Калькуляторы расчета объема гидроаккумулятора — с пояснениями
Одним из основных элементов насосной станции, работающей в автоматическом режиме с управлением по давлению воды в системе, является гидроаккумулятор. Нередко его еще именуют закрытым расширительным баком, хотя такое определение, по правде говоря, в приложении в системе холодного водоснабжения — не вполне корректное. Это устройство выполняет ряд важнейших функций, без которых насосная станция в принципе невозможна, как таковая.
Калькуляторы расчета объема гидроаккумулятора
Одним из основных параметров гидроаккумулятора является его вместительность. Точнее, полный объем бака, который разделен мембраной («грушей») на воздушную и водяную камеры. Важно подобрать такой, чтобы он не занимал лишнего места, то есть, желательно, покомпактнее, и в то же время — делал эксплуатацию домашней системы водоснабжения по максимуму комфортной и экономной. Нужно найти «золотую середину», и помогут нам в этом калькуляторы расчета объема гидроаккумулятора.
Предстоит последовательно решить две задачи, то есть будет предложено два калькулятора. К каждому прилагается краткое пояснение.
Содержание статьи
Определение оптимального объёма гидроаккумулятора
Существует несколько подходов к выбору оптимального объема этого бака. Например, рекомендуют таблицы, в которых потребителю предлагается исходить и создаваемого в аккумуляторе запаса воды.
В нашем же случае используется формула, которая разработана одним из ведущих производителей подобного оборудования и отлично подходит именно подл случай насосной станции.
Саму формулу приводить не будет – просто перечислим те величины, которые нам потребуется для расчета.
- Примерный максимальный расход воды, выраженный в литрах в минуту. Определение этого расхода как раз и станет первым действием в череде наших вычислений.
Калькулятор расчета максимального расхода воды
Перейти к расчётамПояснения по расчету расхода
Все достаточно просто. Сантехнические приборы и бытовая техника, подключаемая «по воде», характеризуется определённым средним расходом. Если указать те приборы и аксессуары, что имеются или планируются к установке в доме, программа просуммирует их показатели.
Понятно, что все приборы бывают задействованы одновременно крайне редко, а то и вовсе — никогда. Но на этот счет в алгоритме калькулятора есть специальная «плавающая» величина, которая учтет вероятностную составляющую итогового результата.
Полученный результат потребуется для дальнейших расчетов.
Вернемся к величинам для основной формулы.
- Потребуется три значения давления – предварительной накачки воздушной камеры гидроаккумулятора, а также нижний и верхний порог срабатывания насоса. То есть минимальное давление в системе, при котором насос запускается и пополняет бак водой, и максимальное, при котором питание установки отключается.
Эти значения тоже, понятно, берутся не «с потолка». Существуют определенные рекомендации по выбору оптимальных показателей. Информация об этом хорошо изложена и на нашем портале.
Какие показатели давления используются при регулировке насосной станции?
Управление насосной станцией возлагается на реле давления. А при его настройке должны использоваться значения давления, которые обеспечат максимально удобную безопасную для самой системы эксплуатацию. Как и по каким параметрам проводиться регулировка насосной станции – читайте в специальной публикации нашего портала.
- Наконец, необходимо будет указать максимальное количество включений насоса в течение часа. Такая рекомендация очень часто содержится в паспортных данных насосного оборудования. Если нет, то можно руководствоваться следующей рекомендацией:
Желательно, чтобы насос даже при практически беспрерывной работе системы водопровода на максимальном расходе воды включался не чаще, чем 1 раз в 4÷5 минут. То есть получается 12÷15 раз в течение часа.
Все необходимые исходные данные перечислены – можно переходить к расчету.
Калькулятор расчёта рекомендуемого объема гидроаккумулятора
Перейти к расчётам
Пояснения по расчету
Особых пояснений тут, наверное, и не требуется – все уже сказано выше. Единственное то, что полученный результат, понятное дело служит лишь ориентиром. Покупать так или иначе придётся из стандартной линейки размеров баков. Как правило, берут ближайший по объему в большую сторону.
stroyday.ru
Расчёт гидроаккумулятора
Расширенный поиск
Название:
Артикул:
Текст:
Выберите категорию:
Все Котлы отопления » Напольные газовые котлы отопления »» Напольные газовые котлы отопления PROTHERM »»» PROTHERM TLO чугунный энергонезависимый одноконтурный »»» PROTHERM PLO чугунный одноконтурный »» Напольные газовые котлы отопления BAXI »» BOSCH »» Напольные газовые котлы ЖМЗ «Жуковские» »» Напольные котлы отопления БОРИНСКОЕ Липецкие »» Напольные газовые котлы отопления TERMOTECHNIK »»» Котёл стальной напольный газовый TERMOTECHNIK серии ЖУК »»» Котёл газовый парапетный TERMOTECHNIK серии ЛИДЕР со стальным теплообменником »»» Конвектор настенный газовый серии TERMOTECHNIK »»» Котёл стальной напольный газовый TERMOTECHNIK серии АЛЯСКА »»» Котёл газовый парапетный TERMOTECHNIK серии Аляска со стальным теплообменником » Настенные газовые котлы отопления »» PROTHERM »»» Пантера »»» Гепард »»» Тигр »» BAXI »»» MAIN four »»» FOURTECH »»» ECO four »»» LUNA 3 »»» LUNA 3 comfort »»» LUNA 3 comfort Combi »»» NUVOLA 3 comfort »»» MAIN 5 »» BOSCH »» Наcтенный газовый двухконтурный котёл ARDERIA ESR (Южная Корея) »» Наcтенный газовый двухконтурный котёл ARDERIA (Россия) »» Принадлежности для котлов Arderia » Комбинированные ( дизель, газ ) »» PROTHERM »» Ремонт дизельных горелок ROCA и обслуживание котлов ROCA » Электрические »» PROTHERM »» BAXI »» Настенный отопительный электрокотёл РУСНИТ »»» Котёл электрический отопительный РУСНИТ М »»» Котёл электрический отопительный РУСНИТ Н »»» Котёл электрический отопительный РУСНИТ НМ »»» Котёл электрический отопительный РУСНИТ КАНТРИ »» Электрокотёл настенный ЭВАН »»» Электрокотёл настенный ЭВАН СТАНДАРТ ЭКОНОМ »»» Электрокотёл настенный ЭВАН СТАНДАРТ С 1 »»» Электрокотёл настенный ЭВАН КОМФОРТ WARMOS M »»» Электрокотёл настенный ЭВАН КОМФОРТ WARMOS IV »»» Электрокотёл настенный ЭВАН КОМФОРТ WARMOS RX »»» Электрокотёл настенный ЭВАН КОМФОРТ UNIVERSAL »»» Электрокотёл настенный ЭВАН ЛЮКС EXPERT »»» Модуль ЭВАН GSM-Climate дистанционного управления электрическим котлом »» Электрокотёл настенный KOSPEL » Твердотопливные »» PROTHERM »» ROCA »» BOSCH »» КИРОВСКИЙ ЗАВОД »» BAXI Радиаторы отопления » Секционные алюминиевые радиаторы »» Секционные алюминиевые радиаторы отопления GLOBAL »»» Радиаторы отопления алюминиевые секционные GLOBAL ISEO »»»» Радиаторы алюминиевые секционные GLOBAL ISEO 350 »»»» Радиаторы алюминиевые секционные GLOBAL ISEO 500 »»» Радиаторы отопления алюминиевые секционные GLOBAL VOX »»»» Радиаторы алюминиевые секционные GLOBAL VOX 350 »»»» Радиаторы алюминиевые секционные GLOBAL VOX 500 »» Секционные алюминиевые радиаторы отопления RIFAR Alum »»» Радиаторы алюминиевые секционные RIFAR Alum 350 »»» Радиаторы алюминиевые секционные RIFAR Alum 500 » Биметаллические секционные радиаторы »» Биметаллические радиаторы GLOBAL (Италия) »»» Радиаторы отопления биметаллические секционные GLOBAL STYLE PLUS »»»» Радиаторы отопления биметаллические секционные GLOBAL STYLE PLUS 350 »»»» Радиаторы отопления биметаллические секционные GLOBAL STYLE PLUS 500 »»» Радиаторы отопления биметаллические секционные GLOBAL STYLE EXTRA »»»» Радиаторы отопления биметаллические секционные GLOBAL STYLE EXTRA 350 »»»» Радиаторы отопления биметаллические секционные GLOBAL STYLE EXTRA 500 »» Биметаллические секционные радиаторы отопления RIFAR »»» Радиаторы отопления биметаллические секционные RIFAR MONOLIT »»»» Биметаллический секционный радиатор отопления RIFAR MONOLIT 350 »»»» Биметаллический секционный радиатор отопления RIFAR MONOLIT 500 »»» Биметаллический радиатор RIFAR A 500 »»» Радиаторы отопления биметаллические секционные RIFAR MONOLIT VENTIL с нижним подключением »»»» Биметаллический радиатор RIFAR MONOLIT VENTIL 350 с нижним подключением »»»» Биметаллический радиатор RIFAR MONOLIT VENTIL 500 с нижним подключением »»» Радиаторы отопления биметаллические секционные RIFAR BASE »»»» Биметаллический секционный радиатор отопления RIFAR BASE 200 »»»» Биметаллический секционный радиатор отопления RIFAR BASE 350 »»»» Биметаллический секционный радиатор отопления RIFAR BASE 500 »»» Радиаторы отопления биметаллические секционные RIFAR BASE VENTIL с нижним подключением. »»»» Биметаллический радиатор отопления RIFAR BASE VENTIL 200 с нижним подключением »»»» Биметаллический радиатор отопления RIFAR BASE VENTIL 350 с нижним подключением. »»»» Биметаллический радиатор отопления RIFAR BASE VENTIL 500 с нижним подключением. »» Радиаторы отопления биметаллические секционные SIRA »»» SIRA GLADIATOR »»»» GLADIATOR 200 »»»» GLADIATOR 350 »»»» GLADIATOR 500 »»» Радиаторы отопления биметаллические секционные SIRA RS »»»» Радиаторы отопления биметаллические секционные SIRA RS 300 »»»» Радиаторы отопления биметаллические секционные SIRA RS 500 »»»» Радиаторы отопления биметаллические секционные SIRA RS 800 с межосевым расстоянием 800 мм »»» SIRA RS TWIN »»» SIRA ALI Metal »»»» ALI Metal 350 »»»» ALI Metal 500 »» Радиаторы отопления биметаллические секционные STOUT SPACE »»» Биметаллические секционные радиаторы отопления STOUT SPACE 500 »»» Биметаллические секционные радиаторы отопления STOUT SPACE 350 » Радиаторы стальные панельные »» Радиаторы отопления стальные панельные KERMI »» Радиаторы отопления стальные панельные BUDERUS Logatrend » Радиаторы стальные трубчатые »» Радиаторы отопления стальные трубчатые ARBONIA »»» Радиаторы отопления стальные трубчатые ARBONIA тип 2057 »»» Радиаторы отопления стальные трубчатые ARBONIA тип 3037 »»» Радиаторы отопления стальные трубчатые ARBONIA тип 3050 »»» Радиаторы отопления стальные трубчатые ARBONIA тип 3057 »»» Радиаторы отопления стальные трубчатые ARBONIA тип 3057 N69 твв »»» Комплекты для стальных трубчатых радиаторов отопления ARBONIA » Принадлежности для радиаторов Конвекторы » Электрические конвекторы »» HEATEQ »»» Конвектор электрический Triumph Computer »»» Конвектор электрический Heat Mechanic »»» Конвектор электрический Heat Electronic »»» Конвектор электрический Heat Computer »»» Конвектор электрический EDISSON серии Temp Насосы » Погружные для скважин »» Погружные насосы PEDROLLO для скважин »» Погружные скважинные насосы SUBLINE »» Погружные насосы GRUNDFOS SQ, SQE, комплекты SQE для скважин »»» Погружной насос GRUNDFOS серии SQ диаметром 75 мм »»» Насос GRUNDFOS серии SQE »»» Комплект GRUNDFOS серии SQE »» АКВАРОБОТ »» Погружные скважинные насосы ВОДОЛЕЙ »»» Погружной насос ВОДОЛЕЙ БЦПЭ ЕВРО-1 серии 0,5 »»» Погружной насос ВОДОЛЕЙ БЦПЭУ ЕВРО-1 серии 0,5 »»» Погружной насос ВОДОЛЕЙ БЦПЭ ЕВРО-3 серии 1,2 »»» Погружной насос ВОДОЛЕЙ БЦПЭ ЕВРО-1 серии 0,32 »»» Погружной насос ВОДОЛЕЙ БЦПЭУ ЕВРО-1 серии 0,32 »»» Погружной насос ВОДОЛЕЙ БЦПЭ серии 1,6 »» Погружные насосы AquaTechnica для скважин и колодцев »»» Винтовой (шнековый) электронасос AquaTechnica серии TORPEDO »»» Электронасос центробежный автоматический AquaTechnica серии FLUX РС »» Погружные трёхдюймовые насосы для скважин HEISSKRAFT 3SD » Циркуляционные насосы »» GRUNDFOS »»» GRUNDFOS UPS серии 100 »»» GRUNDFOS UP серии B и серии BX »»» GRUNDFOS UP серии N »»» GRUNDFOS модель UPA »»» GRUNDFOS ALPHA2 »»» GRUNDFOS ALPHA2L »»» Принадлежности для циркуляционных насосов GRUNDFOS »»» GRUNDFOS ALPHA3 »» WILO »»» Насосы WILO модель STAR-RS »»» Насосы WILO модель TOP-RL » Погружные для колодцев »» Погружные насосы GRUNDFOS для колодцев »» Погружные насосы HEISSKRAFT 5WD для колодцев »» Погружные насосы PEDROLLO для колодцев » Дренажные насосы »» PEDROLLO »» GRUNDFOS »» AquaTechnica »» SUBLINE » Фекальные и дренажно-фекальные насосы »» PEDROLLO »» GRUNDFOS » Канализационные установки »» GRUNDFOS »» SFA »»» Насос-измельчитель встроенный в унитаз серии SANICOMPACT »»» Акриловый душевой поддон с насосом серии TRAYMATIC »»» Бытовые насосы измельчители для подключения унитаза и дополнительных сантехприборов »»» Бытовые насосы для подключения сантехприборов кроме унитаза »»» Насосные станции большой производительности серии SANICUBIC »»» Насосы серии SANICONDENS для откачивания конденсата » Принадлежности к насосам » Насосные станции »» АКВАРОБОТ »» Станция автоматического водоснабжения AquaTechnica »» Насосные станции GRUNDFOS »»» Насосная станция Grundfos серии MQ »»» Насосная станция Grundfos серии Hydrojet JP тип 2 »»» Насосная станция Grundfos серии JP Basic » Поверхностные насосы »» AquaTechnica » Ручные насосы и незамерзающие гидранты Мембранные баки » Мембранные баки для систем отопления »» Расширительный бак экспанзомат AQUASYSTEM для систем отопления »» Расширительный бак экспанзомат REFLEX для отопления »» Расширительный бак экспанзомат CIMM для отопления » Мембранные баки для систем водоснабжения »» Гидроаккумуляторы AQUASYSTEM для систем водонабжения горизонтальные и вертикальные. »» Гидроаккумуляторы REFLEX для систем водоснабжения »» Гидроаккумуляторы STOUT для систем водоснабжения » Универсальные(для систем горячей воды) »» AQUASYSTEM »» CALEFFI » Принадлежности к мембранным бакам » Мембраны Водонагреватели » Электрические накопительные »» THERMEX »»» серия Flat Plus »»» серия Flat Diamond »»» серия Ultra Slim »»» серия Round Plus »»» серия Champion »»» серии Champion Slim »»» серия Hit »»» серия Sprint »» DRAZICE »» STIEBEL ELTRON »»» SH SL (220 B) »»» SHD S (380 B) »»» SHZ LCD (220/380 B) »»» SH S (220/380 B) »»» SH A (220/380 B) »»» PSH Si (220 B) »»» PSH Trend (220 B) »»» PSH Universal EL (220 B) »»» Группы безопасности »» ARISTON » Электрические проточные »» STIEBEL ELTRON »»» модель DS E(220 В) »»» модель DDC E(220 В) »»» модель DHC(220 В) »»» модель DHC- E(220 В) »»» модель DHM(220 В) »»» модель DHF C(380 В) »»» модель DHB-E SLi(380 В) »»» модель DEL SLi(380 В) »»» модель DHE SLi(380 В) »»» Пульты управления »»» модель HDB-E Si(380 В) »» BOSCH » Газовые »» BOSCH » Косвенного нагрева(бойлеры) »» DRAZICE »» BAXI »» THERMEX »»» Бойлер серии COMBI »» ARDERIA »»» Бойлер серии BSA »»» Бойлер серии BSB »»» Бойлер серии BSH »»» Бойлер серии BSV Трубы и фитинги » Трубы и фитинги полипропиленовые »» HEISSKRAFT PPRC трубы и фитинги для отопления и водоснабжения (РОССИЯ) »» WAVIN EKOPLASTIK PPRC для отопления и водоснабжения (ЧЕХИЯ) » Трубы и фитинги полиэтиленовые »» REHAU »» TECE » Трубы и фитинги ПНД Запорная арматура » Шаровые краны »» BUGATTI »» ITAP »» OVENTROP » Вентили для радиаторов »» LUXOR »» OVENTROP Дымоходы » Дымоходы BOFILL(Испания) »» Утеплённые сэндвич дымоходы BOFILL (Испания) »» Неутеплённые дымоходы BOFILL (Испания) »» Омеднённые »» Эмалированные »» Гибкие » Дымоходы ВУЛКАН из нержавеющей стали (РОССИЯ) »» Одностенные »»» Труба TLvHR »»» Труба телескопическая TTvHR »»» Отвод OTvHR15 »»» Отвод OTvHR30 »»» Отвод OTvHR45 »»» Отвод OTvHR90 »»» Дефлектор DFvHR »»» Зонт AZvHR »»» Тройник TRvHR45 »»» Тройник TRvHR90 »»» Конденсатосборник CSvHR »»» Ревизия RVvHR »»» Опора OPvHR »»» Кронштейн опоры OKVXX »»» Основание напольное ONvHR »»» Элемент крепления к стене EKvHR »»» Хомут с креплением к стене XKvHR »»» Хомут соединительный XSvHR »»» Задвижка ZVvHR »» Утеплённые »»» Дефлектор DFvDR »»» Зонт AZvDR »»» Конус KFvDR »»» Кровельный элемент KRvXX »»» Юбка UTvXX »»» Труба TLvDR »»» Отвод OTvDR15 »»» Отвод OTvDR30 »»» Отвод OTvDR45 »»» Отвод OTvDR90 »»» Тройник TRvDR45 »»» Тройник TRvDR90 »»» Труба телескопическая TTvDR »»» Конденсатосборник CSvDR »»» Ревизия RVvDR »»» Переходник моно-термо PMvDR »»» Переходник термо-моно PTvDR »»» Кронштейн крепления к стене OKvDR »»» Опора OPvDR »»» Основание напольное ONVXX »»» Элемент крепления к стене XKvXX »»» Хомут растяжки XRvXX »»» Хомут соединительный XSvXX »»» Фланцы прямые без изоляции FHvXX и с изоляцией FDvXX » Дымоходы ДЫМОК из нержавеющей стали (РОССИЯ) »» Неутеплённые дымоходы ДЫМОК с толщиной стенки 0,5 мм »»» Труба прямая ДЫМОК без изоляции 1000 мм »»» Труба прямая ДЫМОК без изоляции 500 мм »»» Труба прямая ДЫМОК без изоляции 250 мм »»» Тройник ДЫМОК без изоляции угол 45° »»» Тройник ДЫМОК без изоляции угол 90° »»» Труба телескопическая ДЫМОК без изоляции »»» Отвод ДЫМОК без изоляции угол 45° »»» Отвод ДЫМОК без изоляции угол 90° »»» Задвижка ДЫМОК без изоляции »»» Опора ДЫМОК без изоляции »»» Ревизия ДЫМОК без изоляции »»» Конденсатосборник ДЫМОК без изоляции »»» Фланец ДЫМОК без изоляции »»» Зонт ДЫМОК без изоляции »»» Зонт с ветрозащитой ДЫМОК без изоляции »»» Хомут ДЫМОК без изоляции »»» Хомут с креплением к стене ДЫМОК без изоляции »»» Хомут соединительный ДЫМОК без изоляции »» Утеплённые дымоходы ДЫМОК с толщиной стенки 0,5 мм »»» Труба ДЫМОК с изоляцией 1000 мм »»» Труба ДЫМОК с изоляцией 500 мм »»» Труба ДЫМОК с изоляцией 250 мм »»» Тройник 45° ДЫМОК с изоляцией »»» Тройник 90° ДЫМОК с изоляцией »»» Отвод 45° ДЫМОК с изоляцией »»» Отвод 90° ДЫМОК с изоляцией »»» Конденсатосборник ДЫМОК с изоляцией »»» Ревизия ДЫМОК с изоляцией »»» Переходник моно-термо ДЫМОК с изоляцией »»» Переходник термо-моно ДЫМОК с изоляцией »»» Опора ДЫМОК с изоляцией »»» Кронштейн к опоре ДЫМОК с изоляцией »»» Элемент крепления к стене ДЫМОК с изоляцией »»» Хомут опорный ДЫМОК с изоляцией »»» Хомут соединительный ДЫМОК с изоляцией »»» Хомут под растяжки ДЫМОК с изоляцией »»» Фланец без изоляции для утеплённой трубы ДЫМОК »»» Фланец разрезной 0° — 20° ДЫМОК с изоляцией »»» Фланец разрезной 20° — 45° ДЫМОК с изоляцией »»» Узел прохода перекрытия ДЫМОК с изоляцией »»» Юбка на трубу ДЫМОК »»» Дефлектор ДЫМОК с изоляцией »»» Зонт ДЫМОК с изоляцией »»» Конус ДЫМОК с изоляцией »»» Кровельный элемент 0°-20° ДЫМОК с изоляцией »»» Кровельный элемент 20°-45° ДЫМОК с изоляцией »» Неутеплённые дымоходы ДЫМОК с толщиной стенки 0,8 мм »»» Труба прямая ДЫМОК без изоляции 1000 мм с толщиной стенки 0,8 мм »»» Труба прямая ДЫМОК без изоляции 500 мм с толщиной стенки 0,8 мм »»» Труба прямая ДЫМОК без изоляции 250 мм с толщиной стенки 0,8 мм »»» Отвод ДЫМОК без изоляции угол 45° с толщиной стенки 0,8 мм »»» Отвод ДЫМОК без изоляции угол 90° с толщиной стенки 0,8 мм »»» Тройник ДЫМОК без изоляции угол 45° с толщиной стенки 0,8 мм »»» Тройник ДЫМОК без изоляции угол 90° с толщиной стенки 0,8 мм »»» Задвижка ДЫМОК без изоляции с толщиной стенки 0,8 мм »»» Опора ДЫМОК без изоляции с толщиной стенки 0,8 мм »» Утеплённые дымоходы ДЫМОК с толщиной стенки 0,8 мм »»» Труба ДЫМОК с изоляцией 1000 мм с толщиной стенки 0,8 мм »»» Труба ДЫМОК с изоляцией 500 мм с толщиной стенки 0,8 мм »»» Труба ДЫМОК с изоляцией 250 мм с толщиной стенки 0,8 мм »»» Тройник 45° ДЫМОК с изоляцией с толщиной стенки 0,8 мм »»» Тройник 90° ДЫМОК с изоляцией с толщиной стенки 0,8 мм »»» Отвод 45° ДЫМОК с изоляцией с толщиной стенки 0,8 мм »»» Отвод 90° ДЫМОК с изоляцией с толщиной стенки 0,8 мм »»» Опора ДЫМОК с изоляцией с толщиной стенки 0,8 мм »»» Переходник моно-термо ДЫМОК с изоляцией с толщиной стенки 0,8 мм »»» Переходник термо-моно ДЫМОК с изоляцией с толщиной стенки 0,8 мм » Дымоходы ВУЛКАН из нержавеющей стали (РОССИЯ) овального сечения »» Труба прямая ВУЛКАН 1000 мм овального сечения »» Зонт ВУЛКАН овального сечения »» Конденсатосборник ВУЛКАН овального сечения »» Ревизия ВУЛКАН овального сечения »» Отвод 15° ВУЛКАН овального сечения »» Отвод 30° ВУЛКАН овального сечения »» Отвод 45° ВУЛКАН овального сечения »» Отвод 90° ВУЛКАН овального сечения »» Тройник 45° ВУЛКАН овального сечения »» Тройник 90° ВУЛКАН овального сечения » Баки из нержавеющей стали для подогрева воды в банях и саунах теплом дымовых газов печи »» Баки ДЫМОК из нержавеющей стали для подогрева воды от дымохода банной печи »» Водогрейные баки ВУЛКАН из нержавеющей стали от дымохода дровяной банной печи »» Переходы для водогрейных баков Принадлежности для котлов и насосов » Принадлежности PEDROLLO »» Пульты управления PEDROLLO для насосов »» Поплавки PEDROLLO »» Электронные регуляторы давления и реле давления PEDROLLO »» Муфты PEDROLLO »» Шланги PEDROLLO »» Штуцеры PEDROLLO »» Обратные клапаны PEDROLLO » Принадлежности HEISSKRAFT »» Поплавки HEISSKRAFT »» Реле давления и штуцеры HEISSKRAFT »» Кабель и муфты HEISSKRAFT »» Обустройство скважин HEISSKRAFT »» Обратные клапаны HEISSKRAFT »» Виброкомпенсаторы HEISSKRAFT »» Нержавеющие тросы HEISSKRAFT »» Фланцы плоские HEISSKRAFT »» Фильтры наклонные HEISSKRAFT »» Кессоны HEISSKRAFT Предохранительная арматура » Клапаны подпиточные » Клапаны перепускные дифференциальные » Воздухоудалители автоматические » Клапаны предохранительные » Консоли для расширительных баков » Клапаны электромагнитные » Редукторы давления » Группы безопасности Запасные части для котлов и горелок » Запасные части к горелкам ROCA »» Запасные части для дизельных горелок ROCA » Запасные части к котлам PROTHERM » Запасные части к котлам BAXIНовинка:
ВседанетСпецпредложение:
ВседанетРезультатов на странице:
5203550658095Найти товар
Главная / Статьи / Расчёт гидроаккумулятораРасчёт объёма гидроаккумулятора
VГ.А. — расчётный объём гидроаккумулятора, л
Qmax — максимальный расход насоса, м3/ч
n — число стартов насоса в час
Pmax — максимальное давление (для выключения насоса), бар
Pmin — минимальное давление (для включения насоса), бар
P0 — начальное давление в баке ( установить P0=Pmin-0,2), бар
По полученному в результате расчёта значению VГ.А. выбираем гидроаккумулятор ближайшего большего объёма из существующего модельного ряда.
heatcontent.ru
Расчет объема гидроаккумулятора водоснабжения
Гидроаккумулятор для водоснабжения
Формула подбора объема гидроаккумулятора выглядит так:
Vt – это объем бака, литры;
А mах – максимальный объем потребляемой воды, литры/мин.;
P min – минимальное давление, при котором происходит запуск насоса;
Р mах – максимальное давление, при котором насос отключается;
Р рrес – начальное давление в баке;
К – коэффициент, соответствующий Р мощности насоса.
Показатели давления в таблице выражены в барах.
Калькулятор подбора объема гидроаккумулятора.
[wpcc id=»66″]
Автор статьи: Сергей Юшков, написано статей: 835. Комментировал: 410.Задавайте вопросы в комментариях, делитесь своим опытом, так же принимается любая конструктивная критика, готов обсуждать. Не забывайте делиться полученной информацией с друзьями. — Подробнее..
www.allremont59.ru
Как определить ёмкость гидроаккумулятора?
Срок службы насосного оборудования в автономных системах водоснабжения не в последнюю очередь зависит от ёмкости гидроаккумулятора. Слишком маленький гидробак увеличивает нагрузку на насосное оборудование, а в слишком больших резервуарах застаивается вода. Как найти золотую середину и выбрать гидробак, который и насосы бережёт, и без воды при отключении электричества не оставит?
Как объём гидробака влияет на работу насосов?
Главное назначение гидроаккумуляторов – уравновешивать перепады давления при водоразборе или отключении электричества и защищать систему от гидроударов. Функцию управления автоматической насосной станцией обычно выполняет реле давления. Когда давление в системе приближается к верхнему пределу, реле прекращает подачу электроэнергии на насосное оборудование. С началом водоразбора давление в сети начинает падать; по достижении нижних пороговых значений подача электропитания возобновляется, и насосы снова принимаются качать воду.
Если в автоматизированной системе водоснабжения нет гидроаккумулятора, насос срабатывал бы всякий раз, когда кто-нибудь повернёт кран или воспользуется туалетом. Ни один электродвигатель не выдержит такого интенсивного режима эксплуатации. Чем мощнее насосная станция, тем меньше допустимая частота включений из-за риска перегрева:
- насосы мощностью свыше 8 кВт выдерживают не более 10 повторных включений в час;
- для насосного оборудования мощностью 5–10 кВт установлен лимит до 15 включений в час;
- для маломощных насосов – до 20 включений.
Так или иначе, более 30 пусков в час – это уже критический уровень нагрузки, не предусмотренный конструкцией агрегата. Также на толерантность к повторным включениям влияют конструктивные особенности насосного оборудования: чем больше подвижных частей, тем реже должен включаться насос. Для уменьшения циклов включения и выключения насосов необходима установка гидроаккумулятора для создания резервных запасов воды.
Внутренняя ёмкость гидробака заполнена баллонной мембраной, в которую поступает вода. Во время водоразбора воздух, воздух, заполняющий пространство между мембраной и внутренними стенками бака, вытесняет воду в сеть. В результате изменение давления в системе происходит плавно, ограничивая количество кратковременных включений и выключений. Иными словами, насосная станция включается и выключается столько раз, сколько позволит объём гидроаккумулятора.
Как определить ёмкость гидроаккумулятора?
Для расчёта оптимального объёма гидробака разработаны формулы, учитывающие основные характеристики системы:
- суточный расход воды;
- допустимое число рабочих циклов в час;
- мощность насосного оборудования;
- настройки реле давления.
На практике все намного проще – ассортимент большинства магазинов ограничен тремя линейками стандартных типоразмеров:
- от 20 до 24 литров и меньше;
- 50– 60 литров;
- 100 и более литров.
Компактные модели ёмкостью до 20–24 литров рассчитаны на насосные станции мощностью до 0,75 кВт с расходом 2–2,5 м3/час, но для небольшой семьи из двух-трёх человек увеличивать расход нет резона. Разумеется, насосы при этом включаются чаще, чем в случае установки гидробака среднего объёма, но так как резких колебаний давления не возникает, низкие нагрузки компенсируют частые включения и выключения. Чаще всего малогабаритные гидроаккумуляторы входит в комплектацию маломощных установок водоснабжения, так что все риски и выгоды за нас уже подсчитал производитель.
Насосное оборудование производительностью 1,8 м3/час и гидробак на 24 литра – типовая комбинация для внутренних сетей частных домов с тремя водоразборными точками, но без внутреннего санузла. При увеличении число точек водоразбора достаточно купить еще один гидроаккумулятор того же объёма и установить его в любом участке системы.
Гидроаккумуляторы ёмкостью 50–60 литров предназначены для сетей с расходом 2,5–3,5 м3/час и мощностью насосного оборудования до 1,5 кВт. Резервный запас воды составляет от трети до половины бака – вполне достаточно для удовлетворения нужд 4–8 человек.
Как правило, гидробаки на 50 литров устанавливают в бытовых системах с четырьмя и более водоразборными точками, где нет ванн, унитазов и тому подобного оборудования, потребляющего большое количество воды. Если в доме оборудован санузел, объём гидроаккумулятора рассчитывают по методике UNI 9182.
В продаже имеются и более массивные гидроаккумуляторы на 80 литров, которые вмещают до 5 литров воды сверх минимального резерва, но стоит ли игра свеч? Выигрыш не сказать что большой, а цена агрегата ощутимо выше.
Покупка гидробака на 100 и более литров оправдана лишь в том случае, если расход воды превышает 5 м3/час. Для этого в доме должно одновременно проживать не менее 10 человек. Прежде чем покупать гидроаккумулятор на 100 литров, учтите, что не всякая скважина обладает достаточной продуктивностью. Кроме того, для установки массивного бака требуется немало места – готовы ли вы поступиться квадратными метрами?
Также гидроаккумуляторы на 200 литров и более пользуются спросом в регионах с частыми перебоями электроснабжения – их используют как накопители воды на случай отключения электричества. Но если запас воды намного превосходит потребности жильцов, во время «Ч» вода в баке может оказаться непригодной для питья и приготовления пищи. Для длительного хранения воды больше подходит открытый водонакопитель.
Чем больше объём – тем больше проблем
Массивные габариты заметно осложняют сервисное обслуживание гидроаккумуляторов. В частности, для гидробаков ёмкостью от 100 литров актуальна проблема удаления воздуха, который накапливается в мембране и образует пробки, расстраивающие работу агрегата.
Для стравливания лишнего воздуха в верхней части вертикальных гидробаков ёмкостью от 100 литров устанавливают воздухоотделительные клапаны. У горизонтальных моделей за выведение воздушных пузырьков отвечает отдельный сегмент трубопровода, укомплектованный выводным ниппелем, сливом и шаровым краном. Для обеспечения бесперебойного функционирования водопровода воздух из бака следует выпускать не реже, чем раз в месяц.
У более компактных гидроаккумуляторов воздух удаляется из мембран во время полного опорожнения резервуара. В силу большего количества рабочих циклов воздушные пробки не успевают образовываться. Для надёжности можно периодически спускать воздух через кран, расположенный в непосредственной близости от бака. Отключив электропитание насосов, позвольте воде полностью стечь, затем закройте кран и включите насосы. Когда гидробак наполнится водой, повторите процедуру.
Вместительность гидробака – далеко не единственный параметр, который следует учитывать, решая увлекательную задачу поддержания напора в сети. Не менее важно правильное расположение гидроаккумулятора: рекомендуется устанавливать бак как можно ближе к насосу. Особенности монтажа систем водоснабжения и условия эксплуатации систем также вынуждают пересмотреть стандартные рекомендации по подбору гидробака. Если у вас есть какие-то вопросы и сомнения, не стесняйтесь обращаться за помощью к специалистам.
www.teplomatica.ru
Расчет объема гидроаккумулятора. | mlynok
Опубликовано: 04.04.2010 | Автор: Korni (Олександр Корнієнко) | Filed under: Гидроакуммулятор | Tags: Гидрофор |Для определения объема могут быть использованы два
метода: с учетом типа насоса, используемого в системе или по методу
«Единиц расхода», т.е. с учетом максимального расхода воды.
СРЕДНЯЯ ПРОИЗВОДИТЕЛЬНОСТЬ НАСОСА
Этот метод используется для расчета объема гидроаккумулятора на основании средней производительности насоса (соответствующей максимальному расходу воды Q max) и минимальных и максимальных значений динамического давления (с учетом разницы уровней, потерь и т.д.).
Vt=16.5*Q max*P max*P min/(a*ΔP*P prec)
Vt — объем гидроаккумулятора в литрах.
Q max – средняя производительность насоса, равная максимальному расходу воды (в литрах/мин).
а – максимально допустимое число запусков насоса в час (значение, рекомендуемое производителем насоса).
P max – максимальное абсолютное давление, на которое настроено реле давления, равное относительному давлению + 1Атм.
P min – минимальное абсолютное давление, на которое настроено реле давления, равное относительному давлению + 1Атм, которое не должно быть ниже, чем (высота строения в метрах)/10 + 1Атм
ΔP – разность P max и P min
P prec – абсолютное давление газа в гидроаккумуляторе, которое никогда не должно превышать P min.
Для оптимальной работы гидроаккумулятора необходимо, чтобы P rec < P min. Рекомендуется, чтобы:
P rec+0.5 бар=P min.
Пример:
определить объем гидроаккумулятора для системы с реле давления, отрегулированным на минимальное давление 2.5 бар и максимальное – 4.5 бар при требуемом расходе воды 115 л/мин.
Q max=115 л/мин
a=12
P max=4.5 бар +1 Атм=5.5 АТА
P min=2.5+1 Атм=3.5 АТА
ΔP=5.5-3.5=2 АТА;
Pprec=3.5-0.5 =3АТА;
Vt=16.5*115*5.5*3.5/12/2/3=507.32 л
МЕТОД «ЕДИНИЦ РАСХОДА»
Этот метод используется для расчета объема гидроаккумулятора на основании максимального расхода воды и минимального и максимального значений динамического давления, на которое настроено реле. Каждой точке водоразбора соответствует определенное значение единицы расхода (см. таблицу расходов). Просуммируйте все значения и по таблице определите соответствующее значение максимального потока Qmax.
Объем емкости вычисляется по формуле:
V=16.5*Qmax*Pmax*Pmin/ΔP/Pprec.
Пример: Рассчитать объем гидроаккумулятора в частном доме. Единицы расхода определяются по таблице.
2 умывальника=2 1 биде=1 1 сливной бачок=3
1 кухонная мойка=2 1 ванна=2
1 стиральная машина=2 1 душ=2
14 единицам расхода по таблице соответствует Qmax=0.68л/с
Максимальное давление реле = 3.5 бара (4.5 АТА)
Минимальное давление реле = 2.5 бар (3.5 АТА)
Pprec=Pmin-0.5=3.5-0.5=3
Следовательно, ΔP=4.5-3=1.5
V=16.5*0.68*60*4.5*3/12/1.5/2.5=201.96=200 литров.
Таблица единиц расхода в частном доме
Точки расхода | Подача воды | Холодная вода | Горячая вода | Холодная +горячая |
Умывальник | смеситель | 0.75 | 0.75 | 1 |
Биде | смеситель | 0.75 | 0.75 | 1 |
Ванна | смеситель | 1.5 | 1.5 | 2 |
Душ | смеситель | 1.5 | 1.5 | 2 |
Унитаз | сливной бачок | 3 | — | 3 |
Унитаз | проточный слив | 6 | — | 6 |
Мойка кухонная | смеситель | 1.5 | 1.5 | 2 |
Стиральная машина | холодная вода | 2 | — | 2 |
Посудомоечная машина | холодная вода | 2 | — | 2 |
Пожарный кран 3/8” | холодная вода | 1 | — | 1 |
Пожарный кран 1/2” | холодная вода | 2 | — | 2 |
Пожарный кран 3/4” | холодная вода | 3 | — | 3 |
Пожарный кран 1” | холодная вода | 6 | — | 6 |
Таблица единиц расхода в общественном здании
Точки расхода | Подача воды | Холодная вода | Горячая вода | Холодная +горячая |
Умывальник | смеситель | 1.5 | 1.5 | 2 |
Биде | смеситель | 1.5 | 1.5 | 2 |
Ванна | смеситель | 3 | 3 | 4 |
Душ | смеситель | 3 | 3 | 4 |
Унитаз | сливной бачок | 5 | — | 5 |
Унитаз | проточный слив | 10 | — | 10 |
Писсуар | кран | 0.75 | 0 | 0.75 |
Писсуар | проточный слив | 10 | — | 10 |
Мойка кухонная | смеситель | 3 | 3 | 3 |
Умывальник для ног | смеситель | 1.5 | 1.5 | 2 |
Умывальник в медпункте | смеситель | 1.5 | 1.5 | 2 |
Питьевой фонтан | кран питьевой воды | 0.75 | — | 0.75 |
Пожарный кран 3/8” | холодная вода | 2 | — | 2 |
Пожарный кран 1/2” | холодная вода | 4 | — | 4 |
Пожарный кран 3/4” | холодная вода | 6 | — | 6 |
Пожарный кран 1” | холодная вода | 10 | — | 10 |
Таблица максимального потока Qmax для частного дома
Единицы расхода | Qmax л/с | Единицы расхода | Qmax л/с | Единицы расхода | Qmax л/с |
6 | 0.3 | 120 | 3.65 | 1250 | 15.5 |
8 | 0.4 | 140 | 3.9 | 1500 | 17.5 |
10 | 0.5 | 160 | 4.25 | 1750 | 18.8 |
12 | 0.6 | 180 | 4.6 | 2000 | 20.5 |
14 | 0.68 | 200 | 4.95 | 2250 | 22 |
16 | 0.78 | 225 | 5.35 | 2500 | 23.5 |
18 | 0.85 | 250 | 5.75 | 2750 | 24.5 |
20 | 0.93 | 275 | 6.1 | 3000 | 26 |
25 | 1.13 | 300 | 6.45 | 3500 | 28 |
30 | 1.3 | 400 | 7.8 | 4000 | 30.5 |
35 | 1.46 | 500 | 9 | 4500 | 32.5 |
40 | 1.62 | 600 | 10 | 5000 | 34.5 |
50 | 1.9 | 700 | 11 | 6000 | 38 |
60 | 2.2 | 800 | 11.9 | 7000 | 41 |
70 | 2.4 | 900 | 12.9 | 8000 | 44 |
80 | 2.65 | 1000 | 13.8 | 9000 | 47 |
90 | 2.9 | 10000 | 50 | ||
100 | 3.15 |
Таблица максимального потока Qmax для общественного здания
Единицы расхода | Qmax л/с | Единицы расхода | Qmax л/с | Единицы расхода | Qmax л/с |
6 | 0.3 | 120 | 2.9 | 1250 | 11.3 |
8 | 0.4 | 140 | 3.2 | 1500 | 12.4 |
10 | 0.5 | 160 | 3.5 | 1750 | 13.6 |
12 | 0.6 | 180 | 3.75 | 2000 | 14.5 |
14 | 0.67 | 200 | 3.95 | 2250 | 15.4 |
16 | 0.75 | 225 | 4.25 | 2500 | 16.2 |
18 | 0.82 | 250 | 4.5 | 2750 | 17 |
20 | 0.89 | 275 | 4.8 | 3000 | 18 |
25 | 1.05 | 300 | 5.05 | 3500 | 19.5 |
30 | 1.18 | 400 | 6 | 4000 | 21 |
35 | 1.35 | 500 | 6.9 | 4500 | 22 |
40 | 1.45 | 600 | 7.55 | 5000 | 23.5 |
50 | 1.65 | 700 | 8.3 | 6000 | 25.5 |
60 | 1.9 | 800 | 8.8 | 7000 | 27.5 |
70 | 2.1 | 900 | 9.5 | 8000 | 29 |
80 | 2.25 | 1000 | 10 | 9000 | 30.5 |
90 | 2.45 | 10000 | 32 | ||
100 | 2.6 |
Понравилось это:
Нравится Загрузка…
Похожее
mlynok.wordpress.com
Калькулятор расчета напора скважинного насоса для системы с гидроаккумулятором
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ
От сбоев работы системы водопровода защитит оснащенная скважина, позволяющая создать автономное водоснабжение. Но, чтобы она функционировало без перебоев, вам требуется приобрести высококачественное оборудование, которое идеально подойдет для домашнего водоснабжения.
Установка конструкции с гидроаккумулятором
Решить проблему со сбоями призвано устройство гидроаккумулятора. Подобная функциональная установка позволяет создать запас воды, а также поддерживает давление внутри конструкции трубопровода на достаточном уровне. При этом организуется правильная работа всех сантехнических приборов. Важно, чтобы основные показатели и параметры данного устройства и насосного оборудования максимально совпадали. Если вы не знаете, как подобрать подходящий вариант, то в этом вам поможет специальный калькулятор для проведения вычисления по напору подобного оборудования.
Калькулятор расчета напора скважинного насоса для системы с гидроаккумулятором
Как проводится расчет напора в насосном оборудовании?
Устройство гидроаккумулятора представляет собой герметичную емкость, которая внутри разделена на два отсека – водяной и воздушный. Определенное давление, контролирующее минимальное значение напора жидкости, образуется в воздушной части корпуса.
Вода наполняет устройство и давление растет, когда достигается уровень верхнего порога, то реагирует специальное реле и закачка воды останавливается. При этом прибор позволяет поддерживать необходимый уровень воды для бесперебойной работы всей системы. Данное устройство призвано в помощь скважинному насосу и улучшает качество его работы.
Схема подачи воды в дом с установкой функционального прибораСовместная работа оборудования позволяет заявить о следующих возможностях:
- подача воды с разных глубин до точки расположения гидроаккумулятора;
- преодоление гидравлического сопротивления на промежутке от устройства скважины до монтажа прибора. От сечения магистрали и протяженности участка зависит показатель давления в системе. Поэтому имеет смысл установить гидроаккумулятор поближе к скважине. Известно, что сопротивление больше в стальных магистралях, чем в полимерных;
- при наполнении бака срабатывает реле давления.
Важно, чтобы насос был оснащен и определенным эксплуатационным запасом, чтобы быстро не израсходовать свой рабочий потенциал.
На схеме изображен вариант монтажа системы с дополнительным устройством
Все важные данные учитываются в программе. По полученным результатам и рекомендуется выбрать оптимальный вариант насоса. Стоит учитывать, что для оборудования, работающего без гидроаккумуляторов, расчет будет несколько отличаться.
ПОДЕЛИТЕСЬ В СОЦСЕТЯХ
Загрузка…aquatic-home.ru
Расчёт объёмов гидроаккумуляторов — Строительные СНИПы, ГОСТы, сметы, ЕНиР,
Гидроаккумуляторы применяются в различных системах водоснабжения. В данной работе рассмотрим методы их подбора для индивидуальной системы водоснабжения. Кроме традиционных душа и крана на кухне, современные дома могут быть оснащены ванной, биде, канализацией, стиральной машиной и другим оборудованием, для работы которого необходима вода. Помимо оборудования, различным может быть количество людей, находящихся в доме. Это объективные факторы, но при выборе размеров гидроаккумулятора приходится учитывать и субъективные. Например, сколько раз в час можно включать насос и заполнять гидроаккумулятор? Что случится, если сразу несколько человек будут пользоваться водой? Что будет, если в это время работает стиральная машина?Для правильного расчёта параметров мы предлагаем методику подбора объёма гидроаккумулятора, в основу которой положен международный метод расчёта UNI 9182, разработанный итальянскими инженерами.
Начнем с того, что если в вашем доме только кран для воды, душ и кран для полива, то ничего считать не надо. Вам нужна стандартная установка водоснабжения с 24-литровым гидроаккумулятором. Смело покупайте её. Она оптимальна в тех случаях, когда рассматривается оборудование для небольшого дома (дачи) и при непостоянном использовании. Даже если в перспективе потребуется увеличить число точек разбора воды, то можно будет просто купить отдельно и установить в любую точку системы водоснабжения еще один гидроаккумулятор объёмом 24 л. Если дом без канализации, но с количеством точек разбора воды более трех, то в любых случаях вам достаточно гидроаккумулятора объёмом 50 л.
Методика расчёта предназначена для индивидуальных домов, оснащенных канализацией (септиком), с ванными и другим оборудованием, потребляющим значительное количество воды, и состоит из нескольких пунктов
1. Следует определите суммарный коэффициент потребления воды Су. Для этого составьте перечень точек водоразразбора в вашем доме и укажите количество каждого вида оборудования.
Таблица 2 Частный дом
Пользователи | Су |
Раковина | 1 |
Биде | 1 |
Ванна | 2 |
Душ | 2 |
Унитаз | 3 |
Смыв | 6 |
Кухонная раковина | 2 |
Стиральная машина | 2 |
Посудомоечная машина | 2 |
⅜ кран | 1 |
½ кран | 2 |
¾ кран | 3 |
1 кран | 6 |
Таблица 3 Коммунальный дом
Пользователи | Су |
Раковина | 2 |
Биде | 2 |
Ванна | 4 |
Душ | 4 |
Унитаз | 5 |
Смыв | 10 |
Кухонная раковина | 4 |
Раковина для ног | 2 |
Питьевой фонтан | 0,75 |
⅜ кран | 2 |
½ кран | 4 |
¾ кран | 6 |
1 кран | 10 |
2. Заполните табл. 4. В её второй колонке представлены коэффициенты частоты использования каждого вида оборудования (Сх). В третьей колонке укажите количество устройств каждого вида оборудования в вашем доме (ni). В правой колонке таблицы умножьте значение Сх на ni. Сложив значения этой колонки, получите суммарный коэффициент потребления воды в вашем доме.
Суммарный коэффициент
Су =——————————
Таблица 4 Определение суммарного коэффициента Су
Вид оборудования | Коэффициент использования Сх | Количество каждого вида ni | Произведение Сх х ni |
Туалет | 3 | ||
Душ | 2 | ||
Ванная | 2 | ||
Кран в раковине | 6 | ||
Биде | 1 | ||
Кран в кухне | 2 | ||
Стиральная машина | 2 | ||
Машина для мытья посуды | 2 | ||
Кран для полива | 2 |
3. В зависимости от полученного значения суммарного коэффициента Су определите значение максимального расхода воды Qмакс, необходимого для вашего дома. Эти значения представлены в табл. 5.
Например, если у вас в доме туалет, душ, кран в раковине, кран на кухне (каждого устройства по одному), то коэффициент потребления
Су =3 + 2 + 6 + 2 = 13.
Ближайшее значение Су в табл. 5 равно 12. Этому значению соответствует максимальный расход воды для вашего дома: Qмакс = 36 л/мин.
Су | Qл/мин | Су | Qл/мин | Су | Q, л/мин |
6 | 18 | 100 | 189 | 1250 | 930 |
8 | 24 | 120 | 219 | 1500 | 1050 |
10 | 30 | 140 | 234 | 1750 | 1128 |
12 | 36 | 160 | 255 | 2000 | 1230 |
14 | 40,8 | 180 | 276 | 2250 | 1320 |
16 | 46,8 | 200 | 297 | 2500 | 1410 |
18 | 51 | 225 | 321 | 2750 | 1470 |
20 | 55,8 | 250 | 345 | 3000 | 1560 |
25 | 67,8 | 275 | 366 | 3500 | 1680 |
30 | 78 | 300 | 387 | 4000 | 1830 |
35 | 87,6 | 400 | 468 | 4500 | 1950 |
40 | 97,2 | 500 | 540 | 5000 | 2070 |
50 | 114 | 600 | 600 | 6000 | 2280 |
60 | 132 | 700 | 660 | 7000 | 2460 |
70 | 144 | 800 | 714 | 8000 | 2640 |
80 | 159 | 900 | 774 | 9000 | 2820 |
90 | 174 | 1000 | 828 | 10 000 | 3000 |
4. Для определения объёма гидроаккумулятора надо решить, сколько раз в час допускается включение гидроаккумулятора при максимальной интенсивности потребления. Нормальным считается 10-15 раз. Обращаем внимание на то, что большое значение этого параметра (некоторые компании рекомендуют назначать этот параметр при максимальной интенсивности до 45 включений в час) приводит к частому нагружению мембраны гидроаккумулятора на растяжение-сжатие, а общее количество таких нагружений ограничено прочностью мембраны. Кроме того, если 45 включений в час, это значит, что насос работает до отключения всего около минуты. Обычно производительность бытовых насосов систем индивидуального водоснабжения небольшая, и за минуту просто невозможно заполнить правильно подобранный гидроаккумулятор. Наша рекомендация в назначении этого параметра — 10.
При проверке возможности использования уже существующего гидроаккумулятора в тех случаях, когда в доме добавляется новый источник потребления воды, этот параметр можно принять равным 15.
Требуется также назначить пороги срабатывания реле давления станции водоснабжения (Pмин и Pмакс). Нижний порог Pмин для двухэтажных домов обычно равен 1,5 бар, а верхний порог Рмакс — 3 бар. Тогда, для определения объёма гидроаккумулятора надо воспользоваться следующей формулой:
где V-полный объём гидроаккумулятора, л; Qмакс — максимальное значение потребного расхода воды, л/мин; а — количество пусков системы в час;
Pмин – нижний порог давления при включении насоса, бар;
Pмин — верхний порог давления при выключении насоса, бар; P0 – начальное давление газа в гидроаккумуляторе, бар.
Например, если Qмакс = 36 л/мин, а = 15, Pмин =1,8 бар, Pмакс = 3,0 бар,
Р0 = 1,5 бар, то полный объём гидроаккумулятора:
Ближайшим по габаритам является 150-литровый гидроаккумулятор.
Далее представим наши рекомендации по назначению порогов срабатывания реле давления систем водоснабжения индивидуального дома. Разница порогов срабатывания Рмакс — Рмин определяет величину объёма воды, выдаваемого гидроаккумулятором системы водоснабжения. Чем больше эта разница, тем эффективнее работа гидроаккумулятора, но мембрана в каждом цикле работы нагружается сильнее.
Значение Рмин (давление включения насоса) определяется исходя из значения гидростатического давления (высоты воды) в системе водоснабжения вашего дома. Например, если высота между самой нижней и самой верхней точек разбора в системе равна 10 м, то давление водяного столба — 10 м (1 бар).
Каким должно быть минимальное значение давления Рмин?
Давление воздуха в камере противодавления гидроаккумулятора должно быть больше или равно гидростатическому, то есть в нашем случае — 1 бар. Нижний порог срабатывания Рмин тогда должен быть несколько больше (на 0,2 бар) начального давления воздуха в гидроаккумуляторе.
Однако нам надо, чтобы система работала устойчиво. Самой критичной, с точки зрения стабильности работы, является наиболее высокая точка разбора (например, кран или душ на верхнем этаже). Кран работает нормально, если перепад давления в нем не менее 0,5 бар. Следовательно, давление должно быть 0,5 бар плюс значение гидростатического давления этой точки. Таким образом, минимальное значение давления газа в гидроаккумуляторе Р0 равно 0,5 бар плюс значение приведенного гидростатического давления в точке расположения гидроаккумулятора (расстояние по высоте между верхней точкой разбора и точкой расположения гидроаккумулятора). В нашем случае, если гидроаккумулятор расположен в низшей точке системы водоснабжения, минимальное значение газа в нем Р0 = 1 бар + 0,5 бар = 1,5 бар, а порог срабатывания (включения) насоса Рмин = 1,5 + 0,2=1,7 бар. Если гидроаккумулятор расположен в верхней точке системы, а датчик давления — в нижней, то давление газа в гидроаккумуляторе должно равняться 0,5 бар, а порог включения насоса -1,7 бар.
При назначении верхнего порога срабатывания системы автоматического водоснабжения Рмакс необходимо учитывать несколько моментов, в первую очередь — напорную характеристику насоса. Значение напора, создаваемого насосом и выраженное в метрах водяного столба, разделенное на 10, покажет максимальное значение давления. Однако при этом следует учитывать, что:
— в характеристиках насоса указаны максимальные параметры без учета гидравлических сопротивлений трубопроводов;
— напряжение электрической сети часто не соответствует номинальному значению 220 В, и реальные значения могут быть ниже;
— производители бытовых насосов часто указывают завышенные характеристики;
— при максимальных значениях напора расход насоса минимален и система будет заполняться очень долго;
— при длительной эксплуатации характеристики насоса уменьшаются.
Учитывая вышесказанное, мы рекомендуем назначать величину верхнего порога срабатывания на 30% ниже, чем максимальное значение напора вашего насоса. Однако первоначальным при определении верхнего порога срабатывания является высота вашего дома, вернее, высота системы водоснабжения дома. Величина верхнего порога срабатывания равна высоте системы водоснабжения (выраженной в метрах) плюс 20 м, и разделенная на 10. Вы получите давление, выраженное в барах.
В бытовых системах водоснабжения рекомендуемая разница между нижним и верхним порогами срабатывания — 1,0 — 1,5 бар. Эти значения наиболее приемлемы.
Таким образом, для определения верхнего порога давления включения насоса мы рекомендуем:
а) определить нижний порог давления включения насоса;
б) к полученному значению прибавить 1,5 бар;
в) полученное значение сравнить с напорными характеристиками насоса.
Оно должно быть на 30% ниже максимального значения напора вашего насоса. Таким образом, можно проверить правильность подбора насоса и гидроаккумулятора или возможность использования существующего при установке дополнительного оборудования, потребляющего воду.
snip1.ru