Калькулятор толщины утеплителя: Калькулятор расчет толщины теплоизоляции — XPS Корпорации ТЕХНОНИКОЛЬ

Содержание

Онлайн-калькулятор для расчета толщины утеплителя

Как и чем утепляться – пожалуй, один из главных вопросов, который встает перед владельцем загородной недвижимости. С наступлением первых холодов его решение приобретает все большую важность. Мы постарались облегчить вам выбор подходящего материала, представив небольшой  онлайн калькулятор для расчета толщины утеплителя. Он подходит для вычислений слоя теплоизоляции в составе типового пирога «несущая стена-утеплитель-отделка».

Расчет толщины утеплителя

Регион строительства (свой или ближайший к своему):

АстраханьБарнаулБелгородБрянскВладивостокВолгоградВоронежЕкатеринбургИвановоИжевскИркутскКазаньКалининградКемеровоКировКраснодарКрасноярскКурскЛипецкМагнитогорскМахачкалаМоскваНабережные ЧелныНижний НовгородНовокузнецкНовосибирскОмскОренбургПензаПермьРостов-на-ДонуРязаньСамараСанкт-ПетербургСаратовСимферопольСочиСтавропольТверьТольяттиТомскТулаТюменьУлан-УдэУльяновскУфаХабаровскЧебоксарыЧелябинскЯрославль

Несущий материал:

ЖелезобетонБетон с каменным гравием или щебнемБетон ячеистый (газобетон, пенобетон)Керамзитобетон, керамзитопенобетонКирпич глиняный на тяжелом раствореКирпич глиняный на легком раствореКирпич силикатный на тяжелом раствореКирпич керамический пустотныйКирпич силикатный пустотныйКирпич шлаковыйСосна и ель поперек волоконСосна и ель вдоль волоконДуб поперек волоконДуб вдоль вооконФибролит цементный

Толщина несущего материала (мм):

Отделочный материал:

Сосна и ель вдоль волоконСосна и ель поперек волоконДуб вдоль волоконДуб поперек волоконФибролит цементныйФанера клеенаяЦементно-песчаный растворИзвестково-песчаный растворСухая штукатуркаКартон облицовочныйПлиты древесно-волокнистые и древесно-стружечныеГипсокартонПанели ПВХМраморГранит, базальт

Толщина отделочного материала (мм):

Воздушная прослойка, толщина (мм):

Утеплитель (свой или близкий по свойствам):

Isover Венти, СтандартIsover Классик, ФасадIsover Лайт, ОптималKnauf Insulation Термо Плита 037Knauf Insulation Термо Ролл 040Knauf Insulation Фасад Термо ПлитаRockwool Венти БаттсRockwool Кавити, Флекси БаттсRockwool Лайт, Пластер, Фасад БаттсURSA GEOURSA PureOneURSA TerraURSA XPSГазостекло, пеностеклоГравий керамзитовыйГравий шунгизитовыйМаты минераловатные прошивные (75 кг/куб.м)Маты минераловатные прошивные (100-125 кг/куб.м)Маты минераловатные на синтетическом связующем (75-125 кг/куб.м)Маты минераловатные на синтетическом связующем (175-225 кг/куб.м)Маты и полосы из стеклянного волокна прошивныеПеноплэкс СтенаПенополистирол (40 кг/куб.м)Пенополистирол (100 кг/куб.м)Пенополистирол (150 кг/куб.м)Пенополистирол СтиропорПенополиуретанПлиты минераловатные на синтетическом и битумном связующих (75-150 кг/куб.м)Плиты минераловатные на синтетическом и битумном связующих (200-250 кг/куб.м)Плиты минераловатные на органофосфатном связующемПлиты минераловатные на крахмальном связующемПлиты из стеклянного штапельного волокна на синтетическом связующемТехноНиколь Техноблок Стандарт (Оптима), Техновент ОптимаТехноНиколь Техноблок Проф, Техновент СтандартТехноНиколь Техновент Проф, ТехнофасТехноНиколь Технолайт ЭкстраТехноНиколь Технолайт Оптима, ПрофЩебень из доменного шлакаЭкструдированный пенополистирол СтайрофоамЭкструдированный пенополистирол СтиродурЭкструдированный пенополистирол XPS ТехноНиколь

 
Небольшая памятка по использованию калькулятора:

  • обратите внимание, что в списке городов представлены далеко не все населенные пункты России. Поэтому старайтесь выбирать варианты, минимально удаленные от месторасположения вашего дома. Это важно, т.к. данный параметр определяет средние зимние температуры;
  • все численные значения (толщины) выводятся в миллиметрах. На всякий случай: в 1 м 100 см или 1000 мм;
  • подробные характеристики утеплителей советуем смотреть на сайтах производителей. Там же вы найдете рекомендуемые цены на данный вид продукции;
  • все расчеты являются ориентировочными, поэтому не лишним будет прибавить к полученным результатам 10%

Получив в результате вычислений толщину теплоизоляции и зная площадь стен, несложно вычислить объем утеплителя. Надеемся, это будет полезно.

Загрузка…

Понравилась статья? Поделиться с друзьями:

Расчет толщины утеплителя для стен

Каждый, кто строит собственный дом, хочет, чтобы в нем было тепло. Добиться это можно несколькими способами: построить толстые стены, сделать хорошее утепление или хорошо отапливать дом.

На практике все эти способы используют вместе, но с экономической точки зрения, больший приоритет имеет утепление дома, а точнее увеличение толщины утеплителя.

Как же рассчитать необходимую толщину стен и утеплителя, чтобы дом был не только крепким, но теплым.

Наш расчет будет состоять из двух основных этапов:

  1. Нахождения сопротивлением теплопередаче стен, которое необходимо для дальнейших вычислении.
  2. Подбор необходимой толщины утеплителя
    в зависимости от конструкции и материала стен.

В начале, предлагаем посмотреть небольшое видео, в котором эксперт подробно рассказывает для чего нужно закладывать утеплитель в наружные стены кирпичного дома и какой вид утеплителя при этом использовать.

Сопротивлением теплопередаче стен

Для нахождения этого параметра используем СП 50.13330.2012 «Тепловая защита зданий» который можно скачать на нашем сайте (ссылка).

В пункте 5 «Тепловая защита зданий» представлены несколько формул, которые помогут нам рассчитать толщину утеплителя и стен. Для того чтобы это сделать существует параметр, называемый сопротивлением теплопередаче и обозначаемый буквой R. Он зависит от необходимой температуры внутри помещения и климатических условий данного города или района.

В общем случает он рассчитывается по формуле R

ТР = a х ГСОП + b.

Согласно таблице 3, значения коэффициентов a и b для стен жилых зданий равняется 0,00035 и 1,4 соответственно.

Осталось только найти величину ГСОП. Расшифровывается она как градусо-сутки отопительного периода. С этим значением придется немного повозится.

Формула для расчета ГСОП = (tВtОТ) х zОТ.

В данной формуле tВ — это температура, которая должна быть внутри помещения. По нормам она равняется 20-220С.

Значение параметров tОТи zОТ означают среднюю температуру наружного воздуха и количество суток отопительного периода в году. Узнать их можно в СНиП 23-01-99 «Строительная климатология». (ссылка).

Если посмотрите на данный СНиП, то увидите большую таблицу в самом начале, где для каждого города или района приведены климатические параметры.

Нас будет интересовать колонка, в которой написано «Продолжительность и средняя температура воздуха периода со средней суточной температурой воздуха ≤ 80С».

Пример расчета параметра R

ТР

Для того, чтобы все стало более понятным, давайте рассчитаем сопротивлением теплопередаче стен (RТР) для дома построенного в г. Казань.

Для этого у нас есть две формулы:

RТР = a х ГСОП + b,

ГСОП = (tВ-tОТ) х zОТ

Сначала рассчитаем ГСОП. Для этого ищем г. Казань в правой колонке СНиП 23-01-99.

Находим по таблице, что средняя температура tОТ = — 5,20С, а продолжительность zОТ = 215сут/год.

Теперь нужно определится, какая температура воздуха внутри помещения для вас комфортна. Как было написано выше оптимальным считается tВ = 20-220С. Если вы любите более прохладную или более теплую температуру, то при расчете ГСОП для значение t

В может быть другим.

Итак, подсчитаем ГСОП для температуры tВ = 180С и tВ = 220С.

ГСОП18 = (180С-(-5,20С) х 215 суток/год = 4988.

ГСОП22 = (220С-(-5,20С) х 215 суток/год = 5848

Теперь найдем сопротивление теплопередаче. Как мы уже знаем коэффициенты a и b для стен жилых зданий, согласно таблице 3 из СП 50.13330.2012 равняются 0,00035 и 1,4.

RТР(180С) = 0,00035 х 4988 + 1,4 = 3,15 м2*0С/Вт, для 180С внутри помещения.

RТР(220С) = 0,00035 х 5848 + 1,4 = 3,45 м2*0С/Вт, для 220С.

Таким сопротивление, должна обладать стена вместе с утеплителем, для того чтобы в доме были минимальные теплопотери.

Итак, необходимые начальные данные мы получили. Теперь перейдём ко второму этапу, к определению толщины утеплителя.

Расчета толщины утеплителя

Надеемся вам хватило желания дочитать предыдущий раздел нашей статьи. Теперь попробуем рассчитать толщину утеплителя в зависимости от материала и толщины стен.

Каждый материал, входящий в многослойный пирог стены, обладает собственным тепловым сопротивлением R. Так вот, наша задача, состоит в том, чтобы сумма всех сопротивлений материалов, входящих в конструкцию стены, равнялась тепловому сопротивлению RТР,которое мы рассчитывали в предыдущейглаве, т.е.:

RТР = R1 + R2 + R3 Rn, где n количество слоев.

Тепловое сопротивление отдельного материала R равняется отношению толщины слоя (δs) к теплопроводности (λS).

R = δSS

Что бы дальше не путать вас формулами, рассмотрим три примера.

Примеры расчета толщины утеплителя для стен из кирпича и газобетона

Пример 1.

Стена из газобетонных блоков D600 толщиной 30 см, утепленная снаружи каменной ватой плотностью 80-125 кг/м3 , а снаружи обложена керамическим пустотелым кирпичом плотностью 1000 кг/м3. Строительство велось в г.Казань.

Для дальнейшего нахождения толщины утеплителя, нам понадобятся значения теплопроводности материалов λS. Эти данные должны присутствовать в сертификате к материалам.

Если по каким-либо причинам их нет, то посмотреть их можно в Приложение С к СП 50.13330.2012, который мы использовали ранее.

λ = 0,14 Вт/м*0С — теплопроводность газобетона;

λ = 0,045 Вт/м*0С – теплопроводность утеплителя;

λ = 0,52 Вт/м*0С – теплопроводность кирпича.

Далее вычисляем значение R для каждого материала, зная, что толщина слоя газобетона δ = 30 см, а наружная кладка в полкирпича равняется δ = 12 см.

RГ = δ

SГ/λ = 0,3/0,14 = 2,14 м2*0С/Вт — тепловое сопротивление газобетона;

RК = δ = 0,12/0,52 = 0,23 м2*0С/В — тепловое сопротивление кирпича.

Т.к. наша стена состоит из трех слоев, то верно будет уравнение:

RТР= RГ + RУ + RК,

тогда RУ = RТР— RГ — RК

В предидущей главе мы находили значение RТР(220С) для г. Казань. Используем его для наших вычислений.

RУ = 3,45 — 2,14 – 0,23 = 1,08 м2*0С/Вт.

Таким образом мы нашли, каким тепловым сопротивлением должен обладать утеплитель. Для нахождения толщины утеплителя воспользуемся формулой:

δS = RУ х λ = 1,08 х 0,045 = 0,05 м.

Мы получили, что для заданных условий достаточно утеплителя толщиной 5 см.

Если мы возьмём значение RТР(180С) = 3,15 м2*0С/Вт, то получим:

RУ = 3,15 — 2,14 – 0,23 = 0,78 м2*0С/Вт.

δS = RУ х λSУ = 0,78 х 0,045 = 0,035 м

Как видите, толщина утеплителя изменилась всего на полтора сантиметра.

Пример 2. Рассмотрим пример, когда вместо газобетонных блоков, уложен силикатный кирпич плотностью 1800 кг/м3. Толщина кладки при этом 38 см.

По аналогии с предыдущими вычислениями находим значения теплопроводности по таблице:

λSК1 = 0,87 Вт/м*0С — теплопроводность силикатного кирпича плотностью 1800 кг/м3;

λ = 0,045 Вт/м*0С – теплопроводность утеплителя;

λSК2 = 0,52 Вт/м*0С – теплопроводность кирпича плотностью 1000 кг/м3.

Далее находим значения R:

RК1 = δSК1SК1 = 0,38/0,87 = 0,44 м2*0С/Вт — тепловое сопротивление кирпича 1800 кг/м3;

RК2 = δSК2SК2 = 0,12/0,52 = 0,23 м2*0С/В — тепловое сопротивление кирпича 1000 кг/м3.

Находим тепловое сопротивление утеплителя:

RУ = 3,45 – 0,44 – 0,23 = 2,78 м2*0С/Вт.

Теперь вычисляем толщину утеплителя:

δS = RУ х λ = 2,78 х 0,045 = 0,12 м.

Т.е. для данных условий достаточно толщины утеплителя 12 см.

Пример 3. В качестве наглядного примера, говорящем о важности утепления, рассмотрим стену состоящую только газобетона D600.

Зная теплопроводность газобетонных блоков, λ = 0,14 Вт/м*0С, можем сразу вычислить необходимую толщину стен т.к. стена однородна.

δS = RТР х λ = 3,45 х 0,14 = 0,5 м

Мы получаем, чтобы соблюдать все нормы СНиП, мы должны выложить стену толщиной 0,5 м.

В таком случае можно пойти двумя путями, сделать стену сразу необходимой толщины или построить стену потоньше и дополнительно утеплить.

Первый вариант нам кажется более надежным и менее затратным, потому что работ по монтажу утеплителя нет. Второй вариант больше подходит для уже построенных домов.

Все эти примеры, показывают, как зависит толщина утепление от материала стен. По аналогии с ними вы можете проделать расчёты для любого типа материала.

Видео «Утепление стен»

В заключении, предлагаем вам посмотреть пару видеороликов, которое будет полезно при выборе толщины утеплителя для стен дома построенного из пенобетона и газобетона.

Калькулятор расчета толщины утепления ската кровли

Если на чердаке планируется организовать жилую комнату или даже просто хорошо оборудованное и отделанное подсобное помещение, то необходимо продумать вопрос утепления скатов кровли. Не стоит полагать, что это только защита от зимних морозов – без термоизоляции и в летнюю жару чердак способен превратиться в совершенно непригодную для пребывания людей зону, раскаляясь под действием солнечных лучей.

Калькулятор расчета толщины утепления ската кровли

Чтобы термоизоляция была полноценной, ее толщина должна соответствовать определенным нормам. Кстати, толщину необходимого утепления принимают в расчет еще при проектировании крыши – на нее нередко ориентируются и при выборе пиломатериалов для изготовления стропильных ног. Поможет определиться с этим параметром – калькулятор расчета толщины утепления ската кровли.

Ниже будут даны необходимые разъяснения, приведены справочные материалы.

Калькулятор расчета толщины утепления ската кровли

Перейти к расчётам

Как правильно произвести расчет?

Определение необходимой толщины утепления строится на том принципе, что суммарное термическое сопротивление строительной конструкции (кровельного покрытия в нашем случае) должно быть ни ниже, чем установленный СНиП показатель для данного региона, в соответствии с его климатическими особенностями.

  • Найти необходимое нормированное значение сопротивления теплопередаче для места своего проживания можно по размещенной ниже карте-схеме территории РФ. При этом нас интересует в рассматриваемом расчете показатели «для покрытий» – указаны красными цифрами.
Карта для определения нормированного значения термического сопротивления строительных конструкций.

Остальные вычисления калькулятор проведет сам. В итоге будет получена рекомендованная минимальная толщина выбранного утеплителя, в миллиметрах. Ее уже несложно привести к стандартным толщинам утеплительных материалов, организовав их монтаж в один или в два (предпочтительнее!) слоя.

Как выполняется утепление кровли?

Безусловно, в кровельном «пироге», помимо самого утеплителя, применяются и другие необходимые материалы. Подробнее об этом – в специальной публикации, посвященной самостоятельному утеплению крыши дома.

Калькулятор расчета толщины утепления лоджии или балкона: основные формулы

Так уж повелось в нашей стране, что зимы у нас морозные, осень дождливая и ветреная, и даже летом некуда деться от вездесущих сквозняков. Мечта каждого хозяина, имеющего балкон или лоджию, создать на этой, на первый взгляд, неприглядной территории настоящий оазис или зону отдыха. Вопрос лишь в том, как правильно и точно рассчитать расход материалов, чтобы распланировать траты и не переплатить лишнего. Специально для наших читателей редакция HouseChief.ru разработала удобный и наглядный калькулятор, который поможет домашним мастерам без специальной подготовки точно рассчитать необходимую толщину утеплителя для балкона или лоджии.

Тёплый балкон чаще всего это многослойная конструкция, которую нужно грамотно рассчитать

Читайте в статье

Калькулятор расчёта толщины утепления лоджии или балкона

Пояснения к расчёту

До того, как приступить к делу, изучите конструкцию и используемый материал для всех элементов балкона и их состояние. В некоторых случаях будет необходим их демонтаж. Особенно это касается ограждений из ПВХ конструкций и металла.

Для работы с калькулятором следуйте подсказкам в полях для заполнения. Обратите внимание на размерность. После заполнения всех данных нажмите – «Рассчитать толщину утепления».

В калькуляторе учтен большой ассортимент популярных утеплителей:

Данные следует рассчитывать отдельно:

Для правильных результатов важно указать значение требуемого сопротивления теплопередаче. Эти коэффициенты определяются по специальной карте-схеме климатических регионов России и в зависимости от вида утепляемой конструкции (для пола и потолка – смотрите голубые цифры, для стен или парапета – фиолетовые).

Карта-схема определения требуемого сопротивления теплопередаче

Приведем формулу расчёта термического сопротивления материалов, исходя из особенностей вашего региона. В общем виде формула выглядит так:

R = δ / λ, где

δ — толщина используемого материала, м;

λ — коэффициент теплопроводности материала, Вт/м×К.

Однако, в нашем случае все расчёты будут проводиться автоматически, вам лишь нужно указать требуемый для вашего населенного пункта показатель.

Результат будет несколько различаться и при разных вариантах расположения конструкции по отношению к другим помещениям дома и несущим стенам:

  • конструкция не соприкасается ни с какими соседними балконами, либо соседствует с неутеплённым соседним балконом;
  • конструкция расположена впритык к соседней утеплённой лоджии;
  • балкон «утоплен» и расположен в нише с отапливаемым помещением.

Следует учесть, что некоторые покрытия могут создавать эффект «термоса». К ним относятся к примеру такие материалы, как пенофол. В этом случае только за счёт одного этого материала можно существенно увеличить теплоизоляционные характеристики балкона, а, следовательно, и сэкономить на отделке. Лучше проведите расчёт с ним и без него, а уже потом решайте, что в вашем случае будет лучшим вариантом.

Также на конечный результат может повлиять наличие дополнительных отделочных материалов, которые возьмут часть «работы» на себя.

Обратите внимание! При отсутствии капитальной конструкции толщину стены необходимо указать с параметром «0».

Какой материал выбрать: рекомендации редакции HouseChief.ru

Когда встаёт вопрос, чем утеплять лоджию или балкон не специалист, вероятнее всего, скажет, тем, что дешевле. Но наша редакция старается проповедовать профессиональный подход, поэтому рекомендуем придерживаться следующих правил:

  1. Правило первое. Не экономьте на материалах. Иначе придётся платить за работу и за демонтаж. Соответственно, выгода здесь весьма условная.
  2. Правило второе. Выбирайте современные материалы. Они более лёгкие и обладают повышенными износостойкими характеристиками. К примеру, пенофол прекрасно подойдёт для внутреннего утепления балкона. Этот строительный материал хорошо держит тепло и создает эффект тепловой бани. Среди других преимуществ – он достаточно тонкий, это как раз то, что нужно для экономии пространства.
  3. Правило третье. Если вам нужен прочный материал с высокими звукоизоляционными и антивандальными свойствами (к примеру, ваш балкон расположен на первом этаже), то остановите свой выбор на пенополиуретане. Этот материал не горит, удерживает тепло, экологически безопасный. Однако, не всем подойдет формат заливки – его напенивают. Если вам удобнее работать с классическими материалами, возьмите бухту Изовера. Он обладает отличными теплоизоляционными и звукоизоляционными характеристиками.
  4. Правило четвёртое. Для наружной отделки используйте термически устойчивые и пожаробезопасные материалы. Это вариант утепления имеет свои плюсы и минусы. Среди плюсов – вы экономите площади, «точка росы» выносится на наружную поверхность ограждающих конструкций, соответственно снижается риск возникновения плесени и грибков. С другой стороны, наружная отделка обязательно должна быть согласована с жильцами, для таких работ необходимо получить разрешение архитектурно-строительной комиссии при муниципалитете.

Если у вас есть опыт утепления балконных конструкций, то милости просим в комментарии. Многим нашим читателям будет интересно почитать практические рекомендации «бывалых» мастеров.

ПОНРАВИЛАСЬ СТАТЬЯ? Поддержите нас и поделитесь с друзьями

Как рассчитать толщину утеплителя

Даже популярные ныне коттеджи из бревна или профилированного бруса необходимо утеплять дополнительно или возводить их из практически несуществующего на рынке деревянного массива толщиной в 35-40 см. Что уж говорить о каменных строениях (блочных, кирпичных, монолитных).

Что значит «утеплиться правильно»

Итак, без теплоизоляционных слоёв обойтись нельзя, с этим согласится подавляющее большинства домовладельцев. Некоторым из них приходится изучать вопрос во время строительства собственного гнёздышка, другие озадачиваются утеплением, чтобы фасадными работами улучшить уже эксплуатируемый коттедж. В любом случае подходить к вопросу необходимо очень скрупулёзно.

Одно дело соблюдение технологии утепления, но ведь часто застройщики допускают ошибки на стадии закупки материала, в частности неправильно выбирают толщину утепляющего слоя. Если жилище окажется слишком холодным, то находиться в нём будет, мягко говоря, некомфортно. При благоприятном стечении обстоятельств (наличие запаса производительности теплогенератора) проблему получится решить увеличением мощности отопительной системы, что, однозначно, влечёт за собой существенный рост расходов на покупку энергоносителей.

Но обычно всё заканчивается куда печальнее: при малой толщине утепляющего слоя ограждающие конструкции промерзают. А это становится причиной перемещения точки росы вовнутрь помещений, из-за чего на внутренних поверхностях стен и перекрытий выпадает конденсат. Потом появляется плесень, разрушаются строительные конструкции и отделочные материалы… Что самое неприятное, так это тот факт, что невозможно устранить неприятности малой кровью. Например, на фасаде придётся демонтировать (или «похоронить») финишный слой, затем создать ещё один барьер из утеплителя, а потом снова отделать стены. Очень недёшево выходит, лучше сразу всё сделать как положено.

Важно! Технологичные современные утеплители мало стоить не будут, причём с увеличением толщины пропорционально будет расти и цена. Поэтому создавать слишком большой запас по теплоизоляции обычно смысла нет, это – пустая трата средств, особенно если случайному сверхутеплению подвергается только часть конструкций дома.

Принципы расчёта утепляющего слоя

Теплопроводность и термическое сопротивление

Прежде всего, нужно определиться с главной причиной охлаждения здания. Зимой у нас работает система отопления, которая греет воздух, но сгенерированное тепло проходит через ограждающие конструкции и рассеивается в атмосфере. То есть происходят теплопотери – «теплопередача». Она есть всегда, вопрос лишь в том, получается ли их восполнить посредством отопления, чтобы в доме оставалась стабильная положительная температура, желательно на уровне + 20-22 градусов.

Важно! Заметим, что очень немаловажную роль в динамике теплового баланса (в общих теплопотерях) играют различные неплотности в элементах здания – инфильтрация. Поэтому на герметичность и сквозняки тоже следует обращать внимание.  

Кирпич, сталь, бетон, стекло, деревянный брус… — каждый материал, применяемый при строительстве зданий, в той или иной мере обладает способностью передавать тепловую энергию. И каждый из них обладает обратной способностью – сопротивляться теплопередаче. Теплопроводность является величиной неизменной, поэтому в системе СИ существует показатель «коэффициент теплопроводности» для каждого материала. Данные эти важны не только для понимания физических свойств конструкций, но и для последующих расчётов.

Приведём данные для некоторых основных материалов в виде таблицы.

МатериалКоэффициент теплопроводности Вт/(м*К)
1Сталь52
2Стекло1,15
3Железобетон с щебнем1,7-2
4Минеральная вата0,035-0,053
5Сосна влажности 15%0,15-0,23
6Кирпич с пустотами0,44
7Кирпич сплошной0,67- 0,82
8Пенопласт0,04-0,05
9Пенобетонные блоки0,3-0,5

Теперь о сопротивлении теплопередаче. Значение сопротивления теплопередаче обратно пропорционально теплопроводности. Этот показатель относится и к ограждающим конструкциям, и к материалам как таковым. Он используется для того, чтобы охарактеризовать теплоизоляционные характеристики стен, перекрытий, окон, дверей, кровли…

Для расчёта термического сопротивления используют следующую общедоступную формулу:

R=d/k.

Показатель «d» здесь означает толщину слоя, а показатель «k» — теплопроводность материала. Получается, что сопротивление теплопередаче напрямую зависит от массивности материалов и ограждающих конструкций, что при использовании нескольких таблиц поможет нам рассчитать фактическое теплосопротивление существующей стены или правильный утеплитель по толщине.

Для примера: стена в половину кирпича (полнотелого) имеет толщину 120 мм, то есть показатель R получится 0,17 м²·K/Вт (толщина 0,12 метра, разделённая на 0,7 Вт/(м*К)). Аналогичная кладка в кирпич (250 мм) покажет 0,36 м²·K/Вт, а в два кирпича (510 мм) – 0,72 м²·K/Вт.

Допустим, по минеральной вате толщиной 50; 100; 150 мм показатели термического сопротивления будут следующие: 1,11; 2,22; 3,33 м²·K/Вт.

Важно! Большинство ограждающих конструкций в современных зданиях являются многослойными. Поэтому, чтобы рассчитать, например, термическое сопротивление такой стены, нужно отдельно рассматривать все её прослойки, а затем полученные показатели суммировать.

Существуют ли требования к тепловому сопротивлению

Возникает вопрос: а каким, собственно, должен быть показатель сопротивления теплопередачи для ограждающих конструкций в доме, чтобы в помещениях было тепло, и в отопительный период расходовалось минимум энергоносителей? К счастью для домовладельцев, не обязательно снова использовать сложные формулы. Вся необходимая информация есть в СНиП 23-02-2003 «Тепловая защита зданий». В данном нормативном документе рассматриваются строения различного назначения, эксплуатируемые в различных климатических зонах. Это вполне объяснимо, так как температура для жилых помещений и производственных помещений не нужна одинаковая. Кроме того, отдельные регионы характеризуются своими предельными минусовыми температурами и длительность отопительного периода, поэтому выделяют такую усреднённую характеристику, как градусо-сутки отопительного сезона.

Важно! Ещё один интересный момент заключается в том, что основная интересующая нас таблица содержит нормируемые показатели для различных ограждающих конструкций. Это в общем-то не удивительно, ведь тепло покидает дом неравномерно.

Попробуем немного упростить таблицу по необходимому тепловому сопротивлению, вот что получится для жилых зданий (м²·K/Вт):

Регион по градусо-суткамОкнаСтеныПерекрытия холодного чердака и холодного подвала
20000,32,12,8
40000,452,83,7
60000,63,54,6
80000,74,25,5
100000,754,96,4
120000,85,67,3

Согласно данной таблице, становится понятно, что если в Москве (5800 градусо-суток при средней температуре в помещениях порядка 24 градусов) строить дом только из полнотелого кирпича, то стену придётся делать по толщине более 2,4 метра (3,5 Х 0,7). Реально ли это технически и по деньгам? Конечно – абсурд. Вот почему нужно применить утепляющий материал.  

Очевидно, что для коттеджа в Москве, Краснодаре и Хабаровске будут предъявляться разные требования. Всё, что нам нужно, так это определить градусо-суточные показатели для нашего населённого пункта и выбрать подходящее число из таблицы. Потом применяя формулу сопротивления теплопередаче, работаем с уравнением и получаем оптимальную толщину утеплителя, который необходимо применить. 

ГородГрадусо-сутки Dd отопительного периода при температуре, + С
242220181614
Абакан730068006400590055005000
Анадырь10700101009500890082007600
Арзанас620058005300490045004000
Архангельск720067006200570052004700
Астрахань420039003500320029002500
Ачинск750070006500610056005100
Белгород490046004200380034003000
Березово (ХМАО)900085007900740069006300
Бийск710066006200570053004800
Биробиджан750071006700620058005300
Благовещенск750071006700620058005400
Братск810076007100660061005600
Брянск540050004600420038003300
Верхоянск134001290012300117001120010600
Владивосток550051004700430039003500
Владикавказ410038003400310027002400
Владимир590054005000460042003700
Комсомольск-на-Амуре780073006900640060005500
Кострома620058005300490044004000
Котлас690065006000550050004600
Краснодар330030002700240021001800
Красноярск730068006300590054004900
Курган680064006000560051004700
Курск520048004400400036003200
Кызыл880083007900740070006500
Липецк550051004700430039003500
Санкт Петербург570052004800440039003500
Смоленск570052004800440040003500
Магадан900084007800720067006100
Махачкала320029002600230020001700
Минусинск470069006500600056005100
Москва580054004900450041003700
Мурманск750069006400580053004700
Муром600056005100470043003900
Нальчик390036003300290026002300
Нижний Новгород600053005200480043003900
Нарьян-Мар900085007900730067006100
Великий Новгород580054004900450040003600
Олонец630059005400490045004000
Омск720067006300580054005000
Орел550051004700420038003400
Оренбург610057005300490045004100
Новосибирск750071006600610057005200
Партизанск560052004900450041003700
Пенза590055005100470042003800
Пермь680064005900550050004600
Петрозаводск650060005500510046004100
Петропавловск-Камчатский660061005600510046004000
Псков540050004600420037003300
Рязань570053004900450041003600
Самара590055005100470043003900
Саранск600055005100570043003900
Саратов560052004800440040003600
Сортавала630058005400490044003900
Сочи1600140012501100900700
Сургут870082007700720067006100
Ставрополь390035003200290025002200
Сыктывкар730068006300580053004900
Тайшет780073006800630058005400
Тамбов560052004800440040003600
Тверь590054005000460041003700
Тихвин610056002500470043003800
Тобольск750070006500610056005100
Томск760072006700620058005300
Тотьна670062005800530048004300
Тула560052004800440039003500
Тюмень700066006100570052004800
Улан-Удэ820077007200670063005800
Ульяновск620058005400500045004100
Уренгой10600100009500890083007800
Уфа640059005500510047004200
Ухта790074006900640058005300
Хабаровск700066006200580053004900
Ханты-Мансийск820077007200670062005700
Чебоксары630058005400500045004100
Челябинск660062005800530049004500
Черкесск400036003300290026002300
Чита860081007600710066006100
Элиста440040003700330030002600
Южно-Курильск540050004500410036003200
Южно-Сахалинск65006005600510047004200
Якутск114001090010400990094008900
Ярославль620057005300490044004000

Примеры расчёта толщины утеплителя

Предлагаем на практике рассмотреть процесс расчётов утепляющего слоя стены и потолка жилой мансарды. Для примера возьмём дом в Вологде, построенный из блоков (пенобетон) толщиной 200 мм.

Итак, если температура в 22 градуса для обитателей будет нормальной, то актуальный в данном случае показатель градусо-суток равняется 6000. Находим в таблице нормативов по термическому сопротивлению соответствующий показатель, он составляет 3,5 м²·K/Вт – к нему будем стремиться.

Стена получится многослойная, поэтому сначала определим, сколько термического сопротивления даст голый пеноблок. Если средняя теплопроводность пенобетона составляет порядка 0,4 Вт/(м*К), то при 20-миллиметровой толщине эта наружная стена даст сопротивление теплопередаче на уровне 0,5 м²·K/Вт (0,2 метра делим на коэффициент теплопроводности 0,4).

То есть для качественного утепления нам не хватает порядка 3 м²·K/Вт. Их можно получить минеральной ватой или пенопластом, который будут установлены со стороны фасада в вентилируемой навесной конструкции или мокрым способом скреплённой теплоизоляции. Чуть трансформируем формулу термического сопротивления и получаем необходимую толщину – то есть умножаем необходимое (недостающее) сопротивление теплопередачи на теплопроводность (берём из таблицы).

В цифрах это будет выглядеть так: d толщина базальтовой минваты = 3 Х 0,035 = 0,105 метра. Получается, что мы может использовать материал в матах или рулонах толщиной 10 сантиметров. Заметим, что при использовании пенопласта плотностью 25 кг/м3 и выше – необходимая толщина получится аналогичной.

Кстати, можно рассмотреть другой пример. Допустим, хотим из полнотелого силикатного кирпича в этом же доме сделать ограждение тёплого остеклённого балкона, тогда недостающего термического сопротивления будет порядка 3,35 м²·K/Вт (0,12Х0,82). Если планируется применять для утепления пенопласт ПСБ-С-15, то его толщина должна быть 0,144 мм – то есть 15 см.  

Для мансарды, крыши и перекрытий техника расчётов будет примерно такая же, только отсюда исключается теплопроводность и сопротивление теплопередачи несущих конструкций. А также несколько увеличиваются требования по сопротивлению – потребуется уже не 3,5 м²·K/Вт, а 4,6. В итоге, вата подойдёт толщиной до 20 см = 4,6 Х 0,04 (теплоизолятор для кровли).

Применение калькуляторов 

Производители изоляционных материалов решили упростить задачу рядовым застройщикам. Для этого они разработали простые и понятные программки для расчёта толщины утеплителя.

Рассмотрим некоторые варианты:

http://www.xps.tn.ru/calculate/

http://calc.rockwool.ua/#professional

http://www.penoplex.ru/school/index.php?step=4

http://www.knaufinsulation.ru/kalkulyator-dlya-rascheta-kolichestva-teploizolyatsii-0

В каждом из них в несколько шагов нужно заполнить поля, после чего, нажав на кнопку, можно мгновенно получить результат.

Вот некоторые особенности использования программ:

1. Везде предлагается из выпадающего списка выбрать город/район/регион строительства.

2. Все, кроме Технониколь, просят определить тип объекта: жилое/производственное, либо, как на сайте Пеноплекс – городская квартира/лоджия/малоэтажный дом/хозпостройка.

3. Потом указываем, какие конструкции нас интересуют: стены, полы, перекрытие чердака, крыша. Программа Пеноплекс рассчитывает также утепление фундамента, инженерных коммуникаций, уличных дорожек и площадок.

4. Некоторые калькуляторы имеют поле для указания желаемой температуры внутри помещения, на сайте Rockwool интересуются также габаритами здания и типом применяемого для отопления топлива, количеством проживающих людей. Кнауф ещё учитывает относительную влажность воздуха в помещениях.

5. На penoplex.ru нужно указать тип и толщину стен, а также материал, из которого они изготовлены. 

6. В большинстве калькуляторов есть возможность задать характеристики отдельных или дополнительных слоёв конструкций, например, особенности несущих стен без теплоизоляции, тип облицовки…

7. Калькулятор пеноплекс для некоторых конструкций (допустим для утепления кровли методом «между стропил») может считать не только экструдированный пенополистирол, на котором фирма специализируется, но также минеральную вату.

Как вы понимаете, в том, чтобы рассчитать оптимальную толщину теплоизоляции – ничего сложного нет, следует только со всей тщательностью подойти к данному вопросу. Главное, чётко определиться с недостающим сопротивлением теплопередаче, а потом уже выбирать утеплитель, который будет лучше всего подходить для конкретных элементов здания и применяемых строительных технологий. Также не стоит забывать, что к теплоизоляцией частного дома необходимо заниматься комплексно, в должной степени должны быть утеплены все ограждающие конструкции.

Калькулятор утеплителя, расчет теплоизоляции — экструдированный пенополистирол «Экстрол»

Алтайский край

Амурская область

Архангельская область

Астраханская область

Белгородская область

Брянская область

Владимирская область

Волгоградская область

Вологодская область

Воронежская область

Ивановская область

Иркутская область

Кабардино-Балкарская республика

Калининградская область

Калужская область

Камчатская область

Карачаево-Черкесская Республика

Кемеровская область

Кировская область

Костромская область

Краснодарский край

Красноярский край

Курганская область

Курская область

Ленинградская область

Липецкая область

Магаданская область

Московская область

Мурманская область

Ненецкий АО

Нижегородская область

Новгородская область

Новосибирская область

Омская область

Оренбургская область

Орловская область

Пензенская область

Пермский край

Приморский край

Псковская область

Республика Башкортостан

Республика Бурятия

Республика Дагестан

Республика Калмыкия

Республика Карелия

Республика Коми

Республика Марий Эл

Республика Мордовия

Республика Саха (Якутия)

Республика Северная Осетия – Алания

Республика Татарстан

Республика Тыва

Республика Хакасия

Ростовская область

Рязанская область

Самарская область

Саратовская область

Сахалинская область

Свердловская область

Смоленская область

Ставропольский край

Таймырский АО

Тамбовская область

Тверская область

Томская область

Тульская область

Тюменская область

Удмуртская республика

Ульяновская область

Хабаровский край

Ханты-Мансийский АО

Челябинская область

Чеченская республика

Читинская область

Чувашская Республика

Чукотский АО

Ярославская область

Калькулятор расчёта толщины утепления крыши бани

Баня традиционно самый утепляемый объект на загородном участке. И если утеплением стен все занимаются довольно тщательно, то крыше не всегда уделяется должное внимание. А зря! Теплопотери через кровлю достигают 40% от общих теплопотерь. Именно поэтому наша редакция разработала специальный калькулятор, чтобы наши самые умные читатели грамотно подошли к этому вопросу. Пользуйтесь на здоровье и не забывайте ставить лайки.

Обязательно уделите должное внимание качественному утеплению крыши

Онлайн-калькулятор расчёта необходимой толщины утепления крыши бани

 

Методика расчёта

Все вычисления базируется на основной теплотехнической зависимости:

R = h / λ, где

R — требуемое термическое сопротивление, м²·К/Вт;

h — толщина утеплителя, м;

λ — коэффициент теплопроводности материала, Вт/(м·К).

Первое, что калькулятор попросит вас выбрать, это вид утеплителя. Теплоизоляционный материал напрямую влияет на коэффициент теплопроводности, входящий в формулу. Какие-то материалы лучше «держат» тепло, какие-то хуже. Играясь с разными типами, можно подобрать оптимальный вариант для себя.

Второй важный параметр — термическое сопротивление. Это нормированный параметр, определяемый СНиПом. Зависит от вида ограждающей конструкции и региона расположения бани. Определяется по специальной карте-схеме. В калькуляторе заложена возможность провести раздельный расчёт для чердачного перекрытия (синие цифры) и скатов кровли (красные цифры).

Карта-схема для определения коэффициента требуемого сопротивления теплопередаче

Также в калькуляторе учтены обшивка потолка со стороны помещения и обшивка пола на чердаке в случае расчёта чердачного перекрытия, и внутренняя обшивка мансардного помещения в случае расчёта скатов кровли. Эти параметры хоть и не оказывают сильного влияния на итоговый результат, но всё же не пренебрегайте заполнением этих полей. Удачи!

Предыдущая

КалькуляторыКалькулятор расчёта утепления потолка в доме с холодной крышей

Следующая

КалькуляторыКалькулятор расчёта толщины утепления скатов кровли

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Расчет толщины изоляции для труб »Мир трубопроводной техники

Когда жидкость проходит по трубе, она теряет тепло в окружающую атмосферу, если ее температура выше, чем температура окружающего воздуха. Если температура трубы ниже температуры окружающего воздуха, она получает от нее тепло. Поскольку трубы обычно изготавливаются из металлов, таких как сталь, медь и т. Д., Которые очень хорошо проводят тепло, потери тепла будут значительными и очень дорогостоящими. Поэтому важно обеспечить покрытие из материала, который очень плохо проводит тепло, например из минеральной ваты, конопли и т. Д.

Общий объем передаваемого тепла (Q) от трубы через такой изоляционный материал зависит от следующих факторов:

  1. N : Длина трубы.
  2. Tp : рабочая температура жидкости внутри трубы.
  3. Ti : Максимально допустимая температура на внешней поверхности изоляции. Обычно 50 ° C.
  4. Rp : Радиус трубы.
  5. Ri : Радиус изоляции.
  6. k : Теплопроводность изоляционного материала.

Формула для стационарной теплопередачи через изоляционный материал, обернутый вокруг трубы, выглядит следующим образом:

Приведенное выше уравнение получено из уравнения Фурье для теплопроводности, для стационарной теплопередачи при радиальной теплопроводности через полый цилиндр.

Пример расчета

Предположим, у нас есть труба диаметром 12 дюймов, по которой течет горячее масло с температурой 200 ° C. Максимально допустимая температура изоляции на внешней стене составляет 50 ° C.Допустимые потери тепла на метр трубы — 80 Вт / м. Используемая изоляция — это стеклянная минеральная вата с теплопроводностью для этого диапазона температур 0,035 Вт / мК. Теперь осталось определить необходимую толщину изоляции.

Теплопроводность выражается в Ваттах на метр на Кельвин (Вт / мК), что по сути совпадает с Ваттами на метр на градус Цельсия (Вт / мКл). аналогично инкрементному изменению в градусах Цельсия.)

В приведенной выше формуле Q — общая потеря тепла, а N — длина трубы. Таким образом, Q / N становится допустимой потерей тепла на метр трубы, которая составляет 80 Вт / м.

Q / N = 80 Вт / м.

Диаметр трубы 12 дюймов, следовательно, радиус 6 дюймов.

Радиус в метрах: (6 ″ X 25,4) / 1000 = 0,1524 метра.

Итак:

80 = 2π × 0,035 × (200-50) ÷ ln (Ri / 0,1524)

ln (Ri / 0,1524) = 2π × 0,035 × (200-50) / 80 = 0,4123

Следовательно, Ri = Rp × e 0.4123

Ri = 0,1524 × 1,5103 = 0,2302 м

Следовательно, толщина изоляции = Ri — Rp = 0,2302 — 0,1524 = 0,0777

Толщина изоляции = 77,7 мм

Необходимо учитывать дополнительный запас по толщине изоляции, поскольку иногда она может проводить теплопередачу через изоляцию может стать выше конвективной теплопередачи из-за попадания воздуха на внешнюю стену изоляции. В этом случае температура внешней поверхности изоляции может увеличиться более чем до 50 ° C. Цель этого примера задачи — продемонстрировать расчеты радиальной теплопроводности, а практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.

Нравится:

Нравится Загрузка …

Простые калькуляторы | WBDG — Руководство по проектированию всего здания

Калькулятор контроля конденсации — Горизонтальная труба

Этот калькулятор определяет толщину изоляции, необходимую для предотвращения образования конденсата на внешней поверхности изолированной горизонтальной стальной трубы. Входные данные включают рабочую температуру, условия окружающей среды (температура, относительная влажность и скорость ветра) и сведения о системе изоляции (материал и оболочка).

Изоляционные материалы, включенные в этот калькулятор, были выбраны с учетом некоторых материалов, обычно используемых в промышленности. Список не является исчерпывающим, другие материалы доступны. Также обратите внимание, что некоторые материалы доступны не во всех размерах и толщинах, указанных в этих калькуляторах, а некоторые доступны в размерах и толщинах, не указанных в списке.
Данные по теплопроводности материалов, включенные в калькулятор, были взяты из соответствующей спецификации материалов ASTM.В таблице ниже указаны спецификации ASTM, а также тип и / или марка материала, используемые в калькуляторе.

Материал Стандарт изоляции
Ячеистое стекло ASTM C 552 Тип II
Эластомер ASTM C 534 Тип I, группа 1
Стекловолокно ASTM C 547 Тип I
Гибкий аэрогель ASTM C 1728 Тип I, группа 1B
Минеральная вата ASTM C 547 Типы II и III
Фенольный ASTM C 1126 Тип III
Полиэтилен ASTM C 1427 Тип I, Gr1
Полиизоцианурат ASTM C 591 Тип IV
Полистирол ASTM C 578 Тип XIII

Калькуляторы потерь энергии, сокращения выбросов, температуры поверхности и годового дохода

Чтобы помочь понять взаимосвязь между энергией, экономикой и выбросами для изолированных систем, были разработаны простые калькуляторы для оборудования (вертикальные плоские поверхности) и горизонтальных трубопроводов.Эти калькуляторы оценивают производительность изолированной системы с учетом рабочей температуры, температуры окружающей среды и других деталей системы.

Алгоритмы, используемые в этих калькуляторах энергии, основаны на методологиях расчета, изложенных в Стандартной практике ASTM C 680 для оценки теплового усиления или тепловых потерь и температуры поверхности изолированных плоских, цилиндрических и сферических систем с использованием компьютерных программ . Стандарт ASTM C 680 обычно используется для прогнозирования потерь или увеличения тепла и температуры поверхности определенных систем теплоизоляции, которые могут достигать одномерных, установившихся или квазистационарных условий теплопередачи в полевых условиях.Пользователям рекомендуется ознакомиться с разделами «Сфера применения», «Значение» и «Использование» этого стандарта.

Вычислитель оборудования оценивает тепловые потоки через вертикальную плоскую стальную поверхность (типичную для сторон большого стального резервуара, содержащего нагретую или охлажденную жидкость). Информация, касающаяся гипотетической системы изоляции (например, площадь, рабочая температура, температура окружающей среды, скорость ветра, изоляционный материал и коэффициент излучения поверхности предлагаемой системы изоляции) может вводиться пользователем.Результаты расчетов представлены для различных типов и толщин изоляции и включают: 1) температура поверхности, 2) тепловой поток, 3) годовая стоимость топлива, 4) период окупаемости, 5) годовая норма прибыли и 6) годовые выбросы CO 2 .

Вычислитель труб оценивает тепловые потоки в горизонтальных стальных трубах. Информация, касающаяся гипотетической системы изоляции (например, длина участка, размер трубы, рабочая температура, температура окружающей среды и скорость ветра, изоляционный материал и коэффициент излучения поверхности предлагаемой системы изоляции) может вводиться пользователем.Результаты расчетов представлены для различных типов и толщин изоляции и включают: 1) температура поверхности, 2) тепловой поток, 3) годовая стоимость топлива, 4) период окупаемости, 5) годовая норма прибыли и 6) годовые выбросы CO 2 .

Следует отметить, что вычислитель горизонтальной трубы и вычислитель вертикальной плоской поверхности были разработаны для типичных применений для механической изоляции. Конечно же, встречаются и другие ориентации, геометрии и основные материалы, и их можно проанализировать с помощью доступного программного обеспечения (например,г. 3E Plus® доступен на сайте www.pipeinsulation.org).

Для трубопроводных систем ориентация оказывает минимальное влияние, за исключением неизолированной трубы при низких скоростях ветра. Для неизолированной трубы в неподвижном воздухе вертикальный трубопровод обычно имеет меньшие тепловые потери (на 5% или меньше), чем горизонтальный трубопровод того же диаметра. Для изолированных трубопроводов разница в теплопотери (горизонтальная и вертикальная) будет минимальной (менее 1%).

Плоские горизонтальные поверхности в неподвижном воздухе (например, верхняя часть обогреваемых резервуаров) будут иметь более высокие тепловые потери, чем вертикальные поверхности, в то время как горизонтальные поверхности с тепловым потоком вниз (например.г. днища обогреваемых резервуаров) будут иметь меньшие тепловые потери, чем вертикальные поверхности. Опять же, различия минимальны для изолированных поверхностей и поверхностей с движущимся воздухом.

Изоляционные материалы, включенные в эти калькуляторы, были выбраны как репрезентативные для некоторых материалов, обычно используемых в промышленности. Список не является исчерпывающим, другие материалы доступны. Также обратите внимание, что некоторые материалы доступны не во всех размерах и толщинах, указанных в этих калькуляторах, а некоторые доступны в размерах и толщинах, не указанных в списке.

Данные по теплопроводности материалов, включенные в калькулятор, были взяты из соответствующей спецификации материалов ASTM. В таблице ниже указаны спецификации ASTM, а также тип и / или марка материала, используемые в калькуляторах.

Материал Стандарт изоляции плат Стандарт изоляции труб
Силикат кальция ASTM C 533-09 Тип I ASTM C 533-09 Тип I
Ячеистое стекло ASTM C 552-07 Тип I ASTM C 552-07 Тип II
Эластомер ASTM C 534-08 Тип II, группа 1 ASTM C 534-08 Тип I, группа 1
Стекловолокно ASTM C 612-09 Тип I B ASTM C 547-07 Тип I
Минеральная вата ASTM C 612-09 Тип IV B ASTM C 547-07 Тип II
Полиизоцианурат ASTM C 591-08a Тип IV ASTM C 592-08a Тип IV

Смета затрат на системы изоляции предоставлена ​​на основе отраслевых источников и предназначена только для иллюстративных целей.Эти сметы расходов основаны на однослойных установках с алюминиевой оболочкой. Следует отметить, что для некоторых систем и применений изоляции использование алюминиевой оболочки может не потребоваться. Они предполагают беспрепятственный и разумный доступ для установки, без учета фитингов, подвесов или проходов. Никакие дополнительные замедлители образования пара или герметики не включены в эти оценки. Фактические затраты будут варьироваться в зависимости от местных норм оплаты труда, производительности, сложности и географического положения работы, реальной системы изоляции и множества других факторов.Множитель стоимости предназначен для помощи в корректировке этих затрат для конкретных систем и условий изоляции.

Финансовая прибыль — Калькулятор соображений

Этот калькулятор был разработан, чтобы обеспечить удобный способ оценки финансовой отдачи, связанной с инвестициями в механическую изоляцию: простая окупаемость в годах, внутренняя норма прибыли (IRR или ROI), чистая приведенная стоимость (NPV), а также годовой и совокупный денежный поток. . Его можно использовать для общего проекта механической изоляции или для небольших инвестиций в механическую изоляцию, таких как изоляция клапана или замена участка изоляции.

Расчетное время замерзания воды в изолированной трубе

Этот калькулятор оценивает время, в течение которого длинная заполненная жидкостью труба (без потока) достигает температуры замерзания.

Важно понимать, что изоляция препятствует тепловому потоку; это не останавливает его полностью. Если температура окружающего воздуха остается достаточно низкой в ​​течение длительного периода, изоляция не может предотвратить замерзание стоячей воды или воды, текущей со скоростью, недостаточной для имеющегося теплосодержания, чтобы компенсировать тепловые потери.Однако хорошо изолированные трубы могут значительно увеличить время замерзания.

Калькулятор защиты персонала для горизонтальных трубопроводов

Этот калькулятор оценивает максимальное время воздействия контакта на внешней поверхности системы изоляции горизонтальных труб на основе возможности получения контактных ожогов. Входные требования включают размер трубы, рабочую температуру, температуру окружающей среды и скорость ветра, а также подробную информацию о системе изоляции (материал и оболочка).

Максимальное время контакта оценивается с использованием процедур, изложенных в стандарте ASTM C 1055-03 (повторно утверждено в 2009 г.) Стандартное руководство для условий поверхности нагреваемых систем, вызывающих контактные ожоги .Это руководство устанавливает средства, с помощью которых инженер, проектировщик или оператор могут определить допустимую температуру поверхности системы, в которой возможен контакт с нагретой поверхностью. Процедура требует от пользователя принятия нескольких решений. Тщательное документирование рационального решения и промежуточного результата является важной частью процесса оценки.

Для целей данного калькулятора максимальное время контактного воздействия основано на приемлемом уровне повреждения ожогов первой степени (обратимое повреждение эпидермиса или предел, представленный нижней кривой «Порог B», показанной на Рисунке 1 стандарта).Приемлемое время контакта будет зависеть от приложения. Очевидно, что совершенно разные времена контакта могут быть оправданы в самых разных случаях, например, в случаях с младенцами и бытовыми приборами, а также в случаях, когда опытные взрослые работают с промышленным оборудованием. Если не указаны доступные стандарты для этого времени, Стандарт рекомендует следующее на основе обзора медицинской литературы:

Промышленный процесс 5 сек | Потребительские товары 60 сек

Изоляционные материалы, включенные в этот калькулятор, были выбраны так, чтобы соответствовать некоторым материалам, обычно используемым в промышленности.Список не включает все типы материалов, доступны другие материалы. Также обратите внимание, что некоторые материалы доступны не во всех размерах и толщинах, указанных в этих калькуляторах, а некоторые доступны в размерах и толщинах, не указанных в списке.

Данные по теплопроводности материалов, включенные в калькулятор, были взяты из соответствующей спецификации материалов ASTM. В таблице ниже указаны спецификации ASTM, а также тип и / или марка материала, используемые в калькуляторе.

Материал Стандарт изоляции
Силикат кальция ASTM C 533-09 Тип 1
Ячеистое стекло ASTM C 552-07 Тип I
Эластомер ASTM C 534-08 Тип II, группа 1
Стекловолокно ASTM C 612-09 Тип I B
Минеральная вата ASTM C 612-09 Тип IV B
Полиэтилен ASTM C 1427-07 Тип II, группа 1
Полиизоцианурат ASTM C 591-08a Тип IV
Полистирол ASTM C 578-09 Тип XIII

Вычислители перепада температуры воздуха в изолированном воздуховоде или жидкости в изолированной трубе

Эти калькуляторы оценивают падение (или повышение) температуры воздуха, протекающего в воздуховоде, или жидкости, протекающей в трубе.

Примером является использование изоляции для минимизации изменения температуры (падение или повышение температуры) технологической жидкости от одного места к другому (например, горячая жидкость, текущая по трубе).

Калькулятор изоляции

Этот калькулятор изоляции отвечает на вопрос: «Каков R-показатель данной стены и сколько изоляции мне нужно?» Вы можете поэкспериментировать с этим калькулятором, чтобы узнать, как рассчитать R-значение (общее R-значение) любого изоляционного материала стен, утеплителя чердака или барьера.Выберите материалы, которые вы уже используете, или материалы, которые вы хотите использовать, и введите их толщину, чтобы найти общую R-ценность вашего барьера. Это также идеальное время, чтобы проверить наш калькулятор тепловых потерь, в котором обсуждается «U-Value», которое вы, возможно, также захотите узнать. Но чтобы узнать больше об изоляции и R-значении, продолжайте читать эту статью.

Что такое изоляция и какая изоляция вам нужна?

Жизнь в местах с сильной жарой летом заставляет людей использовать кондиционеры для поддержания комфорта в своих домах.Стены, крыша, пол и даже окна и входные двери наших домов действуют как барьеры, защищающие нас от внешних температур. Материалы, используемые для этих барьеров, влияют на то, насколько хорошо наши дома сохраняют эту сильную жару снаружи. Тепло или тепловая энергия протекает через материалы посредством проводимости, конвекции и излучения. Мы называем материалы, устойчивые к тепловому потоку, изоляционными материалами или просто изоляционными материалами .

Также настоятельно рекомендуется использовать изоляцию для домов, которые зимой испытывают отрицательные температуры.Обогреватели были бы намного эффективнее с изолированными стенами и крышами, так как тепло, производимое обогревателями, будет должным образом храниться внутри. Также важно держать плотно закрытым домом , чтобы избежать утечек тепла. Удивительно, но слой снега может действовать как изоляция на нашей кровле. Однако без надлежащей кровли и изоляции чердака внутри крыши и стен может скапливаться влага, что может привести к повреждениям в будущем.

Что такое R-значение?

Любой материал, который хорошо сопротивляется тепловому потоку, может использоваться в качестве изоляции (ну, можно использовать даже те, которые имеют плохие резисторы, но зачем вам?). R-Value — это числовое значение, присвоенное материалу, которое представляет его сопротивление тепловому потоку при заданной толщине. Мы также можем определить общую R-ценность слоев материала, из которых состоят наши дома. Чем выше R-Value барьера, тем выше его термическое сопротивление. Толщина материала также влияет на его общую R-ценность. Чем толще материал, тем лучше его термическое сопротивление, если у него хорошее значение R-Value.

С другой стороны, получение обратного значения R-Value дает нам еще один фактор, который описывает тепловой поток через материал.Мы называем этот коэффициент U-Value или U-коэффициент. U-значение, с другой стороны, представляет способность материала проводить тепло. Это означает, что более низкие значения U предпочтительнее, поскольку они ограничивают поток тепла через барьеры дома.

Как рассчитать R-значение барьера

Вычислить общее R-значение барьера так же просто, как сложить R-значение каждого материала в заданном поперечном сечении. Поскольку значения R материала имеют единицы измерения в ° F · фут² · час / BTU на единицу толщины дюйма, мы сначала должны умножить значение R материала на его толщину, чтобы получить его общее значение R материала.С учетом сказанного, мы можем рассчитать общий или объемный R-Value барьера (с несколькими слоями материалов), используя следующее уравнение:

Общая R-ценность = R₁t₁ + R₂t₂ + R₃t₃ + R₄t₄ + R₅t₅ + ... + Rₙtₙ

Где Rₙ — это R-Value материала в ° F · ft² · ч / BTU / дюйм, а tₙ — это соответствующая толщина в дюймах . Мы также можем выразить R-значения в метрических единицах или единицах СИ как м² · K / W . Мы можем преобразовать значения R в RSI (значение R в единицах СИ), разделив значение R на производную константу 5.6785917 .

Чтобы лучше понять, как рассчитать общее значение R-Value, давайте рассмотрим образец стены с теми же слоями, что и на изображении ниже:

Этот образец стены включает в себя типичный гипсокартон с изоляцией из стекловолокна толщиной 3 дюйма (значение R: 3,40) между двумя листами цементной плиты 3/4 дюйма (значение R: 0,05). Этот гипсокартон устанавливается с воздушным зазором. (R-значение: 1,43) от 1 дюйма до 3-дюймовой бетонной стены (R-значение: 0,08). Стена также имеет внешнюю 2-дюймовую кирпичную облицовку (R-значение: 0.20), с дюймовым слоем гравия (R-Value: 0,60) между ними. Используя приведенную ниже таблицу, мы можем увидеть, каковы R-значения для других материалов, обычно используемых в строительстве:

Материал R-Value
на дюйм
толщина
Материал R-Value
на дюйм
толщина
Акустическая потолочная плитка 2.90 Изоциануратная пена 7,00
Воздушное пространство 1,43 Ламинированная древесноволокнистая плита 2,38
Бетон с воздухововлекающими добавками 3,90 Мацерированная бумага / целлюлоза 3.57
Плита асбестоцементная 0,25 Мрамор 0,05
Кирпич (90 ПКФ) 0,20 Мрамор 0,09
Ковровое покрытие и волокнистая подушка 2.10 Минеральная / минеральная вата (сыпучий наполнитель) 3,20
Кедровое бревно 1,33 Минеральная / минеральная вата 3,30
Целлюлоза (плотная упаковка) 3,20 ДСП (низкой плотности) 1.41
Целлюлоза (насыпная) 3,50 ДСП (средней плотности) 1,06
Цементная плита 0,05 ДСП 1,10
Цементный раствор 0.20 Фанера 1,25
Плитка керамическая 0,08 Пенополиизоцианурат PIR с фольгой 7,20
CMU (полый) 1,00 Аэрозольная пена из полиизоцианурата PIR 6.50
Кирпич обыкновенный (120 ПКФ) 0,11 ПУ полиуретановая пена для распыления (высокой плотности) 6,50
Доска пробковая 3,45 Пенополиуритан (низкая плотность) 3,70
Вспученный перлит (сыпучий наполнитель) 2.63 Наливной бетон 0,08
Пенополистирол EPS 4,00 Песок и гравий 0,60
Пенополистирол экструдированный XPS 5,00 Опилки или стружка 2.22
Стекловолокно (плотная упаковка) 4,00 Пиломатериалы хвойных пород (пихта, сосна) 1,25
Стекловолокно (насыпное) 0,7 PCF 2,20 Штукатурка 0,20
Стекловолокно (насыпной) 2.0 PCF 4,00 Пена тройного сополимера мочевины 4,48
Стекловолокно (легкое) 4,00 Вермикулит (насыпь) 2,20
Стекловолокно (стандарт) 3,40 Дерево 1.25
Гранит 0,05 Ватина из древесного волокна 4,00
Гипсокартон 0,90 Деревянная черепица 1,00
Твердая древесина (клен, дуб) 0.91

Учитывая значения R и толщину материалов в нашем примере, теперь мы можем ввести их в наш калькулятор изоляции, который решает общее уравнение R-Value следующим образом:

Общее значение R = (0,05) * (0,75 дюйма) + (3,40) * (3 дюйма) + (0,05) * (0,75 дюйма) + (1,43) * (1 дюйм) + (0,08) * (3 дюйма) ) + (0,60) * (1 дюйм) + (0,20) * (2 дюйма)

Общая R-стоимость = 12,948

Тогда мы можем сказать, что общая R-ценность данных 11.5-дюймовая стена с описанной выше изоляцией стены составляет 12,948 ° F · фут² · час / BTU , или имеет значение R R-12,9 .

Понимание значений R

Рекомендуемые значения R для каждого типа барьеров в наших домах зависят от того, где мы живем. Также рекомендуется проверить свои местные строительные нормы и правила на предмет рекомендуемых значений R для изоляции стен, чердака и даже пола, чтобы узнать, сколько изоляции вам нужно. Вы также можете увидеть рекомендуемые значения сопротивления изоляции, напечатанные на упаковке изоляционных материалов.Ваш местный поставщик также будет рад сообщить вам рекомендуемое значение R-Value для необходимого вам приложения. С помощью нашего калькулятора изоляции вы сможете определить толщину изоляции, необходимую для вашего дома.

Если вы найдете наш калькулятор изоляции полезным при определении R-значений изоляции стен и чердака, возможно, вы также захотите попробовать наш калькулятор размера комнаты для кондиционера, который поможет вам определить подходящий размер кондиционера для вашей комнаты.Однако, если вы планируете построить энергоэффективный дом, мы настоятельно рекомендуем наш калькулятор экономии пассивного дома.

Пример задачи — Расчет толщины изоляции для трубы

Пример описания проблемы

Рассчитайте толщину изоляции (минимальное значение), необходимую для трубы, по которой проходит пар, при температуре 180 0 C. Размер трубы составляет 8 дюймов, а максимально допустимая температура внешней стены изоляции составляет 50 0 C. Теплопроводность изоляционного материала. для диапазона температур трубы можно принять 0.04 Вт / м · К. Потери тепла от пара на метр длины трубы должны быть ограничены до 80 Вт / м.

Решение

Решение этой проблемы, как показано ниже, довольно простое.

Согласно статье EnggCyclopedia о теплопроводности,

Для радиальной теплопередачи за счет теплопроводности через цилиндрическую стенку скорость теплопередачи выражается следующим уравнением:

Для данной задачи образца,

T 1 = 50 0 C
T 2 = 180 0 C
r 1 = 8 дюймов = 8 × 0.0254 м = 0,2032 м
k = 0,04 Вт / м · K
N = длина цилиндра

Q / N = Тепловые потери на единицу длины трубы
Q / N = 80 Вт / м

Следовательно, подставляя указанные числа в уравнение радиальной скорости теплопередачи сверху,

80 = 2π × 0,04 × (180-50) ÷ ln (r 2 /0,2032)

ln (r 2 / 0,2032) = 2π × 0,04 × (180-50) / 80 = 0,4084

Следовательно, r 2 / = r 1 × e 0,4084
r 2 / = 0.2032 × 1,5044 = 0,3057 м

Следовательно, толщина изоляции = r 2 — r 1
толщина = 305,7 — 203,2 = 102,5 мм

Следует взять некоторый запас на толщину изоляции, потому что, если скорость кондуктивной теплопередачи окажется выше, чем скорость конвективной теплопередачи за пределами изоляционной стены, температура внешней изоляционной стены вырастет до более высоких значений, чем 50 0 C. Следовательно, скорость кондуктивной теплопередачи должна быть ограничена более низкими значениями, чем оценки, использованные в этом примере задачи.Цель этого примера задачи — продемонстрировать расчеты радиальной теплопроводности, а практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.

Простые калькуляторы для механической изоляции: Руководство по калькуляторам контроля энергии и конденсации

В рамках усилий Управления перспективного производства
Министерства энергетики США по повышению энергоэффективности в США.S.
в промышленном и коммерческом секторах, Национальная ассоциация изоляционных материалов (NIA)
и ее партнеры по альянсу работали вместе над разработкой, внедрением и проведением образовательной и информационной кампании по механической изоляции
(MIC).

MIC — это программа, направленная на повышение осведомленности
об энергоэффективности, сокращении выбросов, экономических стимулах и
других преимуществах механической изоляции на промышленных и коммерческих
рынках. Неотъемлемой частью стала разработка серии «Простые калькуляторы
.Калькуляторы предоставляют пользователю мгновенную информацию о
различных применениях механической изоляции на промышленных, производственных,
и коммерческих рынках. Темы включают:


  • Контроль конденсации для горизонтальной трубы
  • Потери энергии, снижение выбросов, температура поверхности
    и годовой доход (два калькулятора:
    , один для оборудования и один для трубопроводов)
  • Финансовая прибыль / соображения
  • Расчетное время замерзания воды в изолированной трубе
  • Защита персонала для горизонтальных трубопроводов
  • Падение температуры воздуха в изолированном воздуховоде
    или жидкости в изолированной трубе

Калькуляторы онлайн можно найти по адресу:
, веб-сайт Руководства по проектированию механической изоляции
(MIDG) Национального института строительных наук, www.wbdg.org/midg и доступен на веб-сайте NIA
, www.insulation.org . Это быстрые, бесплатные и функциональные инструменты
, которые позволяют легко обнаружить экономию энергии, финансовую отдачу, а также
другую информацию, используемую при проектировании систем механической изоляции для
приложений с температурой выше или ниже окружающей среды.

Эта статья, включая текст с веб-сайта MIDG, предоставляет
обзор и руководство по использованию калькуляторов для контроля энергии и конденсации
для горизонтальных трубопроводов.

Калькулятор энергии для горизонтального трубопровода

Чтобы помочь понять
взаимосвязь между энергией, экономикой и выбросами для изолированных систем для горизонтальных трубопроводов
, был разработан простой калькулятор электронных таблиц. Аналогичный калькулятор
для оборудования, вертикальных плоских поверхностей, также был разработан.

Алгоритмы, используемые в калькуляторах энергии
, основаны на методиках расчета, изложенных в ASTM C680-10 — Стандартная практика для оценки теплового усиления или потерь
и температуры поверхности изолированных плоских, цилиндрических,
и сферических систем с использованием Компьютерные программы.

Вычислитель трубопровода оценивает
тепловые потоки через горизонтальные трубопроводы, принимая одномерную стационарную теплопередачу
. Информация, касающаяся гипотетической системы изоляции (например,
, длина участка, размер трубы, рабочая температура, температура окружающей среды и скорость ветра
, изоляционный материал и поверхностная излучательная способность предлагаемой системы изоляции
) может быть введена пользователем. Рассчитанные результаты отображаются для диапазона
типов и толщин изоляции и включают температуру поверхности, расход тепла
, годовую стоимость топлива, установленную стоимость, период окупаемости, среднегодовую норму доходности
и годовые выбросы CO 2 .

Другая геометрия и многое другое.
сложные изоляционные системы могут быть проанализированы с помощью общедоступного программного обеспечения
, такого как компьютерная программа для определения толщины изоляции 3E Plus ® . 3E Plus
был разработан Североамериканской ассоциацией производителей изоляционных материалов и доступен по адресу www.pipeinsulation.org.

Калькулятор энергии для горизонтальных трубопроводов требует «входной информации» для тринадцати переменных (см.
рисунок 1). Результаты обновляются при вводе каждой входной переменной
.Ниже приведены инструкции и дополнительная информация
для каждой входной переменной. Образцы входных данных отображаются в поле после каждой инструкции.


  • Линия 1. Введите длину участка трубопровода в погонных футах 1

    Значение по умолчанию
    — 1 погонный фут, но вы можете ввести любую длину участка трубопровода. Первоначальный раздел
    «Результаты» содержит установленную стоимость метража по умолчанию (1 линейный
    фут) для номинального размера трубы и материала, выбранных в строках 2 и 6,
    соответственно.Возможно, вам будет полезно просмотреть информацию о стоимости 1
    погонного фута перед заполнением строки 1 и строки 7, множителя стоимости.

  • Линия 2. Выберите номинальный размер трубы, NPS 3

    Значение по умолчанию
    — 3 дюйма в секунду. Однако в раскрывающемся списке вы можете выбрать любой размер трубы
    от 0,5 ″ до 14 ″. Если вам больше 14 дюймов, мы рекомендуем вам обратиться к программе 3E Plus или
    использовать другой подход.

  • Строка 3. Введите среднюю рабочую (технологическую) температуру за период работы
    350

    Введите среднюю
    рабочую температуру ниже или выше окружающей среды в градусах Фаренгейта (° F)

  • Строка 4.Введите среднюю температуру окружающей среды за период эксплуатации
    75

    Введите среднюю температуру окружающей среды
    в ° F

  • Строка 5. Введите среднюю скорость ветра за период работы (если
    неизвестно, используйте 1 милю в час для внутреннего помещения, 8 миль в час для наружного) 8

    Введите среднюю скорость ветра
    в милях в час. Если неизвестно, рекомендуется использовать скорость 1 миль в час для внутреннего и 8
    миль в час для наружного применения.

  • Строка 6. Выберите изоляционный материал.Примечание. Калькулятор не отображает
    ограничения температуры материала — будьте осторожны. Минеральная вата (от 0 ° F до
    1,200 ° F)

    Материал по умолчанию — минеральная вата
    ; однако вы можете использовать раскрывающийся список, чтобы выбрать один из шести изоляционных материалов
    :


    • Силикат кальция (от 80 ° F до 1200 ° F)
    • Ячеистое стекло (от -450 ° F до 800 ° F)
    • Эластомерный (от 297 ° F до 220 ° F)
    • Стекловолокно (от 0 ° F до 850 ° F)
    • Минеральная вата (от 0 ° F до 1200 ° F)
    • Полиизоцианурат (от 297 ° F до 300 ° F)

    Вы,
    , заметите, что каждый из вариантов материала имеет общий рабочий температурный диапазон
    .

    Если вы
    хотите использовать материал, которого нет в списке, вам нужно будет обратиться к программе 3E
    Plus. Простые калькуляторы не могут использовать температурные кривые
    , предоставленные пользователем. Значения теплопроводности для перечисленных материалов
    основаны на значениях спецификации материалов ASTM.

  • Строка 7. Введите множитель стоимости, чтобы изменить установленные по умолчанию затраты
    (например, введите 1,10, чтобы увеличить затраты на 10%) 1,00

    Как указано в строке
    1, калькулятор содержит стоимость по умолчанию для каждого типа материала и размера трубы
    .Если вы введете 1 погонный фут в строке 1, выберите размер трубы в строке 2 и
    изоляционный материал в строке 6, вы можете просмотреть стоимость по умолчанию для линейного
    фута для различной толщины изоляции в разделе «Результаты». Если для данной толщины изоляции появляется «NA»
    , это означает, что толщина
    обычно недоступна для выбранного материала. Вы можете увеличить или уменьшить стоимость на
    , просто изменив множитель. Введите 1,10, если ваша стоимость на 10% выше.
    Войдите.80, если ваша стоимость на 20% ниже.

    Установленная стоимость
    была получена из отраслевых источников и представляет собой
    однослойную установку. Они включают в себя алюминиевую оболочку, но не включают пароизоляцию
    или пароизоляцию. Их можно рассматривать как более высокие, чем на самом деле, но вид
    будет сильно отличаться в зависимости от затрат на рабочую силу, условий эксплуатации, системы изоляции
    и множества других факторов. Понимание того, что эти отклонения
    существуют, является причиной выбора метода множителя.

  • Строка 8. Введите эффективную излучательную способность внешней поверхности (см.
    MIDG> Расчетные данные> Таблица 1 для руководства) 0,10-Алюминий, оксидированный, в стандарте
    service

    Часто требуется определение эмиттанса
    . Технически эмиттанс определяется как отношение потока излучения
    , испускаемого образцом, к потоку, испускаемому черным телом при той же температуре
    и в тех же условиях. Проще говоря: чем темнее поверхность
    , тем больше излучаемого тепла поглощается.Значение по умолчанию — 0,10, что означает
    — алюминий, окислившийся в процессе эксплуатации. Однако, используя раскрывающийся список
    , вы можете выбрать типичное значение эмиттанса для одиннадцати обычно используемых покрытий изоляционной оболочки
    .

  • Строка 9. Введите ожидаемый срок службы системы изоляции в годах 20,0

    Это значение соответствует экономическому сроку
    , используемому для расчета финансовой отдачи. Значение по умолчанию — 20
    год. Вы можете ввести любое количество лет.

  • Строка 10. Введите количество часов работы системы в год (например,
    8760 для работы в течение всего года) 8320

    Некоторые системы могут
    не работать 24/7/365. Вы можете ввести предполагаемое количество часов работы
    .

  • Строка 11. Введите эффективность преобразования системы в процентах 80

    Если вам неизвестна эффективность преобразования
    для источника энергии, вы можете использовать следующие типичные значения эффективности преобразования
    для различных систем:


    • Котлы на ископаемом топливе (без конденсации) 65-85%
    • Котлы на ископаемом топливе (конденсационные) 80-95%
    • Котлы электрические сопротивления 92-96%
    • Чиллеры с электрическим приводом 300-700%
    • Абсорбционные чиллеры 60-100%


  • Строка 12.Выберите используемое топливо Природный газ

    Используя раскрывающийся список, вы можете выбрать один из пяти типов топлива
    : природный газ, нефть, пропан, уголь или электричество.

  • Строка 13. Введите стоимость топлива, если она известна, или используйте значение по умолчанию 8,00

    Приведена типичная стоимость по умолчанию
    для каждого из видов топлива ($ / куб. Фут). У вас есть возможность
    просто ввести фактическую стоимость, если она известна, или принять стоимость по умолчанию.

На основе введенной вами входной информации
в разделе «Результаты» представлена ​​подробная информация
для различной толщины изоляции.Пример использования значений по умолчанию для всех входных переменных
показан на рис. 2 на стр. 27.

Калькулятор контроля конденсации — горизонтальная труба

Этот калькулятор определяет толщину изоляции
, необходимую для предотвращения конденсации на внешней поверхности изолированной горизонтальной стальной трубы
. Входные данные включают в себя рабочую температуру,
условия окружающей среды (температура, относительная влажность и скорость ветра) и
сведения о системе изоляции (материал и оболочка).

Изоляционные материалы, включенные в этот калькулятор, были выбраны из
типичных материалов, обычно используемых в промышленности. Список
не является исчерпывающим, другие материалы доступны. Также обратите внимание, что некоторые материалы
доступны не во всех размерах и толщинах, охватываемых этими калькуляторами
, а некоторые доступны в размерах и толщинах, не указанных в списке.
Данные по теплопроводности материалов, включенные в калькулятор, были
взяты из соответствующей спецификации материалов ASTM.На рисунке 3 указаны спецификация
ASTM, а также тип и / или марка материала, используемые в калькуляторе.

Калькулятор требует «Ввести
информацию» для семи переменных. Вот инструкции для каждого поля данных и
дополнительная информация для каждого. Как и раньше, образцы входных данных появляются в поле после
каждого шага.


  • Линия 1. Выберите размер трубы, NPS 4

    Значение по умолчанию — 4 дюйма в секунду, но в раскрывающемся списке
    вы можете выбрать любой размер трубы от 0.От 5 до 24 дюймов.

  • Строка 2. Введите среднюю рабочую (технологическую) температуру, ° F 40

    Значение по умолчанию
    — 40 ° F, но можно ввести и другие значения.

  • Строка 3. Введите среднюю температуру воздуха вокруг трубы 80

    Значение по умолчанию
    — 80 ° F; однако вы должны ввести среднюю рабочую температуру окружающей среды
    по Фаренгейту для рассматриваемой области.

  • Строка 4. Введите относительную влажность
    окружающего воздуха 80

    Значение по умолчанию
    — 80%.Однако вам следует ввести конкретную расчетную относительную влажность для вашего приложения
    . С точки зрения дизайна лучше использовать значение
    , разумно превышающее среднее значение или значение наихудшего случая.

  • Строка 5. Введите скорость ветра в окружающем воздухе (если неизвестно, используйте 0 миль в час
    для наихудших условий) 0

    Как уже отмечалось, в случае возникновения сомнений
    используйте 0 миль в час, что соответствует наихудшим условиям.

  • Строка 6. Выберите изоляционный материал Ячеистое стекло

    Вы можете использовать раскрывающийся список, чтобы выбрать один из семи изоляционных материалов
    : ячеистое стекло, эластомер, стекловолокно, минеральная шерсть
    , полиэтилен, полиизоцианурат или полистирол.Если вы хотите использовать материал
    , отличный от одного из перечисленных, вам необходимо обратиться к программе
    3E Plus. Значения теплопроводности для перечисленных материалов основаны на
    на значениях спецификации материалов ASTM.

  • Линия 7. Выберите эффективную излучательную способность внешней поверхности 0,90-Все
    Service Jacket

    Как и в случае с калькулятором энергии
    для горизонтального трубопровода, часто требуется определение эмиттанса.
    Проще говоря, чем темнее поверхность, тем больше излучаемого тепла поглощается.Значение по умолчанию
    — 0,90, что соответствует All Service Jacket; однако, используя раскрывающийся список
    , вы можете выбрать типичное значение коэффициента излучения для одиннадцати обычно используемых
    изоляционных покрытий.

В разделе
«Результаты» указывается толщина изоляции, необходимая для предотвращения конденсации на внешней поверхности
изоляционной оболочки. Такая толщина дает среднюю температуру поверхности
, которая выше температуры точки росы, плюс коэффициент безопасности
, равный ° F.Следует отметить, что для некоторых условий
с высокой влажностью, независимо от типа и толщины изоляции,
невозможно избежать конденсации на внешней поверхности. Пример использования значений по умолчанию для всех входных переменных
показан на рисунке 4.

Резюме

Простые калькуляторы предназначены для того, чтобы предоставить пользователю
оперативную оперативную информацию о снимках, чтобы помочь ответить на некоторые
наиболее часто задаваемые вопросы о преимуществах и конструктивных особенностях систем механической изоляции
.Они не касаются каждого изоляционного материала или условий применения
— отсюда и фраза «Простые калькуляторы». Другие системы изоляции
и более сложные приложения могут быть проанализированы с помощью программы 3E Plus
.

Если вам нужна базовая информация об изоляции
или вы разрабатываете сложную систему изоляции, MIDG ( www.wbdg.org/design/midg.php )
— лучший ресурс как для новичков, так и для опытных пользователей, с
всем Вам необходимо знать о конструкции, выборе, спецификации, установке
и обслуживании механической изоляции.MIDG постоянно обновляется на
и всегда содержит самую последнюю и полную информацию, включая простые калькуляторы
. Эти инструменты могут быть очень полезны при разработке системы механической изоляции
, позволяя пользователю легко определить многие преимущества и ценность
механической изоляции.

Рисунок 1 Рисунок 2 Рисунок 3 Рисунок 4

Что такое калькулятор толщины изоляции NAIMA 3E Plus

В индустрии промышленной изоляции существует множество инструментов, которые помогают инженерам, проектировщикам и разработчикам выполнять расчеты, связанные с изоляцией.Одним из них является инструмент 3E Plus®, созданный Североамериканской ассоциацией производителей изоляционных материалов (NAIMA). Этот простой в использовании инструмент можно бесплатно загрузить с веб-сайта NAIMA. В систему предварительно загружено множество вариантов изоляции, основанных на требованиях ASTM к материалам. Возможно, одним из самых больших преимуществ программы является то, что она позволяет вам адаптировать каждый расчет для лучшего представления вашего приложения, разрешая добавление определенных материалов, которые будут использоваться в фактическом приложении, таких как изоляционный продукт или тип оболочки с определенным излучательная способность.И даже лучше, если вам нравятся продукты Johns Manville, у NAIMA есть версия 3E Plus, в которую предварительно загружены механические и промышленные изоляционные материалы Johns Manville в материалах, из которых вы можете выбирать, поэтому вам не нужно добавлять конкретный продукт JM. технические характеристики вручную. Программа предназначена для выполнения расчетов по трем различным категориям: Энергия, Окружающая среда и Экономика.

Вкладка Энергия, наверное, самый популярный раздел программы. Здесь могут быть выполнены все самые распространенные расчеты, включая расчеты таких вещей, как потери тепла в час или защита персонала.После того, как вы определили, какой расчет вы хотите выполнить, в соответствующую строку необходимо ввести такие расчетные параметры, как температура процесса, температура окружающей среды, скорость ветра, размер трубы / оборудования и, при необходимости, максимальная температура поверхности. Вам также нужно будет выбрать тип основного металла, тип изоляции и оболочку — все из раскрывающихся меню, а затем программа покажет, какой толщины должна быть изоляция для достижения желаемых характеристик для данного сценария.

Вкладка Environment — это способ помочь вам определить, сколько углекислого газа и закиси азота ваша система будет выделять в окружающую среду в зависимости от того, сколько энергии она использует.На этой вкладке можно рассчитать, сколько изоляции необходимо, чтобы уменьшить потери энергии и, следовательно, уменьшить количество парниковых газов или загрязняющих веществ, выбрасываемых в атмосферу. Для этой вкладки потребуется информация, аналогичная информации, используемой на вкладке «Энергия»; однако для этого также необходимо выбрать тип топлива, эффективность оборудования, использующего топливо, и количество времени, в течение которого оборудование работает в течение года. Окончательный отчет, который создается для расчета окружающей среды, покажет, сколько углекислого газа и закиси азота выделяется в зависимости от толщины выбранной изоляции.Этот результат можно сравнить с углекислым газом и закисью азота, которые выделяются неизолированной системой, чтобы показать снижение парниковых газов и загрязняющих веществ, достигаемое за счет добавления изоляции. Вы также можете сравнить потенциальные сокращения, которые могут быть получены за счет увеличения количества изоляции в существующей системе.

Последняя вкладка — это вкладка «Экономика». Эта вкладка часто используется недостаточно. Расчеты на этой вкладке могут помочь обеспечить экономическое обоснование изоляционного оборудования.Многие люди забывают, что добавление изоляции на самом деле может быть инвестицией, которая обеспечивает возврат на протяжении всего срока службы системы в виде экономии энергии. Эта вкладка «Экономика» использует информацию из вкладок «Энергия» и «Окружающая среда», а также включает стоимость топлива и теплосодержание, необходимое для нагрева системы. В отчете, представленном на вкладке «Экономика», устанавливается стоимость потерь топлива и тепла и сравнивается их экономия на основе толщины изоляции, начиная от неизолированной системы до различных уровней толщины изоляции.

Эта бесплатная программа стала отраслевым стандартом для принятия решений об изоляции владельцами, инженерами, подрядчиками и дистрибьюторами. Он также активно используется региональными техническими менеджерами Johns Manville для помощи с ежедневными запросами. Отчеты, созданные в 3E Plus, используются для обновления основных технических характеристик изоляции, чтобы гарантировать, что в каждом приложении используются правильная изоляция и толщина, а также позволяют отслеживать, как была рассчитана и выбрана толщина изоляции.Щелкните здесь, чтобы перейти на вкладку «Инструменты» в источнике, чтобы загрузить собственную версию инструмента JM NAIMA 3E Plus, или обратитесь к местному региональному техническому менеджеру за помощью с использованием инструмента NAIMA 3E Plus.

Если на вашем компьютере уже установлена ​​версия инструмента NAIMA 3E Plus, следуйте этим инструкциям, чтобы убедиться, что пользовательские настройки программы не потеряны при загрузке последней версии.

Изоляция

Теплопередача и потери тепла от зданий и технических сооружений — коэффициенты теплопередачи и методы изоляции, а также для снижения потребления энергии

Среднеарифметическая и логарифмическая разница температур в теплообменниках

Средняя арифметическая разница температур — AMTD — и логарифмическая Средняя разница температур — LMTD — формулы с примерами — Онлайн-калькулятор средней температуры

Элементы здания — Тепловые потери и тепловое сопротивление

Тепловое сопротивление обычных строительных элементов, таких как стены, полы и крыши над и под землей

Строительные материалы — Паронепроницаемость

Диффузия пара через строительные материалы

Изоляция из силиката кальция

Теплопроводность изоляции из силиката кальция — температура и значения k

Кондуктивная теплопередача

Тепло передача происходит как теплопроводность в твердом теле, если существует температурный градиент

Медные трубы — изоляция и тепловые потери

Теплопотери в окружающий воздух из изолированных медных труб

Изоляция воздуховодов — термическое сопротивление

Термическое сопротивление тепловому потоку Необлицованная и облицованная изоляция воздуховодов

Коэффициенты излучения стандартные материалы

Коэффициенты излучения некоторых распространенных материалов, таких как вода, лед, снег, трава и т. д.

Стекловолоконная изоляция

Теплопроводность стекловолоконной изоляции — температура и значения k

Тепло Потери на неизолированной поверхности трубы

Потери тепла на неизолированной поверхности трубы

Потери тепла на неизолированных медных трубах

Потери тепла на неизолированных медных трубах — размеры в диапазоне 1/2 — 4 дюйма

Теплоотводящие трубы — коэффициент охвата

Коэффициент обертывания w Потери тепла из трубы или трубки выше, чем пропускная способность кабеля обогрева.

Изолированные трубы — Диаграммы тепловых потерь

Потери тепла (Вт / м) из изолированных труб — в диапазоне 1/2 — 6 дюймов — изоляция толщина 10 — 80 мм — разница температур 20 — 180 градусов C

Изолированные трубы — Диаграммы тепловых потерь

Тепловые потери (Вт / фут) диаграммы для изолированных труб — в диапазоне 1/2 — 6 дюймов — толщина утеплителя 0.5 — 4 дюйма — разница температур 50 — 350 градусов F

Изоляционные материалы — диапазоны температур

Температурные пределы для некоторых обычно используемых изоляционных материалов

Изоляция систем охлаждения

Системы охлаждения и толщина изоляции

Изоляция из минеральной ваты

Теплопроводность — температура и значения k

Общий коэффициент теплопередачи

Рассчитайте общие коэффициенты теплопередачи для стен или теплообменников

Перлитовая изоляция

Теплопроводность перлитовой изоляции — температура и значения k

Трубопровод — рекомендуется Толщина изоляции

Рекомендуемая толщина изоляции для систем отопления, таких как горячее водоснабжение, паровые системы низкого, среднего или высокого давления

Полиуретановая изоляция

Теплопроводность полиуретановой изоляции — температуры и k-va lues

Радиационная теплопередача

Теплопередача за счет излучения электромагнитных волн известна как тепловое излучение

Диаграмма тепловых потерь в стальных трубах

Тепловые потери в стальных трубах и трубах — размеры в диапазоне 1/2 — 12 дюймов

Теплопроводность — избранные материалы и газы

Теплопроводность некоторых выбранных газов, изоляционных материалов, алюминия, асфальта, латуни, меди, стали и других распространенных материалов

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *