество циклов замораживания / оттаивания.

Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 дней для определения psi.Семидневный тест проводится для определения раннего прироста силы, а в некоторых случаях его можно даже провести уже через три дня.

Но конкретный фунт на квадратный дюйм основан на результатах 28-дневного испытания, как указано в стандартах Американского института бетона (ACI).

Предел прочности бетона

Прочность на растяжение — это способность бетона противостоять разрушению или растрескиванию при растяжении. Это влияет на размер трещин в бетонных конструкциях и степень их возникновения.Трещины возникают, когда растягивающие усилия превышают предел прочности бетона.

Традиционный бетон имеет значительно более низкую прочность на разрыв по сравнению с прочностью на сжатие. Это означает, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, например сталью.

Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение.

Прочность бетона на раздельное растяжение определяют с помощью испытания на раздельное растяжение бетонных цилиндров. Испытание следует проводить в соответствии со стандартом ASTM C496.

Прочность бетона на изгиб

Прочность на изгиб используется как еще один косвенный показатель прочности на разрыв. Он определяется как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона противостоять изгибу.

Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.

Существует два стандартных теста ASTM, которые используются для определения прочности бетона на изгиб — C78 и C293. Результаты выражаются в модуле разрыва (MR) в фунтах на квадратный дюйм.

Испытания на изгиб очень чувствительны к подготовке, обращению с бетоном и его отверждению. Испытание следует проводить, когда образец влажный. По этим причинам результаты испытаний прочности на сжатие чаще используются при описании прочности бетона, поскольку эти числа более надежны.

Дополнительные факторы

Прочие факторы, влияющие на прочность бетона, включают:

Водно-цементное соотношение (Вт / см)

Относится к соотношению воды и цемента в бетонной смеси.Более низкое соотношение воды и цемента делает бетон более прочным, но также затрудняет работу с ним.

Необходимо соблюдать правильный баланс для достижения желаемой прочности при сохранении удобоукладываемости.

Дозирование

Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия и камня. Правильная пропорция этих ингредиентов является ключом к достижению более высокой прочности бетона.

Бетонную смесь со слишком большим количеством цементного теста легко залить, но она легко потрескается и не выдержит испытания временем.И наоборот, при слишком малом количестве цементного теста получается шероховатый и пористый бетон.

Смешивание

Оптимальное время перемешивания важно для прочности. Хотя прочность имеет тенденцию увеличиваться со временем перемешивания до определенного момента, слишком долгое перемешивание может фактически вызвать испарение избыточной воды и образование мелких частиц в смеси. В результате бетон становится труднее работать и становится менее прочным.

Не существует золотого правила для оптимального времени перемешивания, так как оно зависит от многих факторов, таких как: тип используемого миксера, скорость вращения миксера, а также конкретные компоненты и материалы в данной партии бетона.

Методы отверждения

Чем дольше бетон остается влажным, тем он прочнее. Для защиты бетона необходимо соблюдать меры предосторожности при отверждении бетона при очень низких или высоких температурах.

Неопровержимые факты: традиционный бетон против UHPC

Доступна новая технология производства бетона, которая имеет более высокие прочностные характеристики, чем традиционный бетон, во всех диапазонах прочности. Этот инновационный материал называется бетоном со сверхвысокими характеристиками (UHPC), и он уже внедряется во многих инфраструктурных проектах штата и федерального правительства, учитывая его исключительную прочность и долговечность.

UHPC очень похож на традиционный бетон по составу. Фактически, примерно от 75 до 80 процентов ингредиентов одинаковы.

Что делает UHPC уникальным, так это интегрированные волокна. Эти волокна добавляются в бетонную смесь и составляют от 20 до 25 процентов конечного продукта.

Волокна варьируются от полиэстера до стержней из стекловолокна, базальта, стали и нержавеющей стали. Каждое из этих интегрированных волокон создает все более прочный конечный продукт, причем сталь и нержавеющая сталь обеспечивают наибольший прирост прочности.

Вот более подробное сравнение UHPC с традиционным бетоном:

  • Прочность на растяжение —UHPC имеет предел прочности на разрыв 1700 фунтов на квадратный дюйм, в то время как у традиционного бетона обычно измеряется от 300 до 700 фунтов на квадратный дюйм.
  • Прочность на изгиб —UHPC может обеспечить прочность на изгиб более 2000 фунтов на кв. Дюйм; Традиционный бетон обычно имеет прочность на изгиб от 400 до 700 фунтов на квадратный дюйм.
  • Прочность на сжатие — Повышенная прочность на сжатие UHPC особенно важна по сравнению с традиционным бетоном.В то время как традиционный бетон обычно имеет прочность на сжатие в диапазоне от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.

Всего через 14 дней отверждения UHPC имеет прочность на сжатие 20 000 фунтов на квадратный дюйм. Это число увеличивается до 30 000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней. Некоторые смеси UHPC даже продемонстрировали прочность на сжатие 50 000 фунтов на квадратный дюйм.

Другие преимущества UHPC включают:

  • Устойчивость к замерзанию / оттаиванию — Исследования показали, что UHPC выдерживает более 1000 циклов замораживания / оттаивания, в то время как традиционный бетон начинает разрушаться всего за 28 циклов.
  • Ударопрочность —UHPC может поглощать в три раза больше энергии, чем обычный бетон. При ударной нагрузке UHPC был вдвое прочнее обычного бетона и рассеивал до четырех раз больше энергии. Это делает материал отличным кандидатом для сейсмостойких мостов и зданий.
  • Влагостойкость — Из-за более высокой плотности, чем у традиционного бетона, воде труднее проникать в UHPC.
  • Пластичность —UHPC может быть растянут на более тонкие секции под действием растягивающего напряжения, в отличие от обычного бетона.
  • Более длительный срок службы —UHPC служит более 75 лет по сравнению с 15–25 годами для традиционного бетона.
  • Более легкий — Несмотря на то, что UHPC прочнее, требуется меньше материала, поэтому торцевая конструкция легче, что снижает требования к опоре и опоре.

Неудивительно, что UHPC используется во многих американских инфраструктурных проектах для ремонта стареющих мостов и дорог страны. Материал увеличивает срок службы мостов, снижая общую стоимость жизненного цикла этих конструкций.UHPC предъявляет более низкие требования к техническому обслуживанию, учитывая его увеличенный срок службы, что еще больше способствует снижению затрат на срок службы.

Идеальное применение для UHPC:

При оценке конкретной бетонной смеси для проекта важно знать различные прочностные свойства этой смеси. Знание этих цифр и того, какие свойства прочности бетона обеспечивают проекту, является ключом к выбору правильной бетонной смеси.

Бетонные инновации, такие как UHPC, превосходят традиционный бетон по всем показателям прочности, что делает его разумным выбором для любых бетонных проектов.Снижение затрат на техническое обслуживание и увеличенный срок службы UHPC обеспечивает беспроигрышную надежность и более низкие затраты на жизненный цикл.

Фотография предоставлена ​​Peter Buitelaar Консультационная компания, дизайн — FDN в Эйндховене, Нидерланды.

Бетонные перекрытия

| Журнал Concrete Construction

Качественная конструкция пола включает хорошее уплотнение земляного полотна, плиты одинаковой толщины, бетон с низкой оседанием, прямые линии переборок и контрольные пропилы, расстояние между которыми от 24 до 30 раз превышает толщину плиты.

Распространенных ошибок при строительстве бетонных плит перекрытия можно избежать с помощью надлежащей подготовки основания, дизайна смеси, укладки, отделки и отверждения. При правильном выполнении этих действий владелец может рассчитывать на привлекательное долговечное изделие.

Стандартная толщина бетонной плиты перекрытия в жилищном строительстве составляет 4 дюйма. Рекомендуется от пяти до шести дюймов, если бетон будет время от времени подвергаться тяжелым нагрузкам, например, от домов на колесах или мусоровозов.

Чтобы подготовить основание, вырежьте уровень земли на нужную глубину, чтобы учесть толщину плиты.Удалите весь органический материал и большие твердые предметы, такие как камни и корни деревьев, на глубину не менее 4 дюймов. Если необходимо наращивание уклона, используйте гравий или песчаный грунт и уплотните окончательное основание с помощью виброплиты или аналогичного устройства. Кромки могут быть из любого прямого материала, который может быть закреплен на месте. Подумайте о пластиковых или металлических формах, если нет ровных пиломатериалов. Перед установкой опалубки установите натяжную линию с помощью колышков или бетонных досок, чтобы установить квадратную отметку уровня.

Что касается бетонной смеси, она должна соответствовать требованиям прочности на сжатие (обычно 3000 фунтов на квадратный дюйм) без мер, вызывающих чрезмерную усадку. Поскольку вода увеличивает усадку и растрескивание, для достижения желаемой осадки предпочтительнее использовать пластификатор. Также рассмотрите возможность включения волокон для предотвращения растрескивания при пластической усадке. Для наружных плит, подверженных воздействию морозной погоды или химикатов для борьбы с обледенением, может потребоваться более высокая прочность и увлеченный воздух. В случае сомнений обратитесь к поставщику бетона за рекомендуемой смесью.

Всегда избегайте добавления воды на стройплощадке, превышающей 1–2 галлона на кубический ярд. Если дополнительная просадка действительно необходима, спросите водителя автобетоносмесителя, сколько воды можно добавить, не допуская отклонения бетона от спецификации.

Распределите бетон вокруг плиты как можно ближе к его окончательному положению, а затем сгребите его на место. Уплотняйте смеси с низкой осадкой с помощью ручного вибратора или виброрейки. Закончите с минимальным усилием и минимальными движениями терки, необходимыми для получения гладкой поверхности.

Создайте контрольные швы на расстоянии не более чем в 24–30 раз больше толщины плиты и не более 15 футов по ширине и длине плиты, вдавливая инструмент для нарезания канавок глубиной 1 дюйм в поверхность. Расстояние между стыками более 15 футов требует использования устройств передачи нагрузки, таких как дюбели или дюбели. Для плит, для которых требуется большое расстояние между стыками или отсутствие стыков, рекомендуется стальная арматура. Это увеличит вероятность случайного растрескивания, но будет плотно удерживать трещины, чтобы обеспечить хорошие структурные характеристики.

Правильные условия отверждения имеют решающее значение, и метод отверждения должен применяться, как только готовая поверхность сможет противостоять повреждениям. Бетон не должен замерзать или высыхать. Нанесите на поверхность отвердитель или обеспечьте подходящее влажное отверждение. Если есть риск замерзания, накройте плиту изолятором, например изолирующими одеялами или 4-дюймовым слоем соломы, который утяжеляют, чтобы она не сдулась. Оставьте изолятор на месте, пока бетон не достигнет прочности не менее 500 фунтов на квадратный дюйм.Обычно это происходит в течение нескольких дней.

— Питер Вандерверф — президент Building Works Inc. (www.buildingworks.com), консалтинговой фирмы, которая помогает компаниям внедрять новые строительные продукты. Терри Коллинз — инженер по бетонным конструкциям в Портлендской цементной ассоциации (www.cement.org), которая продвигает использование бетона и других продуктов на основе цемента.

Дополнительная информация о бетонных перекрытиях

Штампованные полы — Бетонные наружные покрытия

Штампованный бетонный пол позволяет дать волю своему творчеству: он разработан, окрашен и имеет штамп для воссоздания эффекта каменных плит, кирпича, булыжника и многих других материалов, таких как камень, керамика и дерево .

В отличие от других более традиционных наружных бетонных полов, штампованный бетон можно декорировать и отделывать по форме и цвету, он выдерживает большие нагрузки и после обработки специальными смолами и цветными отвердителями становится чрезвычайно износостойким и абразивным. стойкость по сравнению с традиционными бетонными плоскими конструкциями.

Он состоит из монолитной плиты и поэтому не имеет вмятин или оседания. Свойства этого решения полностью сохраняются с течением времени, что доказывает его долговечность, износостойкость поверхностного покрытия, подходящего даже для интенсивного автомобильного движения. .

Его индивидуализация и устойчивость делают его особенно подходящим для наружных бетонных твердых ландшафтов , таких как:

1 — Подъезд

2 — Гаражи

3 — Пандусы

4 — Подъездные пути

5 — Подвалы

6 — Террасы у бассейна

7 — Паркинги

8 — квадраты

… и многое другое

Бордюр из штампованного бетонного пола

Это покрытие легко адаптируется и поэтому идеально подходит как для внутреннего, так и для наружного ремонта небольших или больших поверхностей.

Его цену и затраты на реализацию легко определить по сравнению с отделкой замком или натуральным камнем, потому что стяжка и отделка создаются за один этап, и поэтому нет необходимости добавлять к окончательной цене стоимость вспомогательных элементов, таких как бордюры, ямы и др.

Решения Ideal Work придают неповторимый внешний вид внешнему виду!

ПОДХОДИТ ДЛЯ АВТОМОБИЛЯ

Штампованный бетон идеально подходит для создания площадок, доступных для транспортных средств, таких как пандусы, автостоянки и подъездные пути

Толщина штампованного бетона , пригодного для движения автотранспорта, очень разнообразна; он будет определяться в соответствии с нагрузками, которые должны выдерживать плоские конструкции .

Примерно, в зависимости от нагрузки, толщина составит:

1-8-10 см для пешеходных зон, подверженных легкому или продолжительному пешеходному движению

2 — 13-15 см для зон движения легковых автомобилей (легковые и малотоннажные)

3 — 18-20 см для тяжелых транспортных средств (грузовые автомобили и тяжелые автомобили)

Возможность выбора толщины в зависимости от назначения плоского покрытия делает его подходящим для участков с интенсивным движением транспортных средств, таких как съезды, улицы и проезды.

По сравнению с традиционными замками или отделкой из натурального камня, помимо эстетических преимуществ, предлагает явные функциональные преимущества. :

1 — Не подлежит углублениям или расчетам

2 — Менее чувствителен к перепадам температуры

3 — Устраняет проблему роста сорняков между отдельными камнями

Благодаря некоторым специальным защитным покрытиям, поверхность может стать отталкивающей от плесени, пыли и абсорбции , что упрощает очистку проезжей части, пандусов, гаражей и мест, которые обычно подвержены масляным пятнам и следам проезда транспортных средств. .

Вы можете обновить существующий внешний пол, просто покрыв его штампованным бетоном, чтобы получить уникальный вид за короткое время; Фактически, в зависимости от сезона и условий строительной площадки, наши специалисты по нанесению покрытий могут создать 200 квадратных метров плоского штампованного бетона всего за 4-5 дней .

Пандусы в штампованном бетонном полу

Пятноотталкивающий бетон

Благодаря своей пятноотталкивающей способности , штампованный бетонный пол также особенно подходит для внутренних поверхностей, таких как подвалы, пандусы, подъезды и гаражи; места, подверженные воздействию влаги или пятен (моторное масло, продукты питания и напитки).Благодаря защитным покрытиям Ideal Work на этих поверхностях больше не будет пятен.

Однако, несмотря на то, что защитная смола изолирует поверхность пола, рекомендуется немедленно удалить пятна.

ЭФФЕКТ, КОТОРЫЙ МОЖЕТЕ СОЗДАТЬ С ШТАБАННЫМ БЕТОНОМ

Решения из штампованного бетона можно индивидуализировать различными способами. Ideal Work предлагает широкий выбор цветов, оттенков и форм, из которых клиент может выбрать.С помощью специальных форм для пола вы можете воспроизвести типичный эффект каменных мостков, каменных плит и дерева; Кроме того, можно создать узор с геометрическими формами .

Доступные цвета от пепельно-серого до кирпично-красного, от небесно-голубого до розового; они остаются неизменными с течением времени, гарантируя прочный уникальный и современный стиль.

Широкий выбор текстур

В отличие от традиционных бетонных полов, плоских и однотонных, с помощью штампованных бетонных покрытий вы можете выбрать свой любимый узор и текстуру среди множества возможностей.

Цвета: более 500 возможных комбинаций

Выбор цветов еще шире. Краска для бетона состоит из двух основных компонентов: отвердителя цвета и жидкого разделительного агента. Color Hardener предоставляет 29 стандартных цветов для окраски бетона; Liquid Release Agent позволяет размыть и определить размытие на поверхности пола. Учитывая все возможные совпадения между стандартным цветом и цветом размытия, всего существует более 500 возможных комбинаций .

Основным свойством окраски бетона является его длительная стойкость: благодаря применению очень эффективной защитной смолы цвет не тускнеет; ни при длительном воздействии солнечных лучей, ни под действием УФ-лучей. Однако важно уточнить, что окончательный цвет бетона не зависит от верхней смолы; это зависит от окраски бетона на этапе смешивания.

Уникальные индивидуальные решения

Как было сказано ранее, это монолитное решение, созданное из уникальной бетонной плиты; по этой причине необходимо разрезать пол, чтобы вставить некоторые контрольные швы, которые способствуют естественному сжатию бетона и, таким образом, созданию швов расширения.

После этого порезы можно скрыть тремя способами:

1 — При применении декоративных рамок различных форм, размеров и цветов, которые после нанесения создают соединение между двумя краями, скрывая стыки декоративным способом

2 — К создал несколько декоративных мотивов круглой формы, созданных серией цветочных элементов, расходящихся от центра. Они могут быть разных цветов и узоров.

3 — Компания создала некоторые геометрические декорации , например, в тематическом парке Miragica в Апулии, которые занимают площадь более 12000 кв. М и воспроизводят различные впечатляющие эффекты для каждой тематической зоны.

ШТАМПОВАННЫЙ ПОЛ ИЛИ ШТАБАННЫЙ БЕТОН?

Штампованный пол — лучшее решение как по своей прочности (благодаря защитным покрытиям, фактически, он вдвое более устойчив к износу и истиранию, чем обычный бетонный пол), так и по времени и цене установки.

Превосходит классические бетонные полы и с эстетической точки зрения: помимо использования рамок и декоративных мотивов, можно создать особые декоративные текстуры, которые иначе невозможно было бы создать с помощью обычного бетона.

НАЧАЛЬНАЯ ОБРАБОТКА

На этапе строительства мы применяем ряд обработок для улучшения качества и долговечности пола. В частности, две процедуры:

1 — Защитная смола: защищает пол от воздействия солнечных лучей и ультрафиолетовых лучей, а также делает пол устойчивым к плесени, пыли и поглощению.

2 — Приложение Power Release Agent: укрепляющий агент, улучшающий стойкость пола к истиранию и износу.

ПОКРЫТИЕ СТАРОГО ВНЕШНЕГО ПОЛА ШТАМПОВАННЫМ БЕТОНОМ

Вы хотите покрыть существующий старый и испачканный пол? С Ideal Work это возможно!

Специалист оценит возможность вмешательства и решит, использовать ли существующую стяжку. В этом случае нанесение штампованного бетона потребует иной процедуры, чем обычное нанесение. В зависимости от размера стяжки специалист подберет лучший технический вариант между TOPFLOOR, подходящим для полов толщиной 1-2 см, или BETONTOP, подходящим для растворов толщиной от 2 до 6 см.

Преемственность между интерьером и хардскейпом

Как и другие решения Ideal Work, штампованные бетонные полы можно укладывать как внутри помещений, так и снаружи. Это позволит сохранить эстетическую преемственность между внутренним полом и наружными плоскими поверхностями.

Если вы хотите, чтобы пол в вашей кухне или гостиной был таким же, как на внешних дорожках или крыльце вашего дома, или если вы не хотите, чтобы стиль вашей подъездной дорожки отличался от стиля гаража, бетонные покрытия идеально подходят для вас!

Пример штампованного бетонного пола

НЕКОТОРЫЕ ИДЕИ ДЛЯ ПОЛОВ ИЗ ШТАМПОВАННОГО БЕТОНА

В заключение отметим, что полы из штампованного бетона являются решением, обеспечивающим:

1 — Большая свобода настройки

2 — Короткое время установки

3 — Большое сопротивление

4 — Нет необходимости в обслуживании

Если вы рассмотрите эти возможности, помимо всех классических локаций, которые мы уже видели, это приложение подойдет еще большему количеству ситуаций, например:

1 — Тематические парки

2 — Кемпинги

3 — Торговые центры

4 — Пешеходные зоны

5 — Велосипедные полосы

НЕКОТОРЫЕ ПРИМЕРЫ ПРИМЕНЕНИЯ

Среди мест, добившихся успешных результатов с продуктами Ideal Work, есть два крупнейших представителя индустрии тематических парков, которые ежегодно принимают более 17 миллионов посетителей: Парижский Диснейленд и Гардаленд в Пескьера-дель-Гарда.

Гардаленд

Ideal Work создала серию этажей и для Gardaland. Они были предназначены для сокращения технического обслуживания парка, и эта цель была успешно достигнута компанией Ideal Work: благодаря ее вмешательству парку удалось устранить вмятины и осадки, вызванные износом плоских конструкций, ограничить повреждения от тепловых ударов и устранить раздражающие сорняки, растущие между камнями их классического пола. Компания Ideal Work обновила пешеходные дорожки, придав им современный вид, воссоздающий эффекты натурального камня, дерева, камня и керамики.

Штампованный бетонный пол в Gardaland

Ознакомьтесь с проектом!

Диснейленд

В 2016 году компания Ideal Work приняла вызов — создать пешеходные дорожки в крупнейшем тематическом парке Европы; они должны были соответствовать волшебству сценографии и в то же время быть подходящими для такого интенсивного пешеходного движения. Компания Ideal Work создала различные типы полов с штамповкой, подходящие для оформления тематических парков. В деталях полы воссоздали изысканность керамического эффекта, вневременной эффект кирпича и элегантность имитации дерева.

Штампованный бетонный пол в Диснейленде

Ознакомьтесь с проектом!

1.2: Структурные нагрузки и система нагружения

2.1.4.1 Дождевые нагрузки

Дождевые нагрузки — это нагрузки из-за скопившейся массы воды на крыше во время ливня или сильных осадков. Этот процесс, называемый пондированием, в основном происходит на плоских крышах и крышах с уклоном менее 0,25 дюйма / фут.Заливка крыш возникает, когда сток после атмосферных осадков меньше количества воды, удерживаемой на крыше. Вода, скопившаяся на плоской или малоскатной крыше во время ливня, может создать большую нагрузку на конструкцию. Поэтому это необходимо учитывать при проектировании здания. Совет Международного кодекса требует, чтобы на крышах с парапетами были первичные и вторичные водостоки. Первичный водосток собирает воду с крыши и направляет ее в канализацию, а вторичный сток служит резервным на случай засорения первичного водостока.На рисунке 2.3 изображена крыша и эти дренажные системы. Раздел 8.3 стандарта ASCE7-16 определяет следующее уравнение для расчета дождевых нагрузок на неотклоненную крышу в случае, если основной слив заблокирован:

где

  • R = дождевая нагрузка на неотклоненную крышу в фунтах на кв. Дюйм или кН / м 2 .
  • d s = глубина воды на неотклоненной крыше до входа во вторичную дренажную систему (т.е.е. статический напор) в дюймах или мм.
  • d h = дополнительная глубина воды на неотклоненной крыше над входом во вторичную дренажную систему (т. Е. Гидравлический напор) в дюймах или мм. Это зависит от скорости потока, размера дренажа и площади дренажа каждого дренажа.

Расход Q в галлонах в минуту можно рассчитать следующим образом:

Q (галлонов в минуту) = 0,0104 Ai

где

  • A = площадь крыши в квадратных футах, осушаемая дренажной системой.
  • i = 100 лет, 1 час. интенсивность осадков в дюймах в час для местоположения здания, указанного в правилах водоснабжения.

Рис. 2.3. Водосточная система с крыши (адаптировано из Международного совета по кодам).

2.1.4.2 Ветровые нагрузки

Ветровые нагрузки — это нагрузки, действующие на конструкции ветровым потоком. Ветровые силы были причиной многих структурных нарушений в истории, особенно в прибрежных регионах. Скорость и направление ветрового потока непрерывно меняются, что затрудняет точное прогнозирование давления ветра на существующие конструкции.Это объясняет причину значительных усилий по исследованию влияния и оценки силы ветра. На рисунке 2.4 показано типичное распределение ветровой нагрузки на конструкцию. Основываясь на принципе Бернулли, взаимосвязь между динамическим давлением ветра и скоростью ветра может быть выражена следующим образом при визуализации потока ветра как потока жидкости:

где

  • q = воздух с динамическим ветровым давлением в фунтах на квадратный фут.
  • ρ = массовая плотность воздуха.
  • V = скорость ветра в милях в час.

Базовая скорость ветра для определенных мест в континентальной части США может быть получена из основной контурной карты скорости в ASCE 7-16 .

Предполагая, что удельный вес воздуха для стандартной атмосферы составляет 0,07651 фунт / фут 3 и подставляя это значение в ранее указанное уравнение 2.1, можно использовать следующее уравнение для статического давления ветра:

Для определения величины скорости ветра и его давления на различных высотах над уровнем земли прибор ASCE 7-16 модифицировал уравнение 2.2 путем введения некоторых факторов, учитывающих высоту сооружения над уровнем земли, важность сооружения для жизни и имущества человека, а также топографию его расположения, а именно:

где

K z = коэффициент скоростного давления, который зависит от высоты конструкции и условий воздействия. Значения K z перечислены в таблице 2.4.

K zt = топографический фактор, который учитывает увеличение скорости ветра из-за внезапных изменений топографии там, где есть холмы и откосы.Этот коэффициент равен единице для строительства на ровной поверхности и увеличивается с высотой.

K d = коэффициент направленности ветра. Он учитывает уменьшенную вероятность максимального ветра, идущего с любого заданного направления, и уменьшенную вероятность развития максимального давления при любом направлении ветра, наиболее неблагоприятном для конструкции. Для конструкций, подверженных только ветровым нагрузкам, K d = 1; для конструкций, подвергающихся другим нагрузкам, помимо ветровой, значения K d приведены в таблице 2.5.

  • K e = коэффициент высоты земли. Согласно разделу 26.9 в ASCE 7-16 , он выражается как K e = 1 для всех отметок.
  • V = скорость ветра, измеренная на высоте z над уровнем земли.

Три условия воздействия, классифицированные как B, C и D в таблице 2.4, определены с точки зрения шероховатости поверхности следующим образом:

Воздействие B: Шероховатость поверхности для этой категории включает городские и пригородные зоны, деревянные участки или другую местность с близко расположенными препятствиями.Эта категория применяется к зданиям со средней высотой крыши ≤ 30 футов (9,1 м), если поверхность простирается против ветра на расстояние более 1500 футов. Для зданий со средней высотой крыши более 30 футов (9,1 м) эта категория будет применяться, если шероховатость поверхности с наветренной стороны превышает 2600 футов (792 м) или в 20 раз превышает высоту здания, в зависимости от того, что больше.

Экспозиция C: Экспозиция C применяется там, где преобладает шероховатость поверхности C. Шероховатость поверхности C включает открытую местность с разбросанными препятствиями высотой менее 30 футов.

Воздействие D: Шероховатость поверхности для этой категории включает квартиры, гладкие илистые отмели, солончаки, сплошной лед, свободные участки и водные поверхности. Воздействие D применяется, когда шероховатость поверхности D простирается против ветра на расстояние более 5000 футов или в 20 раз больше высоты здания, в зависимости от того, что больше. Это также применимо, если шероховатость поверхности с наветренной стороны составляет B или C, и площадка находится в пределах 600 футов (183 м) или 20-кратной высоты здания, в зависимости от того, что больше.

Таблица 2.4. Коэффициент воздействия скоростного давления, K z , как указано в ASCE 7-16 .

Таблица 2.5. Фактор направления ветра, K d , как указано в ASCE 7-16 .

Тип конструкции

К d

Основная система сопротивления ветру (MWFRS)

Комплектующие и облицовка

0.85

0,85

Арочные крыши

0,85

Дымоходы, резервуары и аналогичные конструкции

Площадь

Шестиугольный

Круглый

0.9

0,95

0,95

Сплошные отдельно стоящие стены и сплошные отдельно стоящие и прикрепленные вывески

0,85

Открытые вывески и решетчатые каркасы

0,85

Фермерские башни

Треугольная, квадратная, прямоугольная

Все прочие сечения

0.85

0,95

Чтобы получить окончательное внешнее давление для расчета конструкций, уравнение 2.3 дополнительно модифицируется следующим образом:

где

  • P z = расчетное давление ветра на лицевую поверхность конструкции на высоте z над уровнем земли. Он увеличивается с высотой на наветренной стене, но остается постоянным с высотой на подветренной и боковых стенах.
  • G = фактор порыва ветра. G = 0,85 для жестких конструкций с собственной частотой ≥ 1 Гц. Коэффициенты порывов ветра для гибких конструкций рассчитываются с использованием уравнений в ASCE 7-16 .
  • C p = коэффициент внешнего давления. Это часть внешнего давления на наветренные стены, подветренные стены, боковые стены и крышу. Значения C p представлены в таблицах 2.6 и 2.7.

Чтобы вычислить ветровую нагрузку, которая будет использоваться для расчета элемента, объедините внешнее и внутреннее давление ветра следующим образом:

где

GC pi = коэффициент внутреннего давления из ASCE 7-16 .

Рис. 2.4. Типичное распределение ветра на стенах конструкции и крыше.

Таблица 2.6. Коэффициент давления на стенку, C p , как указано в ASCE 7-16 .

Примечания:

1. Положительные и отрицательные знаки указывают на давление ветра, действующее по направлению к поверхностям и от них.

2. L — это размер здания, перпендикулярный направлению ветра, а B — размер, параллельный направлению ветра.

Таблица 2.7. Коэффициенты давления на крышу, C p , для использования с q h , как указано в ASCE 7-16 .

Пример \ (\ PageIndex {1} \)

Двухэтажное здание, показанное на рисунке 2.5 — это начальная школа, расположенная на ровной местности в пригороде, со скоростью ветра 102 миль в час и категорией воздействия B. Какое давление скорости ветра на высоте крыши для основной системы сопротивления ветровой силе (MWFRS)?

Рис. 2.5. Двухэтажное здание.

Решение

Средняя высота крыши ч = 20 футов

В таблице 26.10-1 из ASCE 7-16 указано, что если категория воздействия — B и коэффициент воздействия скоростного давления для h = 20 ′, то K z = 0.7.

Фактор топографии из раздела 26.8.2 ASCE 7-16 равен K zt = 1,0.

Коэффициент направленности ветра для MWFRS, согласно таблице 26.6-1 в ASCE 7-16 , составляет K d = 0,85.

Используя уравнение 2.3, скоростное давление на высоте 20 футов для MWFRS составляет:

В некоторых географических регионах сила, оказываемая скопившимся снегом и льдом на крышах зданий, может быть довольно огромной и может привести к разрушению конструкции, если не будет учтена при проектировании конструкции.

Предлагаемые расчетные значения снеговых нагрузок приведены в нормах и проектных спецификациях. Основой для расчета снеговых нагрузок является так называемая снеговая нагрузка на грунт. Снеговая нагрузка на грунт определяется Международным строительным кодексом (IBC) как вес снега на поверхности земли. Снеговые нагрузки на грунт для различных частей США можно получить из контурных карт в ASCE 7-16 . Некоторые типичные значения снеговых нагрузок на грунт из этого стандарта представлены в таблице 2.8. После того, как эти нагрузки для требуемых географических областей установлены, их необходимо изменить для конкретных условий, чтобы получить снеговую нагрузку для проектирования конструкций.

Согласно ASCE 7-16 расчетные снеговые нагрузки для плоских и наклонных крыш можно получить с помощью следующих уравнений:

где

  • р f = расчетная снеговая нагрузка на плоскую крышу.
  • р s = расчетная снеговая нагрузка для скатной крыши.
  • р г = снеговая нагрузка на грунт.
  • I = фактор важности. См. Таблицу 2.9 для значений коэффициента важности в зависимости от категории здания.
  • C e = коэффициент воздействия. См. Таблицу 2.10 для значений коэффициента воздействия в зависимости от категории местности.
  • C t = тепловой коэффициент. См. Таблицу 2.11 для типичных значений.
  • C s = коэффициент наклона.Значения C s приведены в разделах с 7.4.1 по 7.4.4 из ASCE 7-16 , в зависимости от различных факторов.

Таблица 2.8. Типичные снеговые нагрузки на грунт, указанные в ASCE 7-16.

Расположение

Нагрузка (PSF)

Ланкастер, Пенсильвания

Якутат, АК

Нью-Йорк, NY

Сан-Франциско, Калифорния

Чикаго, Иллинойс

Таллахасси, Флорида

30

150

30

5

25

0

Таблица 2.9. Коэффициент значимости снеговой нагрузки Is, как указано в ASCE 7-16.

Категория риска конструкции

Фактор важности

Я

II

III

IV

0.8

1,0

1,1

1,2

Таблица 2.10. Коэффициент воздействия, C e , как указано в ASCE 7-16 .

Таблица 2.11. Температурный коэффициент, C t , как указано в ASCE 7-16 .

Температурные условия

Температурный коэффициент

Все конструкции, кроме указанных ниже

1.0

Конструкции, поддерживаемые чуть выше точки замерзания, и другие конструкции с холодными вентилируемыми крышами, в которых термическое сопротивление (R-значение) между вентилируемым и отапливаемым помещениями превышает 25 ° F × h × ft 2 / BTU (4,4 K × м 2 / Вт)

1,1

Неотапливаемые и открытые конструкции

1.2

Сооружения намеренно поддерживаются ниже нуля

1,3

Теплицы с постоянным обогревом с крышей, имеющей тепловое сопротивление (значение R) менее 2,0 ° F × в × фут 2 / BTU

0,85

Пример 2.4

Одноэтажный отапливаемый жилой дом, расположенный в пригороде Ланкастера, штат Пенсильвания, считается частично незащищенным. Крыша дома с уклоном 1 на 20, без нависающего карниза. Какова расчетная снеговая нагрузка на крышу?

Решение

Согласно рис. 7.2-1 в ASCE 7-16 , снеговая нагрузка на грунт для Ланкастера, штат Пенсильвания, составляет

р г = 30 фунтов на квадратный дюйм.

Поскольку 30 psf> 20 psf, доплата за дождь на снегу не требуется.

Чтобы найти уклон крыши, используйте θ = arctan

.

Согласно ASCE 7-16 , поскольку 2,86 ° <15 °, крыша считается пологой. В таблице 7.3-2 в ASCE 7-16 указано, что тепловой коэффициент для обогреваемой конструкции составляет C t = 1,0 (см. Таблицу 2.11).

Согласно таблице 7.3-1 в ASCE 7-16 , коэффициент воздействия для частично открытой местности категории B составляет C e = 1.0 (см. Таблицу 2.10).

В таблице 1.5-2 в ASCE 7-16 указано, что фактор важности I s = 1,0 для категории риска II (см. Таблицу 2.9).

Согласно уравнению 2.6 снеговая нагрузка на плоскую крышу составляет:

Так как 21 фунт / фут> 20 I с = (20 фунт / фут) (1) = 20 фунт / кв. Дюйм. Таким образом, расчетная снеговая нагрузка на плоскую крышу составляет 21 фунт / фут.

2.1.4.4 Сейсмические нагрузки

Смещение грунта, вызванное сейсмическими силами во многих географических регионах мира, может быть весьма значительным и часто повреждает конструкции.Это особенно заметно в регионах вблизи активных геологических разломов. Таким образом, большинство строительных норм и правил требуют, чтобы конструкции были спроектированы с учетом сейсмических сил в таких областях, где вероятны землетрясения. Стандарт ASCE 7-16 предоставляет множество аналитических методов для оценки сейсмических сил при проектировании конструкций. Один из этих методов анализа, который будет описан в этом разделе, называется процедурой эквивалентной боковой силы (ELF). Боковой сдвиг основания V и боковая сейсмическая сила на любом уровне, вычисленные с помощью ELF, показаны на рисунке 2.6. Согласно процедуре, общий статический поперечный сдвиг основания, V , в определенном направлении для здания определяется следующим выражением:

где

V = боковой сдвиг основания здания. Расчетное значение V должно удовлетворять следующему условию:

W = эффективный сейсмический вес здания. Он включает в себя полную статическую нагрузку здания, его постоянного оборудования и перегородок.

T = основной естественный период здания, который зависит от массы и жесткости конструкции. Он рассчитывается по следующей эмпирической формуле:

C t = коэффициент периода строительства. Значение C t = 0,028 для стальных конструкций, сопротивляющихся моменту, 0,016 для железобетонных жестких рам и 0,02 для большинства других конструкций (см. Таблицу 2.12).

n = высота самого высокого уровня здания, а x = 0.8 для стальных жестких рам, 0,9 для жестких железобетонных рам и 0,75 для других систем.

Таблица 2.12. C t значений для различных структурных систем.

Конструкционная система

C т

х

Рамы, сопротивляющиеся моменту стальные

Рамы с эксцентриситетом (EBF)

Все прочие конструкционные системы

0.028

0,03

0,02

0,8

0,75

0,75

S DI = расчетное спектральное ускорение. Он оценивается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций в местах с T = 1 секунда.

S Ds = расчетное спектральное ускорение.Он оценивается с использованием сейсмической карты, которая обеспечивает расчетную интенсивность землетрясения для конструкций с T = 0,2 секунды.

R = коэффициент модификации ответа. Это объясняет способность структурной системы противостоять сейсмическим силам. Значения R для нескольких распространенных систем представлены в таблице 2.13.

I = фактор важности. Это мера последствий для жизни человека и материального ущерба в случае выхода конструкции из строя.Значение фактора важности равно 1 для офисных зданий, но равняется 1,5 для больниц, полицейских участков и других общественных зданий, где в случае разрушения конструкции ожидается большая гибель людей или повреждение имущества.

где

F x = боковая сейсмическая сила, приложенная к уровню x .

W i и W x = эффективные сейсмические веса на уровнях i и x .

i и x = высота от основания конструкции до этажей на уровнях i и x .

= суммирование произведения W i и по всей структуре.

k = показатель распределения, относящийся к основному собственному периоду конструкции.Для T ≤ 0,5 с, k = 1,0, а для T ≥ 2,5 с, k = 2,0. Для T , лежащего между 0,5 и 2,5 с, k может быть вычислено с использованием следующего отношения:

Рис. 2.6. Процедура эквивалентной боковой силы

Пример 2.5

Пятиэтажное офисное стальное здание, показанное на Рисунке 2.7, укреплено по бокам стальными каркасами, устойчивыми к особым моментам, и его размеры в плане 75 футов на 100 футов.Здание находится в Нью-Йорке. Используя процедуру эквивалентной боковой силы ASCE 7-16 , определите поперечную силу, которая будет приложена к четвертому этажу конструкции. Статическая нагрузка на крышу составляет 32 фунта на квадратный фут, статическая нагрузка на перекрытие (включая нагрузку на перегородку) составляет 80 фунтов на квадратный фут, а снеговая нагрузка на плоскую крышу составляет 40 фунтов на квадратный фут. Не обращайте внимания на вес облицовки. Расчетные параметры спектрального ускорения: S DS = 0,28 и S D 1 = 0.11.

Рис. 2.7. Пятиэтажное офисное здание.

Решение

S DS = 0,28 и S D 1 = 0,11 (дано).

R = 8 для стальной рамы со специальным моментом сопротивления (см. Таблицу 2.13).

Офисное здание относится к категории риска занятости II, поэтому I e = 1,0 (см. Таблицу 2.9).

Рассчитайте приблизительный фундаментальный естественный период здания T a .

C t = 0,028 и x = 0,8 (из таблицы 2.12 для стальных рам, сопротивляющихся моменту).

n = Высота крыши = 52,5 фута

Определите статическую нагрузку на каждом уровне. Поскольку снеговая нагрузка на плоскую крышу, указанная для офисного здания, превышает 30 фунтов на квадратный фут, 20% снеговой нагрузки должны быть включены в расчеты сейсмической статической нагрузки.

Вес, присвоенный уровню крыши:

W крыша = (32 фунта на фут) (75 футов) (100 футов) + (20%) (40 фунтов на квадратный фут) (75 футов) (100 футов) = 300000 фунтов

Вес, присвоенный всем остальным уровням, следующий:

W i = (80 фунтов на фут) (75 футов) (100 футов) = 600000 фунтов

Общая статическая нагрузка составляет:

Вт Всего = 300000 фунтов + (4) (600000 фунтов) = 2700 кг

Рассчитайте коэффициент сейсмической реакции C s .

Следовательно, C s = 0,021> 0,01

Определите сейсмический сдвиг основания V .

V = C с W = (0,021) (2700 тысяч фунтов) = 56,7 тыс.

Рассчитайте боковую силу, приложенную к четвертому этажу.

2.1.4.5 Гидростатическое давление и давление земли

Подпорные конструкции должны быть спроектированы таким образом, чтобы не допускать опрокидывания и скольжения, вызываемых гидростатическим давлением и давлением грунта, чтобы обеспечить устойчивость их оснований и стен.Примеры подпорных стен включают гравитационные стены, консольные стены, контрфорсированные стены, резервуары, переборки, шпунтовые сваи и другие. Давление, создаваемое удерживаемым материалом, всегда перпендикулярно контактирующим с ними поверхностям удерживающей конструкции и изменяется линейно с высотой. Интенсивность нормального давления р и равнодействующей силы P на удерживающую конструкцию рассчитывается следующим образом:

Где

γ = удельный вес удерживаемого материала.

= расстояние от поверхности удерживаемого материала и рассматриваемой точки.

2.1.4.6 Разные нагрузки

Существует множество других нагрузок, которые также можно учитывать при проектировании конструкций в зависимости от конкретных случаев. Их включение в сочетания нагрузок будет основано на усмотрении проектировщика, если предполагается, что в будущем они окажут значительное влияние на структурную целостность. Эти нагрузки включают тепловые силы, центробежные силы, силы из-за дифференциальной осадки, ледовые нагрузки, нагрузки от затопления, взрывные нагрузки и многое другое.

2.2 Сочетания нагрузок при проектировании конструкций

Конструкции

разработаны с учетом требований как прочности, так и удобства эксплуатации. Требование прочности обеспечивает безопасность жизни и имущества, а требование эксплуатационной пригодности гарантирует удобство использования (людей) и эстетику конструкции. Чтобы соответствовать указанным выше требованиям, конструкции проектируются на критическую или самую большую нагрузку, которая будет действовать на них. Критическая нагрузка для данной конструкции определяется путем объединения всех различных возможных нагрузок, которые конструкция может нести в течение своего срока службы.В разделах 2.3.1 и 2.4.1 документа ASCE 7-16 приводятся следующие комбинации нагрузок для использования при проектировании конструкций с использованием методов расчета коэффициента нагрузки и сопротивления (LRFD) и расчета допустимой прочности (ASD).

Для LRFD комбинации нагрузок следующие:

1.1.4 Д

2.1.2 D + 1.6 L + 0,5 ( L r или S или R )

3.1.2 D + 1.6 ( L r или S или R ) + ( L или 0.5 Вт )

4.1.2 D + 1.0 W + L + 0,5 ( L r или S или R )

5.0.9 D + 1.0 W

Для ASD комбинации нагрузок следующие:

1. Д

2. Д + Д

3. D + ( L r или S или R )

4. D + 0,75 L + 0.75 ( L r или S или R )

5. D + (0,6 W )

где

D = статическая нагрузка.

L = временная нагрузка из-за занятости.

L r = временная нагрузка на крышу.

S = снеговая нагрузка.

R = номинальная нагрузка из-за начальной дождевой воды или льда, без учета затопления.

W = ветровая нагрузка.

E = сейсмическая нагрузка.

Пример 2.6

Система пола, состоящая из деревянных балок, расположенных на расстоянии 6 футов друг от друга по центру, и деревянной обшивки с гребнем и пазом, как показано на рисунке 2.8, выдерживает статическую нагрузку (включая вес балки и обшивки) 20 фунтов на квадратный фут и временную нагрузку. 30 фунтов на квадратный фут. Определите максимальную факторную нагрузку в фунтах / футах, которую должна выдержать каждая балка перекрытия, используя комбинации нагрузок LRFD.

Рис. 2.8. Система полов.

Решение

Собственная нагрузка D = (6) (20) = 120 фунт / фут

Переменная нагрузка L = (6) (30) = 180 фунтов / фут

Определение максимальных факторизованных нагрузок W u с использованием комбинаций нагрузок LRFD и пренебрежением членами, не имеющими значений, дает следующее:

W u = (1,4) (120) = 168 фунтов / фут

W u = (1,2) (120) + (1,6) (180) = 288 фунтов / фут

W u = (1.2) (120) + (0,5) (180) = 234 фунт / фут

W u = (1,2) (120) + (0,5) (180) = 234 фунт / фут

W u = (1,2) (120) + (0,5) (180) = 234 фунт / фут

W u = (0,9) (120) = 108 фунтов / фут

Регулирующая факторная нагрузка = 288 фунтов / фут

2.3 Ширина и площадь притока

Зона притока — это зона нагрузки, на которую будет воздействовать элемент конструкции. Например, рассмотрим внешнюю балку B1 и внутреннюю балку B2 односторонней системы перекрытий, показанной на рисунке 2.9. Входная ширина для B1 — это расстояние от центральной линии луча до половины расстояния до следующего или соседнего луча, а подчиненная область для луча — это область, ограниченная шириной подчиненного элемента и длиной луча, как заштриховано на рисунке. Для внутренней балки B2-B3 общая ширина W T составляет половину расстояния до соседних балок с обеих сторон.

Рис. 2.9. Площадь притока.

2,4 Сферы влияния

Зоны влияния — это зоны нагружения, которые влияют на величину нагрузок, переносимых конкретным элементом конструкции.В отличие от притоков, где нагрузка в пределах зоны воспринимается элементом, все нагрузки в зоне влияния не поддерживаются рассматриваемым элементом.

2,5 Снижение динамической нагрузки

Большинство кодексов и стандартов допускают снижение временных нагрузок при проектировании больших систем перекрытий, поскольку очень маловероятно, что такие системы всегда будут поддерживать расчетные максимальные временные нагрузки в каждом случае. Раздел 4.7.3 стандарта ASCE 7-16 позволяет снизить временные нагрузки для стержней с зоной воздействия A I ≥ 37.2 м 2 (400 футов 2 ). Площадь влияния — это произведение площади притока и коэффициента элемента динамической нагрузки. Уравнения ASCE 7-16 для определения приведенной временной нагрузки на основе зоны воздействия следующие:

где

L = уменьшенная расчетная временная нагрузка на фут 2 (или м 2 ).

≥ 0,50 L o для конструктивных элементов, поддерживающих один пол (например, балок, балок, плит и т. Д.).

≥ 0,40 L o для конструктивных элементов, поддерживающих два или более этажа (например, колонны и т. Д.).

Никакое снижение не допускается для динамических нагрузок на пол более 4,79 кН / м 2 (100 фунтов / фут 2 ) или для полов общественных собраний, таких как стадионы, зрительные залы, кинотеатры и т. Д., Поскольку имеется большая вероятность того, что такие этажи будут перегружены или использованы как гаражи.

L o = несниженная расчетная временная нагрузка на фут 2 (или 2 м) из таблицы 2.2 (Таблица 4.3-1 в ASCE 7-16 ).

A T = площадь притока элемента в футах 2 (или м 2 ).

K LL = A I / A T = коэффициент элемента динамической нагрузки из таблицы 2.14 (см. Значения, приведенные в таблице 4.7-1 в ASCE 7-16 ).

A I = K LL A T = зона воздействия.

Таблица 2.14. Коэффициент динамической нагрузки элемента.

Таблица 2.13. Коэффициент модификации ответа, R, как указано в ASCE 7-16.

Система сейсмостойкости

R

Системы несущих стен

Обычные железобетонные стены с поперечным разрезом

Обычные армированные стены со сдвигом

Стены с легким каркасом (холоднокатаная сталь), обшитые конструкционными панелями, устойчивыми к сдвигу, или стальными листами

4

2

Строительные каркасные системы

Обычные железобетонные стены с поперечным разрезом

Обычные армированные стены со сдвигом

Рамы стальные, ограниченные продольным изгибом

5

2

8

Моментостойкие каркасные системы

Стальные рамы с особым моментом

Стальные обычные моментные рамы

Рамы моментные железобетонные обычные

8

3

Строительный элемент

К LL

Внутренние колонны и внешние колонны без консольных плит

4

Наружные колонны с консольными перекрытиями

3

Угловые колонны с консольными перекрытиями

2

Балки межкомнатные и кромочные без консольных плит

2

Все остальные элементы, включая панели в двусторонних плитах

1

Пример 2.7

В четырехэтажном школьном здании, используемом для классных комнат, колонны расположены, как показано на рис. 2.10. Нагрузка конструкции на плоскую крышу оценивается в 25 фунтов / фут 2 . Определите приведенную временную нагрузку, поддерживаемую внутренней колонной на уровне земли.

Рис. 2.10. Четырехэтажное здание школы.

Решение

Любая внутренняя колонна на уровне земли выдерживает нагрузку на крышу и временные нагрузки на втором, третьем и четвертом этажах.

Площадь притока внутренней колонны составляет A T = (30 футов) (30 футов) = 900 футов 2

Временная нагрузка на крышу составляет F R = (25 фунтов / фут 2 ) (900 футов 2 ) = 22500 фунтов = 22,5 k

Для динамических нагрузок на перекрытие используйте уравнения ASCE 7-16 , чтобы проверить возможность уменьшения.

L o = 40 фунтов / фут 2 (из таблицы 4.1 в ASCE 7-16 ).

Если внутренняя колонна K LL = 4, то зона влияния A 1 = K LL A T = (4) (900 футов 2 ) = 3600 футов 2 .

Начиная с 3600 футов 2 > 400 футов 2 , временная нагрузка может быть уменьшена с помощью уравнения 2.14 следующим образом:

Согласно таблице 4.1 в ASCE 7-16 , приведенная нагрузка как часть неуменьшенной временной нагрузки на пол для классной комнаты равна Таким образом, приведенная временная нагрузка на пол составляет:

F F = (20 фунтов / фут 2 ) (900 футов 2 ) = 18000 фунтов = 18 кг

Общая нагрузка, воспринимаемая внутренней колонной на уровне земли, составляет:

F Итого = 22.5 к + 3 (18 к) = 76,5 к

Краткое содержание главы

Структурные нагрузки и системы нагружения: Конструкционные элементы рассчитаны на наихудшие возможные сочетания нагрузок. Некоторые нагрузки, которые могут воздействовать на конструкцию, кратко описаны ниже.

Постоянные нагрузки : это нагрузки постоянной величины в конструкции. Они включают в себя вес конструкции и нагрузки, которые постоянно прилагаются к ней.

Динамические нагрузки : это нагрузки различной величины и положения.К ним относятся подвижные грузы и нагрузки из-за занятости.

Ударные нагрузки : Ударные нагрузки — это внезапные или быстрые нагрузки, прикладываемые к конструкции в течение относительно короткого периода времени по сравнению с другими нагрузками на конструкцию.

Дождевые нагрузки : Это нагрузки из-за скопления воды на крыше после ливня.

Ветровые нагрузки : Это нагрузки из-за давления ветра на конструкции.

Снеговые нагрузки : это нагрузки, оказываемые на конструкцию снегом, накопившимся на крыше.

Нагрузки при землетрясении : Это нагрузки, оказываемые на конструкцию движением грунта, вызванным сейсмическими силами.

Гидростатическое давление и давление грунта : Это нагрузки на подпорные конструкции из-за давлений, создаваемых удерживаемыми материалами. Они меняются линейно с высотой стен.

Сочетания нагрузок: Два метода проектирования зданий — это метод расчета коэффициента нагрузки и сопротивления (LRFD) и метод расчета допустимой прочности (ASD).Некоторые комбинации нагрузок для этих методов показаны ниже.

LRFD:

1.1.4 Д

2.1.2 D + 1.6 L + 0,5 ( L r или S или R )

3.1.2 D + 1.6 ( L r или S или R ) + ( L или 0,5 W )

4.1.2 D + 1.0 W + L + 0.5 ( L R или S или R )

5.0.9 D + 1.0 W

ASD:

1. Д

2. Д + Д

3. D + ( L r или S или R )

4. D + 0,75 L + 0,75 ( L r или S или R )

5. D + (0,6 W )

Список литературы

ACI (2016 г.), Требования строительных норм для конструкционного бетона (ACI 318-14), Американский институт бетона.

ASCE (2016), Минимальные расчетные нагрузки для зданий и других конструкций, ASCE 7-16, ASCE.

ICC (2012), Международные строительные нормы и правила, Международный совет по нормам.

Практические задачи

2.1 Определите максимальный факторный момент для балки крыши, подверженной следующим моментам рабочей нагрузки:

M D = 40 psf (статический момент нагрузки)

M L r = 36 psf (момент нагрузки на крышу)

M s = 16 psf (момент снеговой нагрузки)

2.2 Определите максимальную факторную нагрузку, которую выдерживает колонна, подверженная следующим эксплуатационным нагрузкам:

P D = 500 тысяч фунтов (статическая нагрузка)

P L = 280 тысяч фунтов (постоянная нагрузка на пол)

P S = 200 тысяч фунтов (снеговая нагрузка)

P E = ± 30 тысяч фунтов (сейсмическая нагрузка)

P w = ± 70 тысяч фунтов (ветровая нагрузка)

2.3 Типичная планировка композитной системы перекрытий из железобетона и бетона в здании библиотеки показана на рисунке P2.1. Определите статическую нагрузку в фунтах / футах, действующую на типичную внутреннюю балку B 1- B 2 на втором этаже. Все лучи имеют размер W 12 × 44, расстояние между ними составляет 10 футов. Распределенная нагрузка на второй этаж:

Пескоцементная стяжка толщиной 2 дюйма

= 0.25 фунтов / кв. Дюйм

Железобетонная плита толщиной 6 дюймов

= 50 фунтов / кв. Дюйм

Подвесной потолок из металлических реек и гипсокартона

= 10 фунтов / кв. Дюйм

Электромеханические услуги

= 4 фунта / кв. Дюйм

Типовой план этажа

Рис.P2.1. Композитная система перекрытий из стали и бетона.

2.4 План второго этажа здания начальной школы показан на рисунке P2.1. Отделка пола аналогична практической задаче 2.3, за исключением того, что потолок представляет собой акустическую древесноволокнистую плиту с минимальной расчетной нагрузкой 1 фунт / фут. Все балки имеют размер W, 12 × 75 и вес 75 фунтов / фут, а все балки — W 16 × 44 с собственным весом 44 фунта / фут. Определите статическую нагрузку на типичную внутреннюю балку A 2- B 2.

2.5 Схема второго этажа офисного помещения представлена ​​на рисунке P2.1. Отделка пола аналогична практической задаче 2.3. Определите общую статическую нагрузку, приложенную к внутренней колонне B 2 на втором этаже. Все балки W 14 × 75, и все балки W 18 × 44.

2.6 Четырехэтажное больничное здание с плоской крышей, показанное на рисунке P2.2, имеет концентрически скрепленные рамы в качестве системы сопротивления поперечной силе. Вес на каждом уровне пола указан на рисунке.Определите сейсмический сдвиг в основании в тысячах фунтов с учетом следующих расчетных данных:

S 1 = 1,5 г

S s = 0,6 г

Класс площадки = D

Рис. P2.2. Четырехэтажное здание с плоской крышей.

2.7 Используйте ASCE 7-16 для определения снеговой нагрузки (psf) для здания, показанного на рисунке P2.3. Следующие данные относятся к зданию:

Снеговая нагрузка на грунт = 30 фунтов на квадратный фут

Крыша полностью покрыта битумной черепицей.

Угол наклона крыши = 25 °

Открытая местность

Категория размещения I

Неотапливаемое сооружение

Рис. P2.3. Образец кровли.

2.8. В дополнение к расчетной снеговой нагрузке, рассчитанной в практической задаче 2.7, крыша здания на рисунке P2.3 подвергается статической нагрузке 16 фунтов на квадратный фут (включая вес фермы, кровельной доски и асфальтовой черепицы) по горизонтали. самолет. Определите равномерную нагрузку, действующую на внутреннюю ферму, если фермы имеют 6 футов-0 дюймов в центре.

2.9 Ветер дует со скоростью 90 миль в час на закрытое хранилище, показанное на Рисунке P2.4. Объект расположен на ровной местности с категорией воздействия B. Определите давление скорости ветра в psf на высоте карниза объекта. Топографический коэффициент равен K zt = 1.0.

Рис. P2.4. Закрытая сторга.

Как укрепить бетонную плиту на земле для предотвращения образования трещин

Большинство плит на земле не армированы или номинально армированы для контроля ширины трещин.При размещении в верхней или верхней части толщины плиты стальная арматура ограничивает ширину случайных трещин, которые могут возникнуть из-за усадки бетона и температурных ограничений, осадки основания, приложенных нагрузок или других проблем.

Этот тип армирования обычно называют усадочным и температурным армированием.

Усадочная и температурная арматура отличается от структурной арматуры. Структурная арматура обычно размещается в нижней части толщины плиты для увеличения несущей способности плиты.Большинство строительных плит на земле имеют как верхний, так и нижний слои армирования для контроля ширины трещин и увеличения несущей способности. Из-за проблем с конструктивностью и затрат, связанных с двумя слоями армирования, конструкционные плиты на земле не так распространены, как неструктурные плиты.

Несмотря на то, что существует несколько вариантов армирования неструктурных плит на грунте, в этой статье основное внимание уделяется стальным арматурным стержням и арматуре из сварной проволоки для контроля ширины трещин.

Неограниченный рост ширины трещин приводит к выкрашиванию кромок вдоль несоединенных трещин при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Основы

Стальная арматура и арматура из сварной проволоки не предотвращают растрескивание. Армирование в основном бездействует, пока бетон не потрескается. После растрескивания он становится активным и регулирует ширину трещины, ограничивая ее рост.

Если плиты размещены на высококачественных основаниях с однородной опорой и состоят из бетона с низкой усадкой и правильно установленными стыками с шагом 15 футов или меньше, в армировании, как правило, нет необходимости. Скорее всего, случайных или несвязных трещин будет немного.Если случайные трещины все же возникают, они должны оставаться достаточно плотными из-за ограниченного расстояния между стыками и низкой усадки бетона, что ограничивает будущую пригодность к эксплуатации или техническому обслуживанию.

Когда плиты размещаются на проблемных основаниях с риском неоднородной опоры или состоят из бетона средней или высокой усадки или расстояние между стыками превышает 15 футов, тогда необходимо армирование для ограничения ширины трещин в случае их возникновения. По мере того, как ширина трещины увеличивается и приближается к 35 мил (0,035 дюйма), эффективность передачи нагрузки через блокировку заполнителя уменьшается, и могут происходить дифференциальные вертикальные перемещения по трещинам или «раскачивание» плиты.Когда это происходит, края трещин становятся обнаженными, и, вероятно, произойдет скалывание кромок, особенно если плита подвергается воздействию колесного транспорта и особенно жестких колесных погрузчиков. Как только начинается скалывание, ширина трещин на поверхности становится шире, и износ плиты по трещинам значительно увеличивается.

Если усадочные швы неприемлемы и не устанавливаются, требуется усиление усадки и температурного усиления. Такой подход к проектированию иногда называют непрерывно армированными плитами или плитами без стыков, и он допускает многочисленные, близко расположенные (от 3 до 6 футов) мелкие трещины по всей плите.

Неограниченный рост ширины трещин приводит к выкрашиванию кромок вдоль несоединенных трещин при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Варианты борьбы с трещинами

В общем, существует два варианта контроля трещин в плитах на земле: 1) контроль местоположения трещин путем установки усадочных швов (не контролирует ширину трещин) или 2) контроль ширины трещин путем установки арматуры (не контролирует трещину. место нахождения).

В варианте 1 мы указываем плите, где происходит трещина, и ширина усадочных швов или трещин в швах в значительной степени контролируется расстоянием между швами и усадкой бетона.По мере увеличения расстояний между швами и усадки бетона ширина швов увеличивается. Подобно трещинам, если ширина шва приближается к 35 мил, эффективность блокировки заполнителя для передачи нагрузок и предотвращения дифференциальных вертикальных перемещений по швам может быть значительно снижена. По этой причине многие проектировщики используют устройства для передачи нагрузки, включая стальные дюбели, пластины или непрерывную арматуру через усадочные соединения, чтобы обеспечить положительную передачу нагрузки и ограничить дифференциальные вертикальные перемещения в соединениях.

В варианте 2 мы допускаем случайное растрескивание плит, но контролируем ширину трещин с помощью стальных арматурных стержней или арматуры из сварной проволоки. Обычно с этой опцией не устанавливаются усадочные швы. Вместо этого растрескивание происходит беспорядочно, образуя многочисленные, плотно прилегающие друг к другу трещины. Из-за внешнего вида этот вариант борьбы с трещинами всегда следует обсуждать с владельцем.

Порезка арматуры на стыках

Соблюдайте осторожность при использовании обоих вариантов контроля трещин в одной плите.Если через усадочные стыки проходит слишком много арматуры, стыки становятся слишком жесткими и могут не треснуть и раскрыться, как задумано. Когда усадочные соединения не активируются (т. Е. Трескаются и открываются) из-за армирования, обычно происходит расслоение или случайное растрескивание. Если используются оба варианта, необходимо ограничить количество арматуры, проходящей через стыки, чтобы обеспечить правильную активацию.

Некоторые проектировщики предписывают обрезать всю арматуру в усадочных соединениях, в то время как другие могут предписывать обрезать все остальные стержни или проволоки.Обрезая все остальные стержни или проволоки, оставшаяся арматура поможет обеспечить передачу нагрузки и минимизировать дифференциальные движения панели, но не ограничит срабатывание соединений. Если в спецификациях и строительных чертежах не указано, что делать с температурной и усадочной арматурой в местах стыков, подрядчикам следует подать запрос о предоставлении информации. Часто подрядчиков необоснованно обвиняют в несоответствующем растрескивании, связанном с этой проблемой проектирования.

Метод «крюк-и-тяни» для перемещения арматуры из сварной проволоки в указанное место является неэффективным методом, которого подрядчикам следует избегать.

Расположение арматуры

Стальную арматуру и арматуру из сварной проволоки следует располагать в верхней трети толщины плиты, поскольку усадочные и температурные трещины возникают на поверхности плиты. Трещины шире на поверхности и сужаются по глубине. Таким образом, арматура для предотвращения трещин никогда не должна располагаться ниже середины плиты. Арматуру также следует размещать достаточно низко, чтобы пропил не повредил арматуру. Для армирования сварной проволокой Институт армирования проволоки рекомендует размещать сталь на 2 дюйма ниже поверхности или в пределах верхней трети толщины плиты, в зависимости от того, что ближе к поверхности.Проектировщики обычно определяют положение армирования, указывая бетонное покрытие (от 1 1/2 до 2 дюймов) для арматуры.

Не рекомендуется размещать один слой арматуры в центре или на средней глубине плиты (за исключением плит толщиной 4 дюйма). Это универсальное место, где проектировщик надеется увеличить несущую способность плиты в дополнение к обеспечению контроля ширины трещин. Однако размещение арматуры в середине плиты не может эффективно решить ни одну из задач.

Стальная арматура и арматура из сварной проволоки должны поддерживаться и в достаточной степени связаны вместе, чтобы минимизировать перемещения во время укладки бетона и отделочных работ. В противном случае арматура может неправильно расположиться в плите. Подкрепите арматуру стульями или опорами из сборных железобетонных стержней. У стульев должны быть песочные или опорные плиты, а у брусьев должно быть как минимум 4-дюймовое квадратное основание, чтобы они не проваливались в основание. Используйте такие расстояния между опорами, которые гарантируют, что арматура не провисает между опорами и не сдавливается пешеходами или свежим бетоном.Гибкое армирование, включая арматуру из сварной проволоки, требует меньшего расстояния между опорами. Помимо указания типа и количества арматуры, проектировщики должны указать тип и расстояние между опорами, чтобы обеспечить правильное расположение арматуры.

Сварную проволочную арматуру нельзя класть на землю и тянуть на место после укладки бетона. Техника «зацепи-тяни» всегда приводит к неправильному расположению арматуры. Как рабочие могут равномерно «зацепить и потянуть» арматуру из сварной проволоки в указанном месте, стоя на арматуре?

Арматура, частично заглубленная в основание, не обеспечивает контроль ширины трещины.Без поддержки стульев или сборных бетонных блоков арматура обычно заканчивается в нижней части плиты или закапывается в основание.

Допуски размещения

Допуск вертикального размещения арматуры в плитах на земле составляет ± 3/4 дюйма от указанного места. Для плиты толщиной 12 дюймов или менее допуск бетонного покрытия составляет — 3/8 дюйма, измеренный перпендикулярно бетонной поверхности, и уменьшение покрытия не может превышать одну треть указанного покрытия.Во многих случаях допуск покрытия имеет приоритет над допуском вертикального размещения. Правильное размещение и поддержка арматуры поможет обеспечить соблюдение этих допусков по вертикальному размещению.

Эта статья была первоначально опубликована 25 февраля 2013 года.

Артикулы:

ACI 117-06. «Спецификация допусков для бетонных конструкций и материалов»

ACI 302.1R-04. «Руководство по устройству бетонных перекрытий и перекрытий»

ACI 360R-06.«Дизайн плит-на-земле»

Положение ASCC № 2. «Расположение катаной сварной проволочной сетки в бетоне»

WRI Tech Facts. «Опоры необходимы для долговременной работы арматуры сварной проволокой в ​​плите на одном уровне» (TF 702-R-08)

WRI Tech Facts. «Как определить, заказать и использовать сварную проволочную арматуру» (TF 202-R-03)

как уменьшить толщину бетонной плиты

Опускание бетонного пола (глупая идея …

2004-9-4 Понижение бетонного пола (может быть, глупая идея!) Обсуждение в «Разговоре строителей», начатое aixlad, 5 июня 2004 г.Я хочу положить плиты из известняка на существующий бетонный пол, но не хочу поднимать уровень пола! Я видел, что доступны состаренные плиты из натурального известняка произвольного размера, их толщина варьируется от 15 до 20 мм.

Уточнить цену

Ch. 11 SlabDesign OneWay) Минимальная толщина плиты

2004-1-20 и бетон 3000 фунтов на квадратный дюйм. Используйте стержни №4 для всей стали, параллельной пролету, и стержни №3 для термостойкой стали в другом направлении. Временная нагрузка составляет 100 фунтов на квадратный дюйм, и единственная статическая нагрузка — это сама плита.Решение: Требуемая толщина из Таблицы 11.1 будет 12 футов 0 футов, так как p, h 12 (150) = 69 фунтов на квадратный дюйм w. = 1,4 (69) + 1,7 (100) s = _ 0,20 0,0020 (5,5) Конструкция перекрытия 103

Узнать цену

Толщина плиты: как определить? — Структурный справочник

2021-8-11 Толщина бетонной плиты = 20 x 2 + 10 x 4 + 20 + 5 = 105 мм. Это теоретическое требование к толщине плиты. Однако, согласно расчетам, арматура не может быть размещена с такой точностью, как рассчитано для сохранения зазора между стержнями, как совокупный размер + 5.В дальнейшем армирование плиты будет преграждено арматурой балки, и …

Уточнить цену

Типичная толщина и масса бетонной плиты

2021-5-3 Что такое бетонные плиты? Бетонные плиты спроектированы таким образом, чтобы выдерживать постоянные нагрузки (образование на полу, например, стяжку, фальшпол, собственный вес плиты) и наложенные нагрузки (люди и люди, работающие — например, бытовые или коммерческие). Понимание нагрузки на плиту перекрытия — это первый шаг к определению толщины бетонной плиты.

Уточнить цену

Можно ли опустить бетонный черновой пол, который был …

Наилучший вариант

— это разбить пол, опустить землю минимум на 90 мм (с учетом верхнего слоя стяжки минимум 50 мм) и повторно использовать бетон толщиной не менее 100 мм. дорогой способ но кто в первую очередь укладывал бетон высотой 40мм это мой вопрос ????? Вы можете удалить 40 мм от бетона в зависимости от глубины бетонного основания, но если это основание, то его следует зашпаклевать сверху, чтобы выровнять его.Основы укладки бетонного основания следующие ….. укладка хардкорной заливки, слой мембраны d.p.m, слой утеплителя, слой бетона толщиной не менее 100 мм

Узнать цену

Какой толщины должен быть бетон, чтобы выдержать вес?

Для плоских конструкций, таких как перекрытия на грунте и проезды, требуется минимальная толщина в четыре дюйма, но увеличение толщины до пяти дюймов может увеличить несущую способность почти на 50 процентов. Утолщение конструкции по периметру еще на

Узнать цену

Как предотвратить скручивание бетона? [PDF] — Конструктор

Выдержите бетон как следует, включая стыки и края плиты.При использовании метода мембранного отверждения мембрану наносят дважды. Второе приложение выполняется под прямым углом к ​​первому. 5.

Узнать цену

Ch. 11 SlabDesign OneWay) Минимальная толщина плиты

2004-1-20 и бетон 3000 фунтов на квадратный дюйм. Используйте стержни №4 для всей стали, параллельной пролету, и стержни №3 для термостойкой стали в другом направлении. Временная нагрузка составляет 100 фунтов на квадратный дюйм, и единственная статическая нагрузка — это сама плита. Решение: Требуемая толщина из Таблицы 11.1 будет 12′-0 ‘как p, h 12 (150) = 69 psf w. = 1,4 (69) + 1,7 (100) s = _ 0,20 0,0020 (5,5) Конструкция перекрытия 103

Узнать цену

Как контролировать прогиб балки и плиты — Руководство по конструкции

2021-8-10 Увеличение пролета балки или плиты приводит к увеличению высоты элементов. За пределами определенного уровня увеличивать толщину плиты неэкономично. Пролет перекрытия более 6-7 м был бы не более чем экономичным, если бы мы строили его как обычную железобетонную плиту.

Уточнить цену

Вы сказали, что ваша плита какой толщины? — Решения для бетонных волокон

2015-11-6 Если плита слишком тонкая, она может сломаться под нагрузкой и выйти из строя раньше срока.Если плита слишком толстая, она стоит дороже, чем должна. Толщина плиты является основным фактором в стоимости бетонного пола, поэтому часто бывает давление, которое может стать сильным, чтобы сделать плиту

Узнать цену

Какая толщина бетонной плиты мне нужна Обращение за помощью

2019-3-27 Однако обычная толщина бетонной плиты составляет около 10 см. Что бы вы ни планировали делать, ваша бетонная плита должна быть толщиной не менее 5 см. Это минимальная толщина бетонной плиты. Это толщина только бетонной плиты

Уточнить цену

Какой толщины должен быть бетон, чтобы выдержать вес?

Толщина бетона.Для плоских конструкций, таких как перекрытия на грунте и проезды, требуется минимальная толщина в четыре дюйма, но увеличение толщины до пяти дюймов может добавить почти 50 процентов к несущей способности. Утолщение конструкции по

Узнать цену

Контроль качества: Предотвращение трещин в бетонных плитах JLC Online

1992-2-1 Отверждение помогает уменьшить растрескивание при усадке и сохраняет прочность плиты. Обычно отверждение заключается в том, чтобы бетон оставался влажным и покрытым в течение пяти-семи дней, или нанесением аэрозольного состава, который образует мембрану на поверхности.Температурные перепады. Экстремальные перепады температуры сразу после и в течение года после плиты

Узнать цену

Когда ваш бетон действительно достаточно сухой?

2015-7-1 Толщина бетонной плиты — Очевидно, что более толстым плитам потребуется больше времени для высыхания. Однако это не линейно; плита толщиной 4 дюйма не отверждается в 4 раза медленнее, чем плита толщиной 1 дюйм, хотя …

Узнать цену

Влияние прочности бетона и толщины плиты на перекрытие …

2001-3-1 Спецификация для пола здания технического обслуживания предусматривала толщину плиты 6 дюймов и бетон с расчетной прочностью на сжатие 3000 фунтов на квадратный дюйм.Фактическая средняя прочность цилиндра для бетона пола составила 3630 фунтов на квадратный дюйм. Через четыре месяца после установки пола было просверлено 10 кернов, измерено и испытано на сжатие.

Уточнить цену

Какой толщины должен быть бетон, чтобы не растрескаться?

2020-8-27 В зависимости от конструкции, применения и практики установки, ваш бетон может быть настолько тонким или толстым, насколько вы хотите, и при этом все равно давать трещины. Есть несколько практических правил относительно того, какой толщины вам нужно сделать такие вещи, как плиты перекрытия гаража, чтобы предотвратить образование трещин, но они немного различаются от приложения к приложению.

Уточнить цену

Бетонные плиты перекрытия на земле Old House Web

Отдельная бетонная плита перекрытия и стена. Бетонный блок используется на заливном фундаменте ниже линии промерзания. Вдоль внутренней части блочной стены также может располагаться жесткая изоляция. Полная фундаментная стена для холодного климата. Тепловой канал по периметру, показанный на рисунке, изолирован для уменьшения потерь тепла.

Уточнить цену

Советы по контролю ширины трещин в бетонной плите на земле …

2019-7-11 При размещении в верхней или верхней части толщины плиты стальная арматура ограничивает ширину случайных трещин, которые могут возникнуть из-за усадки бетона и температурных ограничений…

Уточнить цену

Вы сказали, что ваша плита какой толщины? — Решения для бетонных волокон

2015-11-6 Если плита слишком тонкая, она может сломаться под нагрузкой и выйти из строя раньше срока. Если плита слишком толстая, она стоит дороже, чем должна. Толщина плиты является основным фактором в стоимости бетонного пола, поэтому часто бывает давление, которое может стать сильным, чтобы сделать плиту

Узнать цену

Насколько тонкий слишком тонкий? Оценка толщины плиты в …

2014-7-3 Необходимо проверить конструкцию плиты на предмет необходимого дополнительного армирования при проходках.Плюсы более тонкой плиты Выбор более тонких плит дает несколько преимуществ с точки зрения конструкции. Одно очевидное преимущество — требуется меньше конкретики. Следовательно, уменьшение количества бетона

Узнать цену

CIP 19 — Скручивание бетонных плит

2020-4-19 9. Использование более толстой плиты уменьшит скручивание. 10. Отвердите плиту после укладки. Влажное отверждение или хорошо нанесенный отверждающий состав с высоким содержанием сухого остатка снизит скорость потери влаги и уменьшит перепад влажности.11. Чтобы свести к минимуму скручивание, расстояние между швами не должно превышать 24-кратную толщину плиты.

Уточнить цену

BUILD Изоляция края бетонной плиты

2014-1-29 изоляции под плитой или путем увеличения толщины изоляции под плитой (см. Сборку 109, страницы 28–29). Это говорит о том, что изоляция краев плиты намного более эффективна для предотвращения потерь тепла, чем изоляция нижней стороны плиты. Коэффициент теплоотдачи кромки плиты Потери тепла с кромки плиты

Узнать цену

Толщина бетона для тротуаров: выбор идеального…

2021-3-8 Обычно бетон наносится толщиной 2 или более дюймов, поэтому чем он темнее, тем тверже будет плита. Чаще всего четыре дюйма для плиты. Более тонкие варианты использования будут включать, и это лишь некоторые из них, приводы, пешеходные дорожки, плиты и нижние колонтитулы.

Уточнить цену

Когда ваш бетон действительно достаточно сухой?

2015-7-1 Толщина бетонной плиты — Очевидно, что более толстым плитам потребуется больше времени для высыхания. Однако это не линейно; Однако плита толщиной 4 дюйма не будет застывать в 4 раза медленнее, чем плита толщиной 1 дюйм…

Уточнить цену

толщина перекрытия — Autodesk Community

2015-3-10 толщина плиты, когда я беру пол и задаю ему толщину, толщина принимает значения z + и z-, половину — z + и другую половину — z-, я хочу брать полную толщину в одном направлении, например, z + или z-, то, что я имею в виду, можно назвать глубиной пола, а не толщиной, кто-нибудь может мне помочь, пожалуйста ?? Отчет. 0 Нравится Ответить …

Получить цену

Бетонные плиты перекрытия на земле Old House Web

Отдельная бетонная плита перекрытия и стена.Бетонный блок используется на заливном фундаменте ниже линии промерзания. Вдоль внутренней части блочной стены также может располагаться жесткая изоляция. Полная фундаментная стена для холодного климата. Тепловой канал по периметру, показанный на рисунке, изолирован для уменьшения потерь тепла.

Уточнить цену

Структурное моделирование и анализ бетонных перекрытий …

2019-1-23 Введение В этой статье кратко обсуждается использование программного обеспечения SPACE GASS для анализа и проектирования плит перекрытия на основе австралийского стандарта AS3600.В нем описан процесс проектирования бетона …

Уточнить цену .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *