Онлайн расчет емкости конденсатора – Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Расчёт блока питания с гасящим конденсатором + онлайн-калькулятор — radiohlam.ru

Осторожно, текст под спойлером перегружен физикой!

Итак, процессы в этой схеме будут достаточно нелинейны, поэтому при рассчётах придётся делать различные упрощения и допущения.

Для начала давайте будем считать, что ёмкость конденсатора C2 достаточна для полного сглаживания пульсаций напряжения после моста, то есть напряжение на конденсаторе C2 = const. Далее попробуем нарисовать пару графиков, — напряжение на входе моста (UM) и ток через конденсатор C1 (IC1), опираясь на график сетевого напряжения UС(t). Будем считать, что сетевое напряжение у нас изменяется по синусоидальному закону и имеет амплитуду Uca (вообще-то рисовать мы будем косинусоиду, нам так будет удобнее, но это по сути одно и то же, только косинусоида сдвинута относительно синусоиды на π/2).

Рассуждаем следующим образом: в каждый момент времени полное напряжение и полный ток в этой цепи можно описать следующими уравнениями:

UC=UC1+UМ (1), iC=iC1+iМ (2)

В момент времени t0 уравнение напряжения примет вид: Uca=UC1+UМ. Поскольку Uca — это максимальное значение сетевого напряжения, то UC1 и UМ также в этот момент должны иметь максимальные значения (здесь в логике есть небольшой провал, максимум суммы — это не всегда сумма максимумов, функции могут быть сдвинуты по фазе, но… в общем, мы потом всё экспериментально проверим).

Максимальное значение UМ равно Uвых, поскольку если бы напряжение на мосту поднималось выше, то и конденсатор C2 заряжался бы до большего напряжения (мост бы открылся и к конденсатору C2 потёк бы зарядный ток, увеличивая напряжение на нём).

Токи через конденсатор и мост в момент t0 равны нулю. Про мост я выше уже написал (если бы через него тек ток, то конденсатор C2 заряжался бы дальше), а через C1 ток не течёт, поскольку ток через конденсатор — это первая производная от напряжения, которая в точках экстремума обращается в ноль (значит когда напряжение на конденсаторе максимально — ток равен нулю).

Далее сетевое напряжение (UC) начинает уменьшаться. При этом напряжение на C1 не меняется (тока-то через мост нет, заряд на C1 не меняется), следовательно вместе с падением UC уменьшается напряжение на входе моста.

В момент, когда сетевое напряжение упадёт до значения Uca-2Uвых (момент времени t1) — напряжение на входе моста достигнет значения -Uвых (находим с помощью формулы 1), диоды моста откроются и в первичной цепи (через мост и конденсатор

C1) потечёт ток. При этом напряжение на входе моста перестанет меняться (помните, мы договорились, что ёмкость C2 достаточно большая для того, чтобы полностью сгладить пульсации).

Обратите внимание, что напряжение на входе моста в этот момент равно -Uм, так что ток потечёт в обратную сторону от того направления, в котором он тёк до момента времени t0. Этот ток, поскольку он течёт в обратную сторону, начнёт перезаряжать конденсатор C1.

К моменту времени t3 напряжение в сети достигнет максимума, только с противоположной относительно момента t0 полярностью. Соответственно, для этого момента экстремума сетевого напряжения будут справедливы все те же рассуждения касательно напряжений и токов, которые мы использовали для момента t0. То есть, к этому моменту конденсатор C1 полностью перезарядится (напряжение на нём достигнет максимального значения отрицательной полярности), а ток через

C1 и мост упадёт до нуля.

Далее, по мере роста сетевого напряжения, напряжение на конденсаторе C1 будет оставаться неизменным, а напряжение на входе моста будет расти.

В момент времени t4, когда сетевое напряжение вырастет до значения -(Uca-2Uвых), напряжение на входе моста достигнет значения Uвых, диоды моста откроются и в первичной цепи (через мост и конденсатор C1) снова потечёт ток. Этот ток снова будет перезаряжать конденсатор C1, но уже напряжением положительной полярности.

В момент t6 напряжение на конденсаторе C1 достигнет максимального значения положительной полярности, а ток через C1 и мост упадёт до нуля.

Далее весь цикл повторится с самого начала.

Теперь давайте вспомним закон сохранения заряда. В соответствии с этим законом за один полный цикл через конденсатор

C1, мост и нагрузку должно протекать одинаковое количество заряда. Поскольку ток нагрузки у нас постоянный, то количество заряда, протекающего через нагрузку за один цикл, можно найти по формуле Q=Iн*tцикла=Iн/fc, где fc — частота питающего сетевого напряжения. Количество заряда, протекающего через конденсатор C1, будет равно площади под графиком тока (заштрихованная площадь графика IC1(t)). Остаётся только найти эту площадь, приравнять её к заряду, протекающему за один цикл через нагрузку, и выразить из полученного выражения необходимую ёмкость конденсатора C1 в зависимости от тока нагрузки.

Подробные математические расчёты можно найти под вторым спойлером.

[свернуть]

radiohlam.ru

Расчет понижающего конденсатора


Полученные параметры понижающего конденсатора

 

Если у Вас когда нибудь возникала задача понизить напряжение до какого либо уровня, например с 220 Вольт то 12В, то это статья для Вас.

Есть масса способов это сделать подручными материалами. В нашем случае  мы будем использовать одну деталь — ёмкость.

В принципе мы можем использовать и обычное сопротивление, но  в этом случае, у нас возникнет  проблема перегрева данной детали, а там и до пожара недалеко.

 

В случае, когда в виде понижающего элемента используется ёмкость, ситуация другая.

Ёмкость, включенная в цепь переменного тока обладает (в идеале) только реактивным сопротивлением, значение котрого находится по общеизвестной формуле.

Кроме этого в нашу цепь мы включаем какую то нагрузку ( лампочку, дрель, стиральную машину),  которая обладает тоже каким то сопротивлением R

 

Таким образом общее сопротивление цепи будет находиться как 

 

Наша цепь последовательна, а следовательно общее напряжение цепи есть сумма напряжений на конденсаторе и на нагрузке

 

По закону ома, вычислим ток, протекающий в этой цепи.

Как видите  легко зная параметры цепи, вычислить недостающие значения.

А вспомнив как вычисляется мощность  легко рассчитывать параметры конденсатора основываясь на потребляемую мощность нагрузки.

 

Учитывайте что в такой схеме нельзя использовать полярные конденсаторы то есть такие что включаются в электронную схему в строгом соответствии с указанной полярностью.

Кроме этого необходимо учитывать и частоту сети f. И если у нас в России частота 50Гц, то например в Америке частота 60Гц. Это тоже влияет на окончательне расчеты.

Примеры расчета

 

Необходимо запитать лампочку мощностью 36Вт, рассчитанное на напряжение 12В. Какая ёмкость понижающего конденсатора тут необходима?

Если речь идет об электрических сетях в России, то входное напряжение 220 Вольт, частота 50Гц.

 

Ток проходящий через лампочку  равен  3 Ампера (36 делим на 12). Тогда ёмкость по вышенаписанной формуле будет равна:

Полученные параметры понижающего конденсатора

C = 4.334146654694E-5 Фарад 
I = 3 Ампер 
P = 36 Ватт 
Ua = 220 Вольт 
Ub = 12 Вольт 
f = 50 Герц 

 

Что бы не переводит степени минус пятой степени в микро или мимли Фарады, воспользуемся вот этим ботом и получим 

Полученный результат конвертации

полученное число = 0.0433414665469миллиФарад

Альтернативное представление

что нам нужен конденсатор  ёмкостью 43 мкФ.

 

  • Сопротивление. Зависимость от температуры >>

abakbot.ru

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало  наличие в исходных  данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах.  Их приходилось переводить в Фарады,  что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал.  Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак  не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик.  Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере  «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал  развития  конденсаторов до  конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой  тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в  метры, фарады и т.д. Достаточно обозначить размерность данных. 

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам  переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя. 

Это стало возможно с созданием бота Система единиц измерения онлайн

Плоский конденсатор. Параметры

Полученные характеристики плоского конденсатора
Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).

 

Ёмкость такого сооружения определяется следующей формулой.

 

где ε0 = 8,85.10-12 Ф/м — абсолютная диэлектрическая проницаемость

Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого «слоёного» конденсатора составит

Еще интереснее выглядит формуа такого «слоёного» конденсатора,  если в слоях находятся разные диэлектрики , разной толщины d

 

S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)

d- расстояние между обкладками

С- ёмкость конденсатора

Рассмотрим примеры

Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?

Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять

Получаем  вот такой ответ

Полученные характеристики плоского конденсатора

d = 1 милиметр 
e = 1.00059 
C = 350 нанофарад 
S = 39.524703024086 м2 

 

Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.

Цилиндрический  КОНДЕНСАТОР

     
Полученные характеристики цилиндрического конденсатора

Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком

 

Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.

 

abakbot.ru

Калькулятор расчета емкости конденсатора

Основная роль такого прибора как конденсатор заключается в том, что он накапливает электрический заряд и одномоментно отдает его. В автомобилях такой заряд тока конденсатор берет у аккумулятора и используется, например, для снабжения автомобильного усилителя нужным зарядом, улучшая, таким образом, звук, доносящийся из аудиосистемы.

Расчет емкости конденсатора с помощью онлайн калькулятора

Расчет конденсатора онлайн, который можно произвести с помощью калькуляторов на специальных ресурсах в Интернете, позволяет в считанные секунды получить результат, просто указав в соответствующих полях нужные данные. С их помощью быстро и легко можно рассчитать емкость, заряд, мощность, ток, энергию, и другие свойства конденсатора, нужные для конкретного устройства.

Среди множества видов конденсаторов существует, так называемый, электролитический тип, который используется в асинхронных электродвигателях. Среди его видов выделяют полярный и неполярный. Электролитический полярный конденсатор отличается от неполярного, прежде всего, большей емкостью. Расчет конденсатора для электродвигателя обязательно необходим перед его подключением. Он позволит, к примеру, узнать нужную емкость для конкретного двигателя.

Расчет конденсатора для трехфазного двигателя требуется ещё и для того, что, обычно, если трехфазный асинхронный двигатель с конденсаторным пуском работает нормально, будучи включенным в однофазную сеть, то емкость конденсатора уменьшается, а частота вращение вала увеличивается. При правильном подключении, все эти характеристики будут наблюдаться.

Когда запускается асинхронный двигатель, подключением к сети 220В, необходима высокая емкостьфазодвигающего конденсатора. В Интернете всегда можно найти специальный калькулятор конденсаторов онлайн, который, в частности, позволяет рассчитать их емкость. Калькулятор, который позволяет произвести расчет соединения конденсаторов, а именно емкости двух параллельно соединенных приборов: рабочего и пускового, требует указания в соответствующих полях следующих данных:

  • Соединение обмоток двигателя
  • Его мощность
  • Напряжение в сети
  • Коэффициент мощности
  • КПД двигателя

После указания всех этих данных, можно получить результаты в виде информации по емкости пускового и рабочего конденсаторов, которая измеряется в мкФ (микроФарадах). Расчет емкости конденсатора для двигателя, а именно для двух, соединенных между собой конденсаторов, в данном случае, зависит от того, каким был способ соединения их обмоток.

Расчет пускового конденсатора и параллельно рабочего предполагает указание двух таких способов подключения как: подключение звездой и треугольником. Формула расчета емкости конденсатора, подключенного звездой, выглядит так: Cр=2800*I/U, а формула расчета конденсатора, подключенного треугольником – это Cр=4800*I/U. Расчёт ёмкости конденсатора для электродвигателя по таким формулам расшифровывается следующим образом:

  1. Ср означает рабочий конденсатор, пусковой будет обозначаться далее как Сп.
  2. Ток I определен тут соотношением мощности мотора P с произведением 1,73 напряжения U и коэффициента мощности (cosφ ) с коэффициентом поленого действия (η). То есть I=P/1,73Uηcosφ.

Каждый калькулятор емкости конденсаторов использует свой тип расчета. Например, если говорить о соединенных конденсаторах, где емкость пускового прибора должна быть подобрана в 3 раза большая, чем рабочая емкость, то, в конкретном калькуляторе может быть использован расчет Cп=2,5*Cр, где Сп означает пусковой конденсатор, а Ср – рабочий тип.

Расчет заряда конденсатора

После расчета емкости, необходим расчет заряда конденсатора. Начальный заряд прибора равен нулю. Подключением к гальванической батарее или к другому источнику постоянной ЭДС конденсаторы заряжают. Чтобы правильно рассчитать заряд конденсатора от источника постоянной ЭДС, существует также специальный калькулятор конденсаторов онлайн, в котором лишь нужно указать следующие данные:

  • ЭДС источника в Вольтах,
  • сопротивление в Омах,
  • емкость в микроФарадах,
  • время зарядки в миллисекундах.

Каждый такой калькулятор расчета конденсаторов будет также указывать точность вычисления, с которой будут получены результаты. После нажатия кнопки «Рассчитать», в результатах реально получить:

  • постоянную времени RC-сети в миллисекундах,
  • время зарядки в миллисекундах,
  • требуемый начальный ток в Амперах,
  • максимальную рассеиваемую мощность в Ваттах,
  • напряжение в Вольтах,
  • заряд в микроКулонах,
  • энергию в микроДжоулях,
  • а также работу, совершенную источником, в микроДжоулях.

Используя специальные онлайн калькуляторы для расчета конденсатора, вам не придется самостоятельно проводить сложные подсчеты, искать нужные формулы, разбираться и вникать в сложные для вас схемы. Все это сделает калькулятор онлайн за вас.


energo-novgorod.ru

как рассчитать с помощью онлайн калькулятора

Конденсаторы – это компоненты, способные хранить электрозаряд или электрическую энергию. Простейшая форма элемента – это две пластины из металла с диэлектриком между ними, не допускающим электрического соединения обкладок. При подаче напряжения в межобкладочном пространстве образуется электрическое поле, с положительным зарядным знаком на одной пластине и с отрицательным – на другой. Распределение заряда одинаково с обеих сторон.

Различные типы конденсаторов

Емкость конденсатора

Для конденсаторного элемента емкость – это потенциальная мера хранения энергии. Она имеет символ С и рассчитывается в фарадах (Ф). Наиболее часто можно встретить единицы, масштабированные в меньшую сторону: микро-, нано-, пикофарады.

Емкость конденсатора можно выразить через заряд (q) и напряжение (V):

C = q/V = (I x t)/V, где:

  • t – время,
  • I – сила тока.

Емкость определяется также структурными размерами конденсатора:

C = (ε x ε0 x S)/d.

Из этой формулы получается, что емкость тем больше, чем:

  • больше поверхность пластины S;
  • меньше расстояние между ними d;
  • лучше дипольное образование в изоляторе (больше диэлектрическая проницаемость ε):

ε0 = 8,85 х 10 ( в -12 степени), Ф/м – диэлектрическая проницаемость в вакууме.

Для увеличения емкости плоского конденсатора надо увеличить плоскость его пластин, уменьшить межобкладочное расстояние или применить для изолятора материал с большим значением ε.

Формулы емкости для различных конденсаторов

Элементы обладают фиксированной емкостью, определенной производителем, значение которой нельзя изменить.

Конденсаторы с переменной емкостью

Для этих элементов характерна способность менять емкость. Простейший из них состоит из нескольких половин дисков (одной), фиксированных и электрически связанных друг с другом.

Другая группа аналогичных половин диска установлена на общей оси. При вращении вала фиксированная на нем половина диска устанавливается между неподвижными половинами, и происходит изменение емкости.

Конденсатор с переменной емкостью

Характеристики конденсатора

  1. Диэлектрическая постоянная ε является мерой того, как изолирующий материал влияет на емкость конденсатора;
  2. Диэлектрическая прочность определяет самое высокое напряжение, которое может быть приложено к конденсаторному элементу. В случае его превышения происходит пробой;
  3. Температурная зависимость. В фильтрах и резонансных схемах важную роль играет температурный коэффициент ТК. В зависимости от температуры, меняется отдаваемая мощность. Изменение может быть со знаком «плюс» и «минус». Некоторые схемы требуют точности расчета конденсатора.

Соединение конденсаторов

В электрических цепях нередко производят подключения, состоящие из нескольких конденсаторов, имеющих разные типы соединений.

Последовательное соединение

Если левая пластина первого конденсатора несет заряд со знаком «плюс», правая из-за электростатической индукции получит его со знаком «минус». При этом он будет смещен от левой обкладки второго конденсатора, что, в свою очередь, положительно зарядит ее и т. д.

Последовательное соединение конденсаторных элементов

Напряжение, приложенное к общей емкости конденсаторов, будет складываться из напряжений на каждом из них:

V = V1 + V2 + V3 + …

Так как:

  • V1 = q/С1;
  • V2 = q/С2;
  • V3 = q/С3,

а для всей батареи последовательных элементов:

V = q/С,

то q/С = q/С1 + q/С2 + q/С3.

Количество электричества в последовательной цепи одинаково, значит допустимо разделить обе части уравнения на q.

Рассчитать емкость элементов, собранных в последовательную цепь, можно по формуле:

1/С = 1/С1 + 1/С2 + 1/С3 + …

Важно! Величина, обратная суммарной емкости конденсаторных элементов, соединенных в последовательную цепь, составляет сумму обратных величин емкостей отдельных компонентов.

Параллельное соединение

Когда емкость конденсаторов мала, они включаются параллельно. Как рассчитать общую емкость такой цепи, определяется теми же зависимостями, но с учетом того, что напряжение на конденсаторных пластинах будет одинаковым:

V = V1 = V2 = V3 = …

Параллельное соединение конденсаторных элементов

Количество электричества на каждом конденсаторе составит:

q1 = V x C1, q2 = V x C2, q3 = V x C3.

Общий заряд конденсаторной батареи:

q = q1 + q2 + q3 = V/C1 + V/C2 + V/C3 = V x (C1 + C2 + C3), а С = С1 + С2 + С3.

Важно! При параллельном соединении конденсаторных элементов каждый из них подключен на полное напряжение электроцепи, а общая емкость суммируется.

В сети есть сайты, имеющие калькулятор для расчета конденсатора при разных конфигурациях электросхемы, а также позволяющих определить емкость, задавая свои структурные параметры, как для плоских, так и для цилиндрических элементов.

Расчет конденсатора для электродвигателя

Трехфазный электромотор можно подключить к однофазной линии, которая позволит управлять им с помощью конденсатора. При этом надо произвести расчет емкости конденсатора.

Чтобы узнать значение в микрофарадах, которое нужно получить от конденсаторного элемента, и найти оптимальный пусковой момент в однофазной линии, надо знать технические характеристики мотора.

Схемы включения электромотора с конденсатором

  1. Активная мощность определяется:

Р = √3 x V x I x соsφ.

Она может быть указана на таблице, прикрепленной к мотору. Напряжение – 220 В в однофазном режиме. Величина соsφ также указывается производителем (обычно для электродвигателей соsφ = 0,8-0,85).

  1. Отсюда можно найти силу тока:

I = P/(√3 x V x  соsφ).

  1. Емкость конденсатора для соединенных звездой двигательных обмоток Сраб = 4800 x I /V, для соединенных в Δ – Сраб = 2800 x I/V;
  2. Для пускового конденсаторного элемента Спуск = 2,5 С.

Сетевой калькулятор онлайн производит и такой тип расчетов. Для этого вводятся параметры электромотора и питающей сети, в результате получается емкостное значение.

Видео

Оцените статью:

jelectro.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *