Отопление с теплоаккумулятором: Теплоаккумулятор в наличии для котлов отопления российского производства

Содержание

Теплоаккумулятор в наличии для котлов отопления российского производства

Описание

Теплоаккумулятор (второе название — буферная емкость) представляет собой теплоизолированный герметичный резервуар, работающий под давлением системы отопления.

Водяной теплоаккумулятор для отопления применяется в системах с твердотопливными и электрическими котлами для повышения удобства использования, эффективности и безопасности работы системы. Наиболее часто теплоаккумуляторы используются в частных загородных домах и на предприятиях, которые стремятся повысить свою энергоэффективность.

Достоинства при использовании в частных домах

Котел достаточно топить один раз в сутки Аккумулятор тепла значительно увеличивает объем системы отопления, что позволяет топить котел один раз в сутки, в сильные морозы – два раза в сутки.

В доме всегда тепло, даже утром Накопленное тепло равномерно в течение суток поступает из теплового аккумулятора в систему отопления. Используя теплоаккумулятор для отопления из нержавейки или конструкционной стали можно избежать таких сомнительных ухищрений, как прикрывание заслонки котла для увеличения времени горения, что категорически вредно для котла и снижает его срок службы из-за закоксовывания теплообменника, дымохода и образования разъедающего котел конденсата.

Котел максимально эффективен и экономичен Благодаря теплоаккумулятору, твердотопливный котел всегда работает в полную мощность, топливо полностью прогорает. Это повышает КПД котла до 80% и снижает количество потребляемого топлива на 40%, также предотвращает образование конденсата и закоксовывание теплообменника котла и дымохода, что положительно сказывается на их долговечности.

Безопасность и защита системы от перегревания На территории ЕС законодательно запрещена установка твердотопливных котлов без теплоаккумуляторов по соображениям экологичности и безопасности. Это связано с тем, что, если в системе отопления не установлен теплоаккумулятор, в случае отключения электричества и остановки циркуляционного насоса, высока вероятность перегревания и закипания котла. В худшем случае возможен даже взрыв котла – со всеми сопутствующими последствиями. Если же в системе установлен теплоаккумулятор, то при отключении электричества и прекращении циркуляции теплоносителя теплоаккумулятор аккумулирует избыток тепловой энергии и предотвращает возникновение негативных последствий перегревания системы.

Преимущества использования на предприятиях

Использование теплоаккумулятора на предприятии, позволяет задействовать невостребованные источники тепловой энергии для нужд отопления помещений. Среди таких источников: техническая горячая вода от технологических процессов, тепловая энергия, вырабатываемая в процессе работы систем кондиционирования и охлаждения и т.д.

Применение теплоаккумулятора в системах с электрическим котлом позволяет использовать двухтарифную систему расчета стоимости электроэнергии.

В этом случае электрический котел работает по льготному тарифу в ночное время, а теплоаккумулятор для отопления накапливает тепловую энергию, возвращая ее в систему уже в рабочее время, когда электроэнергия значительно дороже.

Если вы хотите купить теплоаккумулятор для котлов отопления российского производства Electrotherm, обратитесь к нашим консультантам или напишите на адрес [email protected].

Схема отопления с теплоаккумулятором в частном доме

Твердотопливные котлы – отличное оборудование для отопления частного дома в сельской местности или в пригороде, вдали от газовых магистралей. Как и любое другое оборудование котлы на твердом топливе претерпевают изменения, модифицируются и усовершенствуются, поэтому современные модели представлены пиролизными аппаратами, котлами с теплоаккумуляторами, пеллетным оборудованием, оснащены автоматикой и средствами контроля параметров. Стандартная схема отопления с теплоаккумулятором заслуживает особого внимания, так как экономит топливо, которое и без того стоит недешево – ведь платить приходится не только за дрова, торф, пеллеты или уголь, но и за их доставку. Теплоаккумулятор для электрических и твердотопливных котлов отопления эффективнее себя проявит, если подсчет электроэнергии ведется по дневному и ночному тарифам. Отопительное оборудование с тепловым аккумулятором

Устройство отопления с ТА

Тепловой аккумулятор (ТА) для котлов отопления – составная часть отопительной системы, работающая на увеличение временного отрезка между циклами подачи топлива в топочную камеру. Конструктивно это герметичная утепленная емкость большого объема, наполненная теплоносителем из системы отопления, который постоянно циркулирует по контуру (контурам). В качестве теплоносителя используются традиционные жидкости – дистилированная вода, антифриз, водно-глюколевые растворы.

Единственная особенность, которую обязательно нужно учитывать при принятии решения о включении в схему ТА – объем отапливаемых помещений. Чем он меньше, тем меньше смысла в установке теплоаккумулятора – мощности котла и нагревательных приборов (радиаторов, батарей) вполне достаточно для обогрева небольших помещений. Как функционирует отопление с тепловым аккумулятором – упрощенная схема подключения:

  1. Теплоаккумулятор включается в разрыв между котлом и трубной разводкой, то есть, нагретая в котле жидкость сразу направляется в емкость;
  2. Из аккумулятора горячая жидкость перетекает в отопительные приборы посредством трубной разводки;
  3. По обратной подаче жидкость снова направляется в аккумулятор, а из него – в котел для нового цикла нагревания.
Принципиальная схема работы отопления с тепловым аккумулятором

Потоки подачи и обратки должны постоянно смешиваться – это условие эффективной работы теплового аккумулятора. Но нагретый теплоноситель поднимается вверх, а остывший – опускается вниз, поэтому сложность обеспечения работоспособности системы заключается в том, чтобы создать такие условия, при которых некоторый объем горячей жидкости опускался на дно аккумулятора для нагрева остывшей жидкости из обратки. Заряженный аккумулятор – это резервуар, в котором весь объем теплоносителя имеет одинаковую температуру.

После сгорания очередной порции твердого топлива котел перестает нагревать воду, и начинает работать ТА. Горячий теплоноситель продолжает двигаться в системе, отдавая тепло и охлаждаясь в батареях. Циркуляция будет продолжаться до тех пор, пока теплоноситель не остынет полностью, или в котел не загрузится новая порция дров или угля.

При наличии системы автоматики критическое охлаждение теплоносителя не допускается, так как подача твердого топлива в системе отопления с твердотопливным котлом контролируется датчиками температуры: при достижении определенного значения, означающего, что котел перестал поддерживать горение, датчик подает сигнал в исполнительную систему, которая открывает задвижку подачи топлива – угля, пеллет или торфа. Автоматическая загрузка топлива в твердотопливный котел

Недостатки работы системы отопления с теплоаккумулятором для дачных и садовых домиков с сезонным проживанием:

  1. Помещения прогреваются дольше;
  2. Из-за маленьких размеров ТА увеличивается объем отопительного контура, поэтому самый дешевый теплоноситель для таких систем – вода. Антифриз и другие синтетические жидкости обойдутся слишком дорого.


Но каждый раз по приезде вновь наполнять систему водой – занятие хлопотное, а, если выездите на дачу два-три раза в месяц – просто бессмысленное. Поэтому в ТА встраиваются дополнительные стальные спиральные трубы, выполняющие роль отопительных контуров. Теплоноситель, протекающий по спиралям, не контактирует с теплоносителем в ТА, а является отдельным и автономным контуром отопления или ГВС. Реализацией такого несложного приема можно добиться универсальности применения любого котла, даже простейшего одноконтурного. Причем КПД такого оборудования будет использован максимально. Теплоаккумулятор со спиралевидным контуром

Роль таких пассивных спиралей могут выполнять и активные элементы – электрические ТЭНы, которые могут подключаться к электрической сети или быть автономными – работать от энергии солнца (солнечных аккумуляторов). Такой способ нагрева теплоносителя или ГВС считается вспомогательным.

Схема обвязки с тепловым аккумулятором

Схем отопления с твердотопливным котлом и теплоаккумулятором можно разработать сколько угодно – все будет зависеть от реальных условий эксплуатации отопления, расположения помещений, их площади, применяемого оборудования, и т.д. Традиционная и стандартная обвязка твердотопливного котла отопления схема с теплоаккумулятором работает следующим образом:

На рисунке ниже стрелками указаны перемещения теплоносителя по системе, при этом обратка вверх двигаться не может. Чтобы забирать теплоноситель из обратки, в схему включается циркуляционный насос между аккумулятором и котлом, который перекачивает больше жидкости, чем насос до ТА. Таким образом, образуется перепад давлений в трубах, и жидкость забирается из трубы обратной подачи в резервуар. Небольшой недостаток этой схемы заключается в том, что контур будет нагреваться дольше. Простейшая схема обвязки с теплоаккумулятором

Для уменьшения этого временного отрезка реализуется такое устройство отопления (рисунок ниже по тексту) с замкнутым циклом прогревания котла. Работает схема так: теплоноситель не поступает из ТА в котел до тех пор, пока она не нагреется в рубашке котла до заданной температуры. После достижения заданного значения некоторый объем жидкости из трубы подачи поступает в аккумулятор, а часть смешивается в системе с жидкостью из ТА, и снова подается в котел. Обвязка теплоаккумулятора с контуром прогревания котла

В результате реализации такой схемы котел всегда принимает нагретую жидкость, что поднимет его КПД, уменьшает время прогрева отопительного контура и позволяет организовать автономный режим работы включением двух байпасов:

  1. При неработающем насосе и перекрытом вентиле нижнего байпаса работает обратный клапан;
  2. При неработающем насосе и обратном клапане работает нижний байпас.


Из-за высокого сопротивления обратного клапана потоку теплоносителя его можно не включать в схему: Обвязка без обратного клапана для системы с естественной циркуляцией теплоносителя

При аварийном отключении электричества шаровый вентиль открывается вручную. При работе схемы только с принудительной циркуляцией теплоносителя обвязка с ТА делается по следующей схеме: Обвязка для системы с принудительной циркуляцией теплоносителя

Как рассчитать требуемый объем теплоаккумулятора

Слишком большой или слишком маленький резервуар для накопления тепла в виде нагретого теплоносителя– это неэффективное решение, поэтому требуемый объем резервуара подлежит математическому расчету, точные результаты которого получить сложно из-за приблизительных первоначальных данных – тепловых потерь в помещении, свойств утеплителя стен и фундамента дома, теплоизолирующих качеств стройматериалов стен, перекрытий и перегородок, этих же параметров оконных и дверных проемов. Но приблизительно провести расчет теплоаккумулятора все же можно, и рассчитан такой прием именно на незнание точных тепловых потерь здания, тем более, если его только предстоит построить.

Выбор размеров и объема резервуара под тепловой аккумулятор можно сделать, отталкиваясь от следующих параметров:

  1. Общая площадь отапливаемых помещений;
  2. Тепловая мощность нагревательного оборудования.

Эти два параметра и определяют объем ТА.

Допустим, необходимо вычислить объем теплового аккумулятора для отопительной системы, исходя из отапливаемой площади помещения. Формула для расчета простая: площадь в квадратных метрах умножается на четыре (Sx 4). Например, для дома общей отапливаемой площадью 50 м2 потребуется резервуар на 200 литров. При таком объеме ТА, как показывает практика, загружать котле твердым топливом можно всего одни раз в сутки. Это – очень хорошая экономия и очень хороший КПД.

Расчет объема теплоаккумулятора отопления

Знающие хозяева скажут, что можно просто установить пиролизный котел, который будет работать так же. Но работа такого котла немного сложнее и менее эффективна, так как:

  1. Сначала топливо возгорается и разгорается;
  2. Затем ограничивается подача воздуха;
  3. Последним активируется тление топлива (пиролиз).

При возгорании топлива температура теплоносителя резко возрастает, а пиролизный процесс поддерживает ее на заданном уровне, причем во время протекания пиролиза много тепловой энергии просто исчезает в трубу дымохода, не обогревая почти ничего. Еще один минус – при открытой системе отопления на пиках разогрева теплоноситель может закипать и выплескиваться из расширительного бачка, а при использовании ПВХ труб для разводки отопления они быстрее выходят из строя от высокой температуры.

 

Отопление теплоаккумулятором

В КАКИХ СЛУЧАЯХ ЭТО АКТУАЛЬНО?

➤ Первое — и самое главное — хорошее утепление вашего дома. Правильно сделанный проект и утепление в стенах 150-200 мм, а в потолке 200-250 мм базальтовой ваты.

➤ Второе — наличие выделенной мощности электричества. Минимум у вас должно быть 15 кВт. То есть если у вас категория земель для постоянного проживания, то энергетики по умолчанию предоставляют вам мощности 15 кВт в три фазы. Этого достаточно.

➤ Третий параметр — наличие ночного тарифа. Если вы, к примеру, подключаетесь к системе Моэск, ночной тариф (с 11 вечера до 7 утра) они вам предложат по умолчанию.

Этот тариф мы как раз и будем использовать по максимум, когда электричество в три раза дешевле, чем днем.

 

 

Лучше всего это продумать на этапе проектирования вашего дома. Потому что эффективнее всего система отопления с теплоаккумулятором работает в связке с теплыми полами.

 

Я видел, когда теплоаккумулятор применяют в связке с радиаторами. Но минус в том, что теплоаккумулятор — это большая емкость. Ее нагреть достаточно сложно, нужна большая мощность. И в принципе его можно нагреть до 80-85 ºС, и радиатор у вас это все снимет за 3-4 часа. А к вечеру дом выстудится.

Поэтому я рекомендую подключать данную систему отопления в связке с теплыми полами.

 

Температура подачи воды в тёплые полы у меня в среднем 40-50 ºС. Точнее, с утра, когда теплоаккумулятор только прогрелся, температура подачи теплоносителя в полы такая же, как температура в теплоаккумуляторе (50-55 ºС). К вечеру теплоаккумулятор остывает и температура воды приближается гд-то к 30-35 ºС.

Но этого достаточно, чтобы в доме была комфортная для проживания температура в 20-23 ºС.

Еще один плюс теплых полов (помимо того, что вы ходите по полу босиком даже зимой) в том, что помещение прогревается равномерно. Если у вас стоят радиаторы, то их нужно большое количество и распределять на всю площадь дома.

Теплоаккумулятор (буферная емкость) в системе отопления

Буферная емкость — полезнейший элемент в системе отопление с твердотопливным котлом и с электрическим котлом. Но если теплоаккумулятор подключить не правильно, то он не будет выполнять свои функции как положено.

Аккумулятор тепла для системы отопления (Буферная емкость) представляет из себя большую емкость наполненную теплоносителем и подключенную в схеме между котлом и радиаторами.

Разберемся, зачем нужен теплоаккумулятор в системе отопления, в чем заключается особенность подключения буферной емкости, и какое объем потребуется.

Назначение теплоаккумулятора

Назначение теплоаккумулятора понятно из его названия – хранить в себе запас тепловой энергии. У твердотопливного котла действие периодическое. Температура теплоносителя на его выходе изменяется в зависимости от интенсивности горения и количества одновременно горящего топлива.

Удобно топить котел не чаще раза в сутки.
За одну топку он может выделить, к примеру, 100 кВт (30 кг дров или 13 кг угля при КПД 80%). Но такая энергия выделится за 3 – 4 часа, а нам нужно, чтобы она подпитывала систему отопления равномерно в течении 24 часов. Получается по 4 – 5 кВт. Сделать это поможет только буферная емкость.

Аккумулятором тепла в доме выступают сама система отопления, так как в ней немало жидкости – может быть 100 литров и больше. Также тепло хорошо аккумулируют тяжелые строительные материалы – цементнопесчаная стяжка, перегородки и стены из кирпича, бетона, шлакобетона.

В доме, где много тяжелых строительных материалов, где большая внутренняя теплоемкость, сохраняется особый комфорт из-за отсутствия резки скачков температуры и влажности. В каркасных домах сгладить дискомфорт призвана система вентиляции управляемая электроникой.

Чтобы поддерживать стабильную температуру на протяжении суток в холодное время при неработающем котле, одной внутренней теплоемкости дома будет мало, необходима буферная емкость.

Как применяется буферная емкость с электрическим котлом

С твердотопливным котлом все понятно, — буферная емкость нужна чтобы топить котел пореже.
Но зачем нужен теплоаккумулятор с электрическим котлом, который можно запрограммировать как угодно?

Ответ на вопрос заключается в ночном маленьком тарифе на электричество.

Если есть возможность подключить ночной тариф и достаточную электрическую мощность (трехфазное подключение), то отопление электрическим котлом будет оптимальным. Несмотря на повышенную стоимость электричества (даже ночной тариф! — 1,7 руб/кВт, для дров примерно 1,0– 1,3 руб /кВт) выбор в пользу электрокотла побеждает из-за самого комфортного пользования.

Буферная емкость накапливает энергию выработанную за ночь электрокотлом, а днем будет ее отдавать.

Можно ознакомится с выбором вида отопления для дома – что дешевле?

Как подключается буферная емкость

Лучше применить простую и надежную схему подключения буферной емкости.

На емкость подключаются два контура – с одной стороны котел с насосом. С другой стороны система отопления со своим насосом.

Правильное направление движения жидкости в буферной емкости сверху вниз (указано на схеме стрелкой). Тогда теплоаккумулятор будет нагреваться от котла, или, как говорят специалисты, — будет заряжаться. После выключения котла емкость будет остывать и отдавать разогретый теплоноситель на радиаторы и тепло на ГВС.

Но как этого добиться?
Достигается путем подбора производительности насосов. Как правило, контур котла короткий, поэтому при одинаковых насосах жидкость будет двигаться в емкости сверху вниз. Чтобы обеспечить в любом случае превосходство контура котла по производительности в систему всешжда вводят дроссельный кран, которым запирают контур отопления при необходимости.

Термометры и трехходовой клапан

Также в подключении радиаторов может быть применен трехходовой клапан с термоголовкой (на схеме не показан) который позволит забирать тепло из емкости понемногу в соответствии с настройками термоголовки.

Проверить же в каком направлении движется жидкость по емкости – снизу вверх или сверху вниз, можно с помощь термометров, установленных с двух сторон емкости на обратке. Некоторые теплоаккумуляторы снабжены градусниками.
Температура на обратке котла должна быть несколько больше, чем на обратке отопления. Тогда буферная емкость будет заряжаться.

Змеевик внутри буферной емкости обеспечит нагрев воды для горячего водоснабжения. Отдельный бойлер для ГВС не нужен.

Крайне важно, оградить твердотопливный котел от холодной обратки, ведь остывшую емкость не быстро разогреть, а также необходимо прекращать циркуляцию, когда котел погаснет. В противном случае он быстро охладит жидкость через свой теплообменник, ведь продувка на дымоход идет постоянно. Как подключить котел, чтобы он работал в оптимальном режиме – читайте на данном ресурсе.

Какой объем аккумулятора тепла выбрать

В подборе объема теплоаккумулятора для системы отопления важны не столько расчеты, сколько опыт эксплуатации и здравый смысл.

Весь нюанс выбора объема буферной емкости в том, что она стоит не мало, а дней с пиковыми холодами совсем не много.
Поэтому разумней не устанавливать емкость на 3 тонны, которая весьма дорогая, а в сильные морозы протопить несколько раз. Да к тому же и нагревать 3 тонны весьма долго, отопление получится не комфортным.

Практика показала, что оптимальным объемом, обеспечивающий достаточный комфорт, является одна тонна на 200 м кв. площади дома, если дом, конечно, утеплен как положено. Из этого расчета можно приблизительно принять: 100 м кв — 0,7 тонны, 300 м кв – 1,3 тонны.

Кстати, об утеплении – как утеплить дом, чтобы отопление было минимальным, читайте ЗДЕСЬ.

С буферной емкостью удобней использовать твердотопливный котел повышенной мощности, по принципу, — «Протопил один раз». Подбирается котел как минимум в 2 раза мощнее, чем по расчету теплопотерь. Если нужен на 15 кВт, — берем на 40 и не ошибаемся. Мощный твердотопливный котел, в отличие от других типов котлов всегда удобнее в эксплуатации.

Остается заметить, что сделать буферную емкость самостоятельно или пользоваться «самопалом» чаще не практичнее и не дешевле. Устройство сложное, требует защиты от коррозии, высокой теплоизоляции, правильного змеевика, лучшей циркуляции воды, и к тому же особой прочности. Так что думайте сами…

Схема отопления с теплоаккумулятором — Система отопления

На этой странице мы попытаемся выбрать для своего дома нужные компоненты монтажа. Схема обогревания насчитывает, радиаторы терморегуляторы, крепежную систему, расширительный бачок, провода или трубы, автоматические развоздушиватели, фиттинги, механизм управления тепла, циркуляционные насосы котел отопления. Система отопления квартиры имеет определенные части. Любой элемент роль. Поэтому соответствие всех частей конструкции нужно планировать обдуманно.

Схема отопления с теплоаккумулятором

Схема подключения теплоаккумулятора зависит от теплового и гидравлического режима источника и потребителя тепла, а так же от количества источников и потребителей.

Схема с прямым подключением теплоаккумулятора к контуру источника и потребителя, применяется если:

  • Требования к качеству теплоносителя в контуре источника и потребителя тепла одинаковые.
  • Рабочее давление у потребителя тепла (на всех режимах) не превышает максимально допустимого давления для источника тепла и самого теплоаккумулятора.
  • Температура теплоносителя в теплоаккумуляторе на всех режимах, соответствует необходимой температуре для потребителя.

Данная схема используется в небольших системах отопления частных домов с количественным регулированием на отопительных приборах. При этом на выходе источника тепла, а соответственно и в теплоаккумуляторе, поддерживается постоянная температура.

Если тепловой режим потребителя предполагает качественное регулирование с различной температурой поступающего теплоносителя в зависимости от времени суток или температуры наружного воздуха, данную схему дополняют узлом смешения.

Схема подключения потребителя к теплоаккумулятору с узлом смешения. используется если:

  • Требования к качеству теплоносителя в контуре источника и потребителя тепла одинаковые.
  • Температура теплоносителя на выходе из источника тепла на каком либо из режимов превышает, температуру необходимую для потребителя.
  • Рабочее давление у потребителя тепла (на всех режимах) не превышает максимально допустимого давления для источника тепла и самого теплоаккумулятора.

Данная схема получила применение системах отопления с качественным регулированием при котором температура теплоносителя поступающего в систему отопления зависит от температуры наружного воздуха, времени суток, дня недели или от температуры в воздуха в контрольном помещении.

Трёхходовой клапан, установленный в контуре системы отопления, к горячему теплоносителю отбираемому из верхней части теплоаккумулятора подмешивает теплоноситель из обратного трубопровода, в пропорции необходимой для получения заданной температуры смеси подаваемой в систему отопления.

Возможность поддерживать максимально высокую температуру воды в теплоаккумуляторе является одним из преимуществ данной схемы, так как позволяет увеличить его аккумулирующую способность.

Если рабочее давление у потребителя тепла превышает рабочее давление для теплоаккумулятора или источника, применяют независимое подключение потребителя (через теплообменный аппарат).

Если рабочее давление в контуре источника тепла превышает допустимое давление для теплоаккумулятора или системы отопления, применяют схему с теплообменным аппаратом в контуре источника.

Схема подключения теплоаккумулятора со встроенным теплообменником. применяется если:

  • Рабочее давление в контуре источника тепла превышает допустимое давление для системы отопления.
  • Различные требования к качеству теплоносителя в контуре источника и потребителя тепла.

Если площадь поверхности теплообменных аппаратов встроенных в теплоаккумуляторы недостаточна для нагрева необходимого объёма воды за заданное время, применяют схемы с внешним теплообменником и загрузочным насосом.

Схема подключения теплоаккумулятора с внешним теплообменником и загрузочным насосом, применяется если.

  • Серийно встраиваемые теплообменные аппараты не обеспечивают нагрева бака за заданное время.
  • Давление теплоносителя в контуре источника тепла превышает допустимое давление для потребителя или теплоаккумулятора.
  • Различные требования к качеству теплоносителя в контуре потребителя и источника тепла.

Теплоаккумуляторы со встроенным баком. применяются для подключения систем горячего водоснабжения с непродолжительным, но высоким пиковым расходом воды.

Такие теплоаккумуляторы отличаются тем, что могут кратковременно, обеспечить высокую пиковую потребность в горячей воде, но после заполнения встроенного бака холодной водой её повторный нагрев займёт длительное время.

В системах с потребностью в высокой длительной мощности нагрева устанавливают теплоаккумуляторы со встроенным или внешним теплообменным аппаратом системы горячего водоснабжения.

Схема подключения теплоаккумулятора со встроенным теплообменником системы горячего водоснабжения. применяется при необходимости в высокой длительной мощности подогрева горячей воды.

Тепловые аккумуляторы со встроенным теплообменником системы ГВС обеспечивают высокую длительную мощность, но не могут покрыть пиковых нагрузок за её пределами.

Если заданная длительная мощность подогрева воды не обеспечивается серийно устанавливаемыми теплообменными аппаратами, применяют теплоаккумулятор с внешним теплообменником и загрузочным насосом.

Бивалентная схема подключения теплоаккумулятора с солнечным коллектором. Солнечный коллектор подключают к теплоаккумулятору через встроенный теплообменный аппарат в нижней части бака. При этом предполагается работа в режиме максимально возможного нагрева бака солнечной энергией а, при необходимости догрева за счёт второго источника.

В данной схеме дополнительным источником может быть газовый, твердотопливный или электрический котёл.

Подключение потребителя через теплоаккумулятор от нескольких источников тепла. К применению в современных системах нескольких источников тепла принуждает, различная стоимость единицы тепловой энергии полученная от каждого из них.

Тепло полученное от солнца имеет минимальную стоимость, но оно есть не всегда и пики его поступления, как правило, не совпадают с пиками потребления.

Тепло полученное от теплового насоса обходится несколько дороже солнечного и его можно получить всегда, но чтобы покрыть за счёт него всю тепловую мощность потребителя необходимы существенные капитальные затраты, поэтому мощность теплового насоса, обычно ниже потребной мощности системы.

Тепло полученное от газового, электрического или твердотопливного котла — самое дорогое, поэтому его используют только для догрева при недостаточной мощности первых двух источников.

Тепловой аккумулятор позволяет накопить тепловую энергию от нескольких источников и использовать её одним или несколькими потребителями. Низкотемпературные источники такие как, тепловой насос и солнечный коллектор присоединяют к нижней части бака, а высокотемпературные, такие как твердотопливный газовый или электрический котёл к верхней.

* Пояснения условных графических обозначений на схемах

Источник: http://www.ktto.com.ua/skhema/bat

Схема отопления с теплоаккумулятором

Преимущества работы твердотопливного котла в системе отопления частного дома с буферной емкостью, в качестве аккумулятора тепла, описаны в предыдущей статье “Котел отопительный твердотопливный с аккумулятором тепла” .

В бак теплоаккумулятора часто встраивают электронагреватель, который является резервным источником тепла. Электроэнергию удобно использовать в межсезонье; для подогрева воды ночью, когда стоимость электроэнергии и нагрузка на сеть минимальны; при длительных перерывах между топками котла.

Система отопления, представленная на рисунке, является закрытой. Из-за отсутствия соединения с атмосферой, теплоноситель в системе находится под давлением, выше атмосферного. Тепловое расширение воды при нагревании компенсируется мембранным баком, поз.7.

Твердотопливный котел для работы в закрытой системе должен быть специального исполнения — рассчитан на работу при повышенном давлении.

Часто первичный контур системы отопления – котел и бак теплоаккумулятора, делают открытым (соединенным с атмосферой) . Работа котла и бака под атмосферным давлением снижает требования к их изготовлению и удешевляет это дорогостоящее оборудование.

Однако, в малоэтажных домах, давление воды в самотечной (гравитационной) системе, как правило, не достаточно для нормального функционирования теплых полов и радиаторов.

Поэтому вторичный контур системы отопления — трехходовой смесительный клапан (поз.13), циркуляционный насос (поз.12), радиатор отопления (поз.13), делают закрытым , присоединяя его к теплообменнику, расположенному внутри бака аккумулятора тепла.

Рассмотрим еще одну схему отопления частного дома твердотопливным котлом . которую предлагает один из российских производителей буферных емкостей — аккумуляторов тепла. С подробным описанием конструкции буферного бака можно познакомиться здесь.

Источник: http://domekonom.su/2013/02/chema-tverdotoplivnyi-kotel-teploakkumuljator.html

Схема отопления с теплоаккумулятором

Тепловые аккумуляторы из черной стали серии ВТА используются в сочетании с различными источниками теплоснабжения (котлы — твердотопливные, газовые, электрические; солнечные коллекторы; тепловые насосы) для аккумулирования тепла и его использования на нужды отопления и ГВС. Конструкция теплоаккумуляторов серии ВТА предусматривает наличие теплообменника из нержавеющей и черной стали, а также фланца и возможность установки ТЭНов .

Теплообменник из нержавеющей стали, который используется в моделях ВТА −1, ВТА −2, конструктивно расположен в верхней части бака и предназначен для приготовление воды для ГВС.

Теплообменник из черной стали используется в моделях ВТА −1, ВТА −3, конструктивно расположен в нижней части бака. Данный теплообменник используется с солнечными коллекторами или низкотемпературными системами нагрева.

Уникальностью ВТА −1 — СОЛАР ПЛЮС является увеличенный теплообменник из нержавеющей стали, часть которого расположена непосредственно в теплообменнике из черной стали. За счет такого расположения повышается производительность теплообменника для ГВС.

Отсутствие теплообменников в модели ВТА −4 и ВТА −4 — ЭКОНОМ делает их идеальными для использования с твердотопливными котлами. Теплоноситель, который нагревается котлом, будет аккумулироваться в теплоаккумуляторе и в дальнейшем использоваться для отопления. Отличительной чертой ВТА −4 — ЭКОНОМ является упрощенная конструкция за счет минимизации количества присоединительных патрубков и отсутствии фланца, что уменьшает стоимость изделия.

Источник: http://www.teplobak.com.ua/ru/about/chernaya_stal

Так же интересуются
08 августа 2021 года

Система отопления с теплоаккумулятором — Система отопления

Каждый элемент важную роль. Исходя из этого выбор каждого элемента конструкции нужно делать технически правильно. Система обогревания имеет, фиттинги терморегуляторы, автоматические развоздушиватели, радиаторы, провода или трубы котел отопления, расширительный бачок, крепежную систему, циркуляционные насосы, механизм управления тепла. Монтаж обогрева гаража насчитывает различные элементы. На открытой странице сайта мы постараемся выбрать для своей квартиры нужные компоненты монтажа.

Система отопления с теплоаккумулятором

Положительный опыт использования теплоаккумуляторов для систем отопления заставил задуматься о применимости сего устройства в моем хозяйстве.

На входе имеем:

  1. Систему низкотемпературного напольного отопления, имплантированную в УШП .
  2. К ТП подключена коллекторная группа с манометром, воздухоотводчиками и термометрами на подаче и обратке (паспорт изделия ).
  3. Водонагреватель Аристон 100 литров, 1,5 кВт.
  4. Трехфазное напряжение.
  5. Трехтарифный учет электроэнергии (14.10.2013 подана заявка в Мосэнергосбыт).
Какие задачи ТА должен выполнять?

1.2. Хайду (Hajdu), Венгрия (модели PT. С со змеевиком для СО, а модели PT. СF с двумя змеевиками для СО и ГВС).

Источник: http://www.forumhouse.ru/entries/4636/

Система отопления с теплоаккумулятором

Воль

Форумчанин

Сергей

Гость

Твердотопливный котел, работающий в системе водяного отопления обычно имеет небольшой объем водяного пространства и небольшой объем воды, циркулирующий в системе отопления.

При горении дров, угля выдается большое количество тепла. Вода перегревается из-за малого её объема. В случае если котел снабжен автоматической заслонкой тяги, процесс автоматического закрытия заслонки при его перегреве может полностью прекратиться, начинает выделяться сажа и вредные газы, что приводит к нарушению работы котла, т.к. сажа сильно уменьшает КПД, увеличивается количество внеплановых чисток котла, срабатывает предохранительный клапан, сбрасывая лишнее давление. Запас жидкости в системе отопления быстро остывает-это приводит к более быстрому выходу котла из строя.

Подключению теплового аккумулятора к твердотопливному котлу является обязательным! Это позволяет увеличить объем водяного пространства,обеспечить правильную работу котла и его автоматики, повысить КПД котла, увеличить интервалы между топками.

Например: к твердотопливному котлу Jaspi ECOPU 25 мощностью 25 кВт рекомендуется подключение теплового аккумулятора, объемом не менее 500 литров (Jaspi GTV 500)

В тепловых аккумуляторах предусмотрена возможность установки электронагревательных элементов, которые оснащены термоэлементами с регулировочным и ограничительным термостатом, который автоматически включается при понижении температуры в системе отопления, ниже установленного на нем значения. Им удобно пользоваться в ночное время при ночных тарифах на электроэнергию.

Источник: http://forum.vashdom.ru/threads/teploakkumuljator-ta-pri-tverdotoplivnyx-kotlax-ttk.26482/

Система отопления с теплоаккумулятором

Строительство и ремонт своими руками!!

Home Строительные советы Схема отопления с теплоаккумулятором

Рейтинг пользователей: / 2

Худший Лучший

Теперь давайте рассмотрим пример схемы отопления твердотопливным котлом с теплоаккумулятором. При этом не будем лишать себя таких современных элементов роскоши, как скажем, теплый водяной пол.

Данная схема рассматривается как закрытая, с избыточным давлением, расширительным баком и всеми прочими элементами взрыво и пожаробезопасности. Единственный открытый элемент данной системы – теплоаккумулятор. Это связано с простотой его реализации и опять же безопасностью. В будущих статьях рассмотрим компоненты, многократно повышающие теплоемкость такого теплоаккумулятора при таких условиях эксплуатации.

Итак, выбираем ЛЮБОЙ твердотопливный котел 1, который хотим оснастить теплоаккумулятором 2. Для быстроты прогрева помещения,  можно поставить запорный кран или термоклапан на вход горячей воды в теплоаккумулятор. Это позволит  подать тепло сначала на первоначальные нужды – обогрев дома, а затем избыточное тепло может пойти в ТА.

В процессе топки кран на обратке 4 открыт, а циркулярный насос 3 работает всегда. Я НЕ рассматриваю систему отопления с естественной циркуляцией.  Кто боится отключения электроэнергии, то для этого давно придуманы источники бесперебойного питания.

По мере нагрева теплоносителя, термоголовка 8 подает необходимое тепло в радиатор 7, остальное тепло отбрасывается с обраткой. Одновременно и теплые полы 6 не дремлют, и при помощи узла подмеса 9 берут необходимое количество тепла.

В процессе обогрева дома рано или поздно настанет момент, когда все терморегуляторы перестанут принимать подающее тепло. Вот в такой момент и наступает черед теплоаккумулятора. Теплоноситель потихоньку начнет охлаждаться в массе ТА 2, отдавая ему излишнее тепло. И при дальнейшей топке котла, мы будем заряжать теплоаккумулятор.

Итак, котел прогорел, угли еле шаят, самое время перекрыть кран обратки 4 (см. схему выше). При этом котел может сколько угодно остывать себе, пока его не захотят вновь растопить. А система при этом будет продолжать активно работать. Благодаря прямому байпасу 5, и постоянно работающему циркуляционному насосу 3, система переходит из режима генерации в режим потребления…. Потребления тепла, накопленного теплоаккумулятором.

И при этом теплоаккумулятор может представлять собой обычную емкость для воды (лучше утепленную), с погруженными в нее любым способом теплообменником.

Источник: http://www.slavok80.ru/index.php/str-sovety/344-2013-12-18-02-36-19

Система отопления с теплоаккумулятором

Использование в отопительной системе частного дома (коттеджа, дачи) твердотопливного котла в качестве основного прибора для нагрева теплоносителя сопряжено с опасностью перегрева и закипания последнего. Чтобы обеспечить безопасность работы отопления и комфортный температурный режим жилья, необходимо включить в схему отопительной системы теплоаккумулятор для твердотопливного котла.   Для этой цели используют специальный бак (называемый также буферной емкостью или просто буфером), наполненный водой и имеющий надежную теплоизоляцию для предотвращения остывания теплоносителя в течение длительного времени.

Основные функции, выполняемые буферной емкостью (теплоаккумулятором):

  •   Аккумуляция (накопление) нагретого теплоносителя и постепенная подача его в отопительную систему по мере надобности.
  •   Защита котла от опасности закипания путем поглощения перегретой воды и смешивания ее в баке с уже остывшей.
  •   Возможность автоматического регулирования распределения горячей воды по отопительным контурам, включая или выключая ее подачу по сигналу температурных датчиков, комнатных или уличных (погодных), создание таким образом комфортной температуры жилья.
  •   Относительная стабильность микроклимата дома, достигающаяся за счет включения подачи горячей воды из буферной емкости для твердотопливного котла в отопительную систему, а также уменьшения числа загрузок топлива в топку.
  •   Осуществление связи с другими отопительными устройствами системы, если таковые имеются (газовым или электрическим котлом).
  •   Полное выгорание топлива за счет того, что отсутствует необходимость ограничения тяги, в результате – высокие показатели КПД и эффективности эксплуатации котла, а также экономии топливного сырья.
  •   Обеспечение дома горячей водой для бытовых нужд в случае наличия вмонтированного внутри буферной емкости теплообменника для ГВС.

Буферная емкость монтируется между нагревательным прибором (твердотопливным котлом) и отопительной системой, включающей в себя трубопроводы, радиаторы (иногда «теплый пол»).

Посредством циркуляционного насоса горячая вода попадает в бак теплоаккумулятора, при этом аналогичное количество уже остывшего теплоносителя уходит через возвратную трубу в котел.

Обвязка твердотопливного котла с теплоаккумулятором должна производиться таким образом, что на трубе, выходящей из буферной емкости и направленной к радиаторам отопления, располагается другой циркуляционный насос, сигнал для включения или выключения которого подается температурными датчиками, комнатными или погодными.

Специфика работы твердотопливного котла в том, что этот процесс невозможно остановить мгновенно (как прекращают подачу газа к горелке), поэтому накопительная емкость буфера служит защитой от перегрева, кипения воды и разрушения отопительной системы.

В закрытой отопительной системе с твердотопливным котлом, кроме теплоаккумулятора, обязательно должны устанавливаться предохранительный клапан и расширительный бак.

Выбирая модель твердотопливного котла, нужно учитывать, что при использовании в системе буферной емкости мощность отопительного устройства должна быть на 30% выше, чем получится при стандартном расчете 1кВт на каждые 10 м².

Расчет теплоаккумулятора для твердотопливного котла приблизительно производится по следующей норме – от 25 до 50 л объема буферной емкости на 1 кВт мощности котла.

При стандартном режиме работы твердотопливного котла древесина сгорает при температуре более 300°, но в этом случае КПД установке недостаточно высок, так как с горячими продуктами сгорания через дымоход утекает и часть тепла, предназначенного для нагрева воды в системе. Используя длительный способ сжигания топлива, достигается выход продуктов сгорания с температурой 90-100°, но при этом существует оседание на стенках металлического дымохода и внутренней части котла паров конденсата. Поэтому применение в схеме обвязки отопительной системы буферной емкости является наиболее рациональным способом процесса топки, позволяя топить котел циклично – одна-две закладки за период от 1 до 5 суток.

Твердотопливные котлы с теплоаккумулятором, работающие в цикличном режиме, за счет периодов простоя и расходования в это время горячей воды из буфера оказываются наиболее экономичными отопительными системами. Кроме того, существуют и другие явные преимущества данного типа отопления:

  •   Гарантия безопасности от перегрева воды в системе.
  •   Возможность использования воды для ГВС, в летнее время достаточно одной закладки для создания запаса горячей воды на несколько дней.
  •   Получение высокого КПД (до 86%) путем полного сгорания топлива при максимальной температуре.
  •   Экономия топлива и электроэнергии в периоды простоя.
  •   Возможность использования буферной емкости в летнее время для охлаждения полов.
  •   Создания оптимального микроклимата за счет сокращения количества закладок топлива и стабилизации температуры в помещении.
  •   Возможность совместить в системе разные нагревательные установки и отопительные контуры.

Недостатки данной отопительной системы:

  •   Высокая цена буферной емкости и фабричного, и собственного производства.
  •   Тяжеловесность и громоздскость теплоаккумуляторного бака, так как емкость его должна быть не менее 500 л.
  •   Необходимость наличия помещения с надежным и крепким полом.

Источник: http://www.prouteplenie.ru/teploakkumulyator-dlya-tverdotoplivnogo-kotla-dlya-chego-nuzhen/

Так же интересуются
08 августа 2021 года

Теплоаккумулятор для системы отопления — основные преимущества. Жми!

Стремление многих хозяев частных домов и коттеджей как можно эффективнее использовать ресурсы для обогрева своего жилища довольно часто сталкивается с одной и той же проблемой, — даже при использовании всех современных технологий утепления и энергосбережения, установке самых экономных отопительных котлов, — существенной экономии ресурсов не происходит.

Во многом это является следствием ошибок, допущенных задолго до постановки вопроса о рачительном использовании ресурсов и применении современных технологий строительства. А вот как быть с новыми, возведенными по всем современным канонам домов, неужели наступил предел развития?

Для большинства это так и останется риторическим вопросом, а вот для тех, кто решил воспользоваться действительно научными знаниями, а не выдержками из рекламных буклетов, стоит задуматься о включении в систему отопления нового элемента – теплоаккумулятора.

Как работает система отопления

В современном понимании энергоэффективности установок отопления, в том числе и отдельного дома или коттеджа, в последнее время акцент существенно сместился с показателя потребления топлива на обогрев помещения на показатель, характеризующий эффективность использования энергии для полного теплоснабжения дома.

Такой обоснованный акцент на энергоэффективность позволяет по-новому посмотреть на проблему теплоснабжения жилища, включающую в себя две основные задачи:

  • отопление дома;
  • горячее водоснабжение.

Новым путем экономии энергоресурсов в системе теплоснабжения здания сегодня выступает установка в системе отопления дополнительного оборудования, в функции которого входит аккумулировать тепловую энергию и постепенно ее расходовать.

Применение теплового аккумулятора в схеме приборов системы отопления, где основным источником энергии выступает твердотопливный котел, позволяет без дополнительных затрат провести снижение потребления топлива до 50% в отопительный сезон. Но это в будущем, а пока достаточно наглядно следует рассмотреть принцип работы этого устройства.

Принцип работы системы с твердотопливным котлом

Наиболее высокий эффект от подключения в систему будет применительно именно к твердотопливным котлам.

Тепло, выделяемое при сжигании топлива, через теплообменник по трубопроводу поступает в регистры или батареи отопления, являющиеся по сути теми же теплообменниками, только не получающими тепло, а наоборот, отдающие его окружающим предметам, воздуху, в общем, нагревающему помещению.

Остывая, теплоноситель — вода в батареях, опускается вниз и снова перетекает в контур теплообменника котла, где опять нагревается. В такой схеме существует минимум два момента, связанных с большой, если не с огромной потерей тепла:

  • прямое направление движения теплоносителя от котла к регистрам и быстрое остывание теплоносителя;
  • небольшой объем теплоносителя внутри системы отопления, что не позволяет поддерживать стабильную температуру;
  • необходимость постоянного поддержания стабильно высокой температуры теплоносителя в контуре котла.

Важно понимать, что такой подход иначе как расточительным назвать нельзя. Ведь при закладке топлива сначала при высокой температуре горения в помещениях воздух прогреется довольно быстро. Но, как только процесс горения прекратится, завершится и нагрев помещения, и как результат – снова понизится температура теплоносителя, и остынет воздух в помещении.

Использование теплоаккумулятора

В отличие от стандартной системы отопления, система, снабженная аккумулятором тепла, работает несколько иначе. В самом примитивном виде, сразу после котла бак устанавливается в качестве буферного устройства.

Между котлом и трубопроводами устанавливается бак со многослойной теплоизоляцией. Ёмкость бака, а она рассчитывается таким образом, чтобы количество теплоносителя внутри бака было больше, чем в системе отопления, содержит теплоноситель, нагреваемый от котла.

Внутрь бака введены несколько теплообменников для системы отопления и для системы горячего водоснабжения. Нагретый от котла внутренний объем аккумулятора долгое время может поддерживать высокую температуру и постепенно отдавать ее для систем отопления и водоснабжения.

Учитывая то, что самый маленький бак имеет объём 350 литров воды, то нетрудно рассчитать, что потратив одно и то же количество топлива при использовании теплового аккумулятора эффект будет намного больше, чем при прямой системе отопления.

Но это самый примитивный вид теплового прибора. Стандартный, рассчитанный на действительно работу в условиях теплоснабжения отдельного дома, аккумулятор теплоты может иметь:

  • внутренний объем от 350 до 3500 литров;
  • верхний теплообменник системы горячего теплоснабжения;
  • теплообменник системы отопления;
  • приборы системы безопасности – клапанную группу, манометр, патрубки выхода воздуха;
  • приборы системы контроля температуры, давления, предохранительные и обратные клапаны;
  • технологические выходы стандартной для обвязки арматуры диаметров;
  • высота бака с термооболочкой включает от 1,8 метра до 5,6 метра;
  • диаметр от 0,7 до 1,8 метра.

Цена таких аккумуляторов зависит от многих факторов:

  • материала изготовления бака;
  • объема внутреннего бака;
  • материала, из которого изготовлен теплообменник;
  • фирмы изготовителя;
  • комплекта дополнительного оборудования;

[advice]Замечание специалиста: рассчитать правильную работу всей системы отопления, начиная от ТТ котла и заканчивая диаметром парубков, в принципе можно и самостоятельно, но при этом следует учитывать, что мощность как котла, так и самой установки должна быть рассчитана на работу в условиях максимально низких температур в регионе.[/advice]

Более детальную информацию по этому вопросу сегодня можно найти на страницах интернет сайтов, как в текстовом виде, так и воспользовавшись услугами специализированных онлайн калькуляторов, ну и конечно в специализированных фирмах, занимающихся разработкой и установкой систем теплоснабжения.

Все управляется электроникой

Возможно, для многих такое понятие, как «умный дом» уже давно вошло в привычный ритм жизни.

Дом, в котором многие функции по содержанию и управлению системами берет на себя электроника, не обходится без участия электронных компонентов и работы системы отопления и водоснабжения с аккумулятором тепла.

Для поддержания стабильно комфортной температуры, необходимо не столько постоянное горение топлива в топке котла, сколько стабильное поддержание температуры в системе отопления. И с такой задачей вполне справляется электронное управление работой теплоаккумулятора.

Возможности платы управления:

  • включит циркуляционный насос подачи теплоносителя системы отопления;
  • для дополнительного нагрева теплоносителя в баке откроет заслонки или включит вентилятор турбонаддува котла;
  • в экстренных случаях перекроет клапаны трубопроводов и прустит теплоноситель от котла напрямую в батареи, а уже потом начнет нагревать бак аккумулятора;
  • перенаправит поток горячей воды с теплообменника котла в систему горячего водоснабжения или воспользуется нагревом в контуре бака.

Кроме этого, электронная составляющая может отлично использоваться в качестве контроллера работы, как твердотопливного котла, так и электронагревательных приборов, и даже в качестве использования системы солнечного коллектора для получения максимальной выгоды и экономии ресурсов.

Экономический эффект даже от включения в схему теплоснабжения аккумулятора тепла позволяет, как уже говорилось, до 50% снизить затраты на топливо в отопительный сезон, а если учитывать то, что цена на энергоносители постоянно растет, то такое вложение средств становится не просто выгодным, а уже обязательным для новостроек.

Смотрите видео, в котором пользователь очень подробно разъясняет схему устройства твердотопливного котла вкупе с теплоаккумулятором:

Оцените статью: Поделитесь с друзьями!

Уникальная технология аккумулирования тепла собирает пар

Чтобы обойти это ограничение, исследователи из Аргонна разработали способ встраивания материалов с фазовым переходом в пористую пену с высокой теплопроводностью. Затем они герметизируют пену инертным газом внутри модуля, предотвращая попадание влаги или кислорода внутрь и разрушение компонентов. Сохраненное тепло внутри блока затем может быть передано, например, воде, где оно становится паром, который приводит в движение турбину.TESS также может быть настроен для конкретного применения путем выбора различных материалов с фазовым переходом.

«Одним из больших преимуществ нашей технологии является то, что она модульная, поэтому вам не нужна огромная структура хранения», — сказал Сингх. «Вы можете сделать эти модули определенного управляемого размера, например, бочку емкостью 55 галлонов или меньше, и установить их в любом количестве, которое вам потребуется».

Исследователи продемонстрировали, что TESS работает при температурах выше 700 ° по Цельсию (1292 ° по Фаренгейту).Его высокая плотность энергии делает его меньше по размеру и более гибким, чем обычно используемые системы аккумулирования явного тепла, которые основаны на повышении и понижении температуры материала. Эта технология получила награду R&D 100 в 2019 году, и в настоящее время исследователи работают над ее интеграцией в системы ТЭЦ от Capstone Turbine Corporation для повышения рекуперации тепла.

С помощью отраслевых партнеров Сингх и его коллеги продолжают совершенствовать технологию TESS и разработали собственный испытательный центр для проверки производительности при многократной зарядке и разрядке.В дополнение к усовершенствованию систем когенерации и расширению диспетчеризации опреснительных и электростанций, TESS может преобразовывать отработанное тепло в механическую энергию в тяжелых грузовиках или в отопление салона электромобилей. И так же, как TESS может работать как аккумулятор для тепла, он может делать то же самое и для холода, возможно, предлагая вариант охлаждения для коммерческих зданий.

Компании, заинтересованные в лицензировании или партнерстве по этой технологии, могут отправлять электронные письма партнерам @ anl.

Накопитель тепла — обзор

Накопитель тепловой энергии для систем CSP

Накопитель тепловой энергии передает тепло носителю хранения во время периода зарядки и высвобождает его на более позднем этапе на этапе разрядки.Его можно успешно применять на солнечных тепловых электростанциях или в промышленных процессах, таких как металлургические преобразования. CSP уникален среди технологий возобновляемых источников энергии, поскольку, несмотря на то, что он является переменным, как солнечные фотоэлектрические и ветровые, его можно легко сочетать с TES, а также с традиционными видами топлива, что делает его очень управляемым. Системы CSP без TES обычно ограничены коэффициентом мощности около 25% из-за суточного солнечного цикла и погоды (Purohit et al., 2016). Коэффициенты мощности для заводов CSP варьируются от 25% до 75%, в зависимости от конструкции и внедрения TES.Нижний предел диапазона коэффициента мощности относится к системам без аккумулирования тепла, а верхний предел — для систем с аккумулированием тепла до 15 часов (ESTELA, 2012). Использование как скрытого, так и явного тепла также возможно при высокой температуре солнечного тепла. Системы CSP могут хранить первичную энергию в теплонакопительных средах, таких как бетон, расплавленная соль, материалы с фазовым переходом или керамические материалы, в зависимости от технологии приемника, и вырабатывать электричество, питая силовой блок накопленным теплом в течение ночи.Это позволяет системам CSP сохранять энергию в хранилище до тех пор, пока она не понадобится электросети, тем самым обеспечивая источник энергии по запросу, который не ограничен мгновенным солнечным или ветровым ресурсом.

В обеих технологиях CSP — параболическом желобе и силовой башне — когда тепловая энергия в расплаве соли или HTF готова к использованию, она направляется в теплообменник. Там его тепло извлекается и используется для кипячения воды, чтобы сделать пар для работы паровой турбины в силовом блоке, как на более ранних электростанциях, которые использовали топливо, такое как природный газ, уголь или атомную электростанцию.Как и старые тепловые электростанции, CSP вырабатывает электроэнергию, вращая гигантское оборудование. После извлечения тепла теперь «более холодный» расплав соли хранится во втором резервуаре, готовый к отправке в башню для повторного нагрева солнечным светом, отражающимся на приемник (рис. 8). Точно так же в PTC HTF после того, как его тепло было извлечено, отправляется обратно в солнечное поле, чтобы получить следующий цикл тепла и вернуть его в силовой блок для повторного использования.

Рис. 8. Принципиальная схема накопителя тепловой энергии с системой CRS.

Источник: адаптировано из http://cleanleap.com/3-thermal-storage/how-thermal-storage-works.

Системы TES на расплавленных солях в настоящее время являются самыми современными в качестве носителей явного теплового накопления тепловой энергии (SHTES). Расплавленные соли (то есть нитраты калия, кальция, натрия, лития и т. Д.) Обладают свойством поглощать и накапливать тепловую энергию, выделяемую в воду, для передачи энергии, когда это необходимо для работы. В конце 2011 г. 62% установленных систем CSP в Испании использовали накопители энергии на расплаве солей (Lovegrove et al., 2012). Расплавленная соль течет, как жидкая вода, с тем преимуществом, что она остается жидкостью при температуре до нескольких сотен градусов по Цельсию. Расплав карбонатной соли можно использовать при температурах до 850 ° C, хотя коммерческий расплав нитратной соли ограничен температурами ниже 600 ° C. Современные заводы CSP, такие как Andasol 1 в Испании, используют расплав нитратной соли с 60% нитрата натрия (NaNO3) и 40% нитрата калия (KNO3). Нитратная смесь имеет отличную теплоемкость и вязкость, но ее температура должна быть выше точки замерзания примерно 220 ° C.Более того, даже при типичной цене соли в 1 доллар США / кг количество, необходимое для большой солнечной электростанции, делает ее дорогостоящим компонентом. Одним из способов снижения потребности в расплаве соли является использование более дешевых наполнителей, таких как камни и песок (Zhang et al., 2016). Эти материалы образуют наполнитель, через который протекает расплав соли, и они недороги и широко доступны по сравнению с расплавом соли.

В коммерческой конструкции TES с расплавленной солью, используемой в Andasol 1, используется система из двух резервуаров, в которой масло HTF нагревает соль, перекачиваемую из холодного резервуара, и хранит горячую соль в горячем резервуаре до тех пор, пока она не понадобится.Это известно как косвенная система, потому что HTF сама по себе не накапливается, а скорее обменивается теплом с отдельным теплоносителем. Одним из усовершенствований по сравнению с этой конструкцией является прямая система с двумя резервуарами, в которой используется расплав соли как в качестве HTF, так и в качестве жидкости для хранения (рис. 9A). Преимущество этой концепции по сравнению с системами TES непрямого действия с двумя резервуарами заключается в том, что не требуется использовать дорогостоящий теплообменник типа масло-расплавленная соль, более высокая эффективность и гибкость в диспетчеризации системы TES, а также более высокие рабочие температуры, достигаемые с расплавом соли по сравнению с к HTF на масляной основе.Анализ показывает, что желобные установки, работающие таким образом, могут производить электроэнергию с меньшими затратами на 14-40% по сравнению с существующими конструкциями нефти и HTF (Turchi et al., 2010), если они могут избежать коррозии и проблем с риском замерзания, связанных с работой с расплавом соли. HTF. Гемасолар Термосолнечная установка, разработанная Torresol Energy в Севилье, Испания, использует эту конструкцию.

Рис. 9. Упрощенные схемы двухбаковых систем прямого и термоклинного ТЭС (Cocco, Serra, 2015).

Источник: Cocco, D., and Serra, F. (2015).Сравнение производительности двух резервуарных систем прямого и термоклинного накопления тепловой энергии для концентрирующих солнечных электростанций класса 1 МВт. Энергия 81 , 526–536.

Дальнейшее снижение затрат обеспечивает хранение на термоклине с одним резервуаром (рис. 9B). В системе хранения термоклина используется один резервуар, который лишь незначительно больше одного из резервуаров в системе хранения тепла с двумя резервуарами. Когда горячая и холодная жидкость находится в одном резервуаре, система хранения термоклина опирается на тепловую плавучесть для поддержания теплового расслоения.Недорогой наполнитель, который используется для упаковки единственного резервуара-накопителя, действует как первичный накопитель тепла. За счет замены расплавленной соли недорогим заполняющим материалом и исключения одного резервуара для хранения и связанных с ним затрат на насос, клапаны и трубопроводы, система термоклина потенциально может быть на 20-40% дешевле, чем система хранения с двумя резервуарами (EPRI, 2010).

Преимущества TES многочисленны, а именно. увеличение коэффициента мощности за счет увеличения количества часов работы, гибкости сети и гибкости конфигурации.Система TES часто состоит из трех компонентов: носителя информации, HTF и системы локализации. Высокая эффективность и стабильность, низкая стоимость и низкое воздействие на окружающую среду являются ключевыми факторами при разработке и применении TES. Кроме того, методы системы TES можно классифицировать как: накопление явного тепла, накопление скрытой теплоты и термохимическое накопление. В настоящее время системы TES от 7,5 часов (т.е. проект Andasol I, II и III CSP на базе PTC мощностью 50 МВт в Испании) до 15 часов (проект Gemasolar CSP на базе CRS 19.9 МВт в Испании). Системы TES могут оказать заметное влияние на экономическую жизнеспособность проектов CSP, если будет принят механизм переходных тарифов (т. Е. Более высоких тарифов на мощность ВИЭ во время пикового спроса, которые могут быть обеспечены за счет проектов CSP с использованием систем TES).

Система аккумулирования тепловой энергии — обзор

9.1 Введение

Накопление тепловой энергии (TES) обычно включает временное хранение высокотемпературной или низкотемпературной тепловой энергии для последующего использования.Примерами TES являются хранение солнечной энергии для ночного обогрева, летнего тепла для использования зимой, зимнего льда для охлаждения помещений летом и тепла или холода, генерируемых электрически в непиковые часы для использования в последующие часы пиковой нагрузки. В этом отношении TES во многих случаях является отличным кандидатом для компенсации этого несоответствия между доступностью и потребностью тепловой энергии.

Из многих типов накопителей энергии [1] TES часто оказывается полезным вариантом. Системы TES для нагрева или охлаждения часто используются в приложениях, где возникновение спроса на энергию и спрос на наиболее экономически выгодное энергоснабжение не совпадают.Тепловые накопители используются в энергосберегающих, промышленных, коммерческих и солнечных энергетических системах. Среда для хранения может находиться в хранилищах различных типов, включая резервуары, пруды, пещеры и подземные водоносные горизонты.

Накопительный носитель в TES может оставаться в одной фазе (так что сохраняется только ощутимое тепло) и / или претерпевать фазовый переход (так что энергия сохраняется в виде скрытой теплоты). Разумные TES (например, системы жидкой воды) демонстрируют изменения температуры в хранилище по мере добавления или удаления тепла.В скрытых TES (например, в системах жидкая вода / лед и системах с эвтектической солью) температура хранения остается фиксированной в течение части цикла хранения с фазовым переходом.

Системы TES используются в широком спектре приложений и предназначены для циклической работы (обычно ежедневно, иногда сезонно). Системы TES достигают преимуществ, выполняя одну или несколько из следующих целей:

Увеличение генерирующей мощности : Спрос на обогрев, охлаждение или электроэнергию редко остается постоянным во времени, а избыточная генерирующая мощность доступна во время низкого периоды спроса могут использоваться для зарядки TES, чтобы увеличить эффективную генерирующую мощность в периоды высокого спроса.Этот процесс позволяет установить меньшую производственную единицу (или увеличить мощность без покупки дополнительных единиц) и приводит к более высокому коэффициенту загрузки единиц.

Обеспечение лучшей работы когенерационных установок : Комбинированные теплоэлектроцентрали или когенерация, как правило, используются для удовлетворения потребностей подключенной тепловой нагрузки, что часто приводит к избыточной выработке электроэнергии в периоды низкого уровня электроэнергии. использовать. Благодаря включению TES, установка не должна следовать за нагрузкой.Скорее его можно отправить более выгодными способами (с некоторыми ограничениями).

Сдвинуть закупку энергии на периоды низких затрат : Это использование является приложением на стороне спроса первой из перечисленных целей и позволяет потребителям энергии, для которых устанавливается ценообразование по времени суток, смещать закупки энергии с высоких -к бюджетным периодам.

Повышение надежности системы : Любая форма накопителя энергии, от источника бесперебойного питания небольшого персонального компьютера до большого гидроаккумулятора, обычно повышает надежность системы.

Интеграция с другими функциями : В приложениях, где для защиты от пожара требуется накопление воды на месте, может оказаться целесообразным включить накопитель тепла в общий накопительный бак. Точно так же оборудование, предназначенное для решения проблем с качеством электроэнергии, также может быть адаптировано для целей хранения энергии.

Наиболее значительным преимуществом системы TES часто называют ее способность снижать затраты на электроэнергию за счет использования внепиковой электроэнергии для производства и хранения энергии для дневного охлаждения.Действительно, системы TES успешно работают в офисах, больницах, школах, университетах, аэропортах и ​​т. Д. Во многих странах, переводя потребление энергии с периодов пиковых тарифов на электроэнергию в периоды более низких тарифов. Это преимущество сопровождается дополнительным преимуществом в виде более низкой платы за спрос.

Изучив методы оценки и сравнения TES в течение многих лет и недавно объединив результаты [1], авторы пришли к выводу, что, хотя многие технически и экономически успешные тепловые накопители находятся в эксплуатации, нет общепринятой основы для сравнения достигнутой производительности одного из них. хранение с другим, работающим в других условиях, нашло широкое распространение.Энергоэффективность, отношение энергии, извлеченной из хранилища, к первоначально затраченной энергии, обычно используется для измерения производительности TES. Энергоэффективность, однако, недостаточна, потому что она не принимает во внимание важные факторы, такие как близость производительности к идеалу, продолжительность хранения и температуры подаваемой и рекуперированной тепловой энергии и окружающей среды).

Анализ Exergy обеспечивает информативную, рациональную и значимую альтернативу для оценки и сравнения систем TES.В частности, эксергетический анализ дает значения эффективности, которые обеспечивают истинную меру того, насколько практически фактические характеристики приближаются к идеальным, и более четко, чем анализ энергии, определяют величины, причины и места термодинамических потерь. Следовательно, эксергетический анализ может помочь в улучшении и оптимизации конструкций TES.

Используя информацию из недавней книги авторов по TES [1], в этой главе описывается применение эксергетического анализа к TES и демонстрируется полезность такого анализа для понимания поведения и производительности TES.Обсуждаются ключевые термодинамические соображения при оценке TES, и подробно рассматривается использование эксергии при оценке системы TES. Выделена связь температуры с эффективностью, а также рассмотрены термическая стратификация, холодная TES и TES водоносного горизонта.

Следует отметить, что постоянно разрабатываются и анализируются новые тепловые накопители, например, система ТЭС на основе твердо-газового термохимического хлорида стронция-аммиака [2], и не все из них могут быть здесь рассмотрены. Кроме того, постоянно ведутся поиски усовершенствований существующих типов аккумуляторов тепла, таких как интегрированная конструкция системы солнечного отопления в коммунальном хозяйстве с использованием скважинного аккумулирования тепла [3], усовершенствованные разумные конструкции TES [4] и оптимизированные сезонные аккумуляторы для энергосистем на уровне сообщества. [5].Также обратите внимание, что другие типы накопителей энергии, такие как батареи, часто требуют терморегулирования [6], но такие накопители выходят за рамки данной главы.

Новый способ хранения тепловой энергии | MIT News

В большей части развивающегося мира люди получают много тепла от солнца в течение дня, но большая часть готовки происходит позже вечером, когда солнце садится, с использованием топлива, такого как дрова, щетка или навоз, которые собирают с помощью значительное время и усилия.

Теперь альтернативой может стать новый химический композит, разработанный исследователями Массачусетского технологического института. Его можно использовать для хранения тепла от солнца или любого другого источника в течение дня в виде тепловой батареи, и он может выделять тепло, когда это необходимо, например, для приготовления пищи или обогрева после наступления темноты.

Обычный подход к аккумулированию тепла заключается в использовании так называемого материала с фазовым переходом (PCM), где подводимое тепло плавит материал, а его фазовый переход — от твердого до жидкого — накапливает энергию.Когда PCM снова охлаждается до температуры ниже точки плавления, он снова превращается в твердое тело, и в этот момент накопленная энергия выделяется в виде тепла. Существует множество примеров этих материалов, включая воски или жирные кислоты, используемые для низкотемпературных применений, и расплавленные соли, используемые при высоких температурах. Но все современные PCM требуют большой изоляции, и они бесконтрольно проходят через эту температуру фазового перехода, относительно быстро теряя накопленное тепло.

Вместо этого в новой системе используются молекулярные переключатели, которые меняют форму в ответ на свет; при интеграции в PCM температуру фазового перехода гибридного материала можно регулировать с помощью света, позволяя поддерживать тепловую энергию фазового перехода даже ниже точки плавления исходного материала.

Эта установка с синей светодиодной лампой используется для запуска теплового разряда от крупномасштабных пленок материалов с фазовым переходом. (Мелани Гоник / Массачусетский технологический институт)

На этой неделе в журнале Nature Communications сообщается о новых открытиях, сделанных постдоками Массачусетского технологического института Грейс Хан и Хуашан Ли и профессором Джеффри Гроссманом.

«Проблема с тепловой энергией в том, что ее трудно удержать», — объясняет Гроссман. Поэтому его команда разработала то, что по сути является дополнением к традиционным материалам с фазовым переходом, или «маленькие молекулы, которые претерпевают структурные изменения, когда на них светит свет.«Хитрость заключалась в том, чтобы найти способ интегрировать эти молекулы с обычными материалами PCM для высвобождения накопленной энергии в виде тепла по запросу. «Существует так много приложений, в которых было бы полезно хранить тепловую энергию таким образом, чтобы можно было запускать ее при необходимости», — говорит он.

Исследователи достигли этого, объединив жирные кислоты с органическим соединением, которое реагирует на импульс света. При таком расположении светочувствительный компонент изменяет тепловые свойства другого компонента, который накапливает и высвобождает свою энергию.Гибридный материал плавится при нагревании и после воздействия ультрафиолета остается расплавленным даже после охлаждения. Затем, когда это вызвано другим импульсом света, материал снова затвердевает и возвращает энергию теплового фазового перехода.

«Интегрируя активируемую светом молекулу в традиционную картину скрытого тепла, мы добавляем новый вид ручки управления такими свойствами, как плавление, затвердевание и переохлаждение», — говорит Гроссман, член семьи Мортон и Клэр Гоулдер и семья. Профессор экологических систем, а также профессор материаловедения и инженерии.

Активированный ультрафиолетом материал для аккумулирования тепловой энергии демонстрирует быструю кристаллизацию и тепловой разряд при освещении видимым светом (синий светодиод). (Grossman Group в Массачусетском технологическом институте)

«Система может использовать любой источник тепла, а не только солнечную», — говорит Хан. «Отработанное тепло широко распространено, от промышленных процессов до солнечного тепла и даже тепла, исходящего от транспортных средств, и обычно оно просто тратится впустую». Использование некоторых из этих отходов может обеспечить способ утилизации этого тепла для полезных применений.

«То, что мы делаем технически, — объясняет Хан, — это установка нового энергетического барьера, поэтому накопленное тепло не может быть выпущено немедленно». В своей химически сохраненной форме энергия может оставаться в течение длительного времени, пока не сработает оптический триггер. В своих первоначальных небольших лабораторных версиях они показали, что накопленное тепло может оставаться стабильным в течение как минимум 10 часов, тогда как устройство аналогичного размера, накапливающее тепло напрямую, рассеивает его в течение нескольких минут. И «нет фундаментальной причины, по которой его нельзя настроить на повышение», — говорит Хан.

В системе первоначального подтверждения концепции «изменение температуры или переохлаждение, которое мы достигаем для этого материала, аккумулирующего тепло, может достигать 10 градусов C (18 F), и мы надеемся, что сможем подняться выше», — говорит Гроссман.

Под микроскопом темного поля микромасштабная среда показывает, что быстрый рост кристаллов можно легко контролировать. (Grossman Group в Массачусетском технологическом институте)

Уже в этой версии «плотность энергии весьма значительна, даже несмотря на то, что мы используем обычный материал с фазовым переходом», — говорит Хан.Материал может хранить около 200 джоулей на грамм, что, по ее словам, «очень хорошо для любого материала с органическим фазовым переходом». И уже «люди проявили интерес к использованию этого для приготовления пищи в сельских районах Индии», — говорит она. Такие системы также можно использовать для сушки сельскохозяйственных культур или для обогрева помещений.

«Наш интерес к этой работе состоял в том, чтобы продемонстрировать доказательство концепции, — говорит Гроссман, — но мы считаем, что есть большой потенциал для использования светоактивированных материалов, чтобы нарушить свойства хранения тепла у материалов с фазовым переходом.

«Это очень творческое исследование, ключевым моментом которого является то, что ученые комбинируют материал с термически управляемым фазовым переходом и молекулу с фотопереключением, чтобы создать энергетический барьер для стабилизации накопления тепловой энергии», — говорит Цзюньцяо Ву, профессор материаловедение и инженерия в Калифорнийском университете в Беркли, который не принимал участия в исследовании. «Я считаю, что эта работа важна, поскольку она предлагает практический способ хранения тепловой энергии, что в прошлом было сложной задачей.”

Работа была поддержана Центром технологий и дизайна Тата в рамках энергетической инициативы Массачусетского технологического института.

Как работают тепловые батареи?

Что такое тепловая батарея?

Любую тепловую массу по определению можно назвать тепловой батареей, поскольку она способна накапливать тепло. В контексте дома это означает плотные материалы, такие как кирпич, кладка и бетон. Даже кувшин с водой, стоящий в солнечном окне, является своего рода тепловой батареей, поскольку он улавливает, а затем выделяет тепло от солнца.

Хорошо изолированный бетонный пол также действует как тепловая батарея; как только вы накачаете его полным теплом, он долго остынет (в зависимости от толщины), и в течение этого времени он регулирует внутреннюю температуру.

Одно из практических применений для получения максимальной отдачи от сияющего бетонного пола, поскольку тепловая батарея может быть в областях с колеблющимися затратами на электроэнергию — вы можете настроить пол на таймер, чтобы он включался только в часы с низким тарифом (с 19:00 до 7:00 в Онтарио Например). В течение двенадцати часов, когда он выключен, он действует как аккумулятор, медленно выделяя накопленное тепло, поэтому вам не придется платить по более высоким тарифам в часы пик.

MIT Solar House через Викимедиа

По мере того, как вы переходите в зону активных систем аккумулирования тепла, одним из наиболее распространенных типов тепловых батарей (хотя их не так много) является огромный резервуар для воды, закопанный в землю, который нагревается. солнечными тепловыми панелями.

Даже этот тип системы не нов, первый дом в Соединенных Штатах с активной системой солнечного отопления был построен в 1939 году в кампусе Массачусетского технологического института (Массачусетский технологический институт) на вершине огромного резервуара с водой, который нагревается. тепловыми солнечными панелями.

Тепловая батарея MIT Solar House через Викимедиа

Что такое тепловые батареи с фазовым переходом?

Использование «фазового перехода» немного поднимает планку — оставайтесь со мной, это будет весело, обещаю 🙂

Требуется значительный вклад энергии, чтобы заставить материал превратиться из твердого в жидкое. Эта энергия высвобождается позже, когда материал снова затвердевает. Пока происходят эти преобразования и материал либо поглощает, либо выделяет энергию, температура остается постоянной.После завершения фазового перехода материал снова начнет изменять температуру.

Так что это означает в реальном выражении? Это означает, что для того, чтобы растопить воду, воск, металл, камень или что-то еще, вам нужно дать ему тонну энергии. но при этом температура не меняется. Таким образом, ваша «батарея» имеет больше энергии, и вы можете хранить больше тепла в том же объеме пространства.

Трудно воспользоваться температурой плавления 0 ° Цельсия, но воск плавится при температуре около 37 ° Цельсия (в зависимости от его точного химического состава), что идеально подходит для сбора и хранения тепла от солнечных тепловых коллекторов.

Как построить тепловую батарею:

Если у вас есть солнечная панель, собирающая тепло (непосредственно нагревающая воздух или жидкость, а не генерирующая энергию с помощью фотоэлектрических элементов), вы можете использовать ее для зарядки своей тепловой батареи. Представьте себе это — большой резервуар с воском (или водой), который нагревается нагревательными змеевиками солнечного коллектора. Через этот же резервуар проходит другой змеевик, который отбирает тепло, чтобы перекачивать его через ваш лучистый пол или любую другую систему распределения тепла, которая у вас есть.

Удельная теплоемкость:

Если вы возьмете твердый парафин (теплоемкость Cp = 2,5 кДж / кг · K и теплота плавления 210 кДж / кг), скажем, 1 кг, при комнатной температуре вам потребуется 2,5 кДж (килоджоулей) тепла, чтобы Блок 1 кг выдерживает температуру от 20 ° C до 21 ° C. Чтобы температура повысилась с 21 ° C до 22 ° C, вам также потребуется 2,5 кДж (то есть такое же количество энергии).

Парафин плавится примерно при 37 ° C. Если она упадет до 36 ° C, вам снова потребуется всего 2,5 кДж, чтобы вернуть ее к 37 ° C, но вам потребуется 210 кДж (в 84 раза больше), чтобы перейти с 37 до 38 ° C.

Это связано с тем, что для того, чтобы расплавиться, необходимо разорвать некоторые химические связи в твердой решетке, а этот процесс требует дополнительной энергии. Итак, в целом, если килограмм парафина лежит при температуре 20 ° C, вам потребуется 252,5 кДж, чтобы довести его до 38 ° C.

Бетон является одним из наиболее распространенных строительных материалов с высокой теплотворной способностью. В отличие от парафина, 1 кг бетона (Cp = 0,88 кДж / кг · K) потребует 15,8 кДж, чтобы сделать то же самое. Для воды (Cp = 4,18 кДж / кг · K) необходимое количество энергии составит 75.2 кДж.

Количество вложенной энергии — это количество энергии, хранящейся в материале, поскольку эта энергия позже будет высвобождаться, когда материал снова охладится до 20 ° C или комнатной температуры. Хотя существует множество материалов, которые можно использовать для аккумулирования тепла, это всего лишь краткое сравнение некоторых из наиболее широко доступных.

Итак, парафин может сохранять в 16 раз больше тепла на килограмм, чем бетон, и в 3,4 раза больше, чем вода. Таким образом, хотя вода может быть не лучшим материалом для хранения тепла, она, безусловно, является наиболее доступной по цене и легкодоступной.

Значение Cp, указанное в тексте выше, относится к теплоемкости материалов.

q = м Cp ΔT

где:

q = энергия [Дж]

m = масса материала [кг]

Cp = теплоемкость материала [кДж / (кг · K)]

ΔT = разница температур [K или ° C]

Подробнее о проектировании дома на пассивных солнечных батареях см. Здесь

Схема тепловой батареи любезно предоставлена ​​компанией Alternative-Photonics.com /

Диаграммы тепловых батарей любезно предоставлены компанией Alternative Photonics.

Отопление Накопитель тепловой энергии

Накопитель тепловой энергии для обогрева

Если вы используете электрическое сопротивление, природный газ, пропан или жидкое топливо для производства космоса отопление, возможно, вы слишком много тратите на тепловую энергию. Накопитель тепловой энергии отопления использует электрическое сопротивление, самый эффективный из доступных процессов преобразования тепла, в ночное время при низких тарифах на электроэнергию для выработки тепловой энергии для использования в течение дня.Электрический КПД по сопротивлению в сочетании с более низкими внепиковыми расходами на электроэнергию может привести к нагреву на часть стоимости обычных систем.

Как это работает?

Накопление тепловой энергии позволяет сократить расходы на отопление помещений за счет 100% конверсии. КПД ленточных электронагревателей сопротивления. Это означает, что вы можете использовать каждую единицу энергия, которую вы покупаете, в отличие от источников энергии, которые необходимо сжигать, чтобы высвободить тепло энергия.Ночью ленточные нагреватели вырабатывают тепло, а тепло накапливается в некоторых типах носитель информации, обычно земляной материал или керамический кирпич. Хранение тепла в ночное время означает что вы можете воспользоваться тарифами на электроэнергию в непиковые часы, которые обычно на 33-75% меньше дороже, чем в пиковые тарифы на электроэнергию. Тепло, которое сохраняется в ночное время, содержится в изолированном контейнеров до тех пор, пока стандартный комнатный термостат не потребует обогрева помещения. В это время жара необходимо, чтобы комнатный термостат был удален из блока хранения и перенесен в комната.

Использование земли в качестве накопителя тепла обычно ограничивается новым строительством, так как приложение требует, чтобы электрические сети сопротивления были помещены на 1-2 фута в землю под структура потока. Требование размещения решеток под зданием делает это невозможно дооснащение любого объекта без подвала или подполья. Для нового строительства приложения, примерно 5 футов земли непосредственно под конструкцией используется для хранения тепла, производимого сетью.Жёстко-водостойкий изоляционный материал укладывают вертикально. по периметру здания и простирается примерно на четыре фута ниже уровня земли линия оценки. Изоляция гарантирует, что тепло, хранящееся в земле, принудительно отводится в конструкцию, а не в окружающую землю. Сетка электрического сопротивления размещена На 1-2 фута ниже поверхности земли и покрыт примерно двумя дюймами песка и земли.

Керамический кирпич является отличным накопителем тепла как при модернизации, так и при новом строительстве. применения из-за размеров модуля, простоты установки и высокой способности удерживать тепло.Эти агрегаты обычно изготавливаются различных размеров и отправляются на строительную площадку. Их конструкция обычно состоит из изолированной коробки размером с обычную лучистую горячую воду. или паровой нагревательный элемент. Модуль содержит множество керамических кирпичей в зависимости от требований к аккумулированию тепла. и небольшой частичный вентилятор циркуляции лошадиных сил. Керамический кирпич содержит полоску электрического сопротивления. обогреватели в свои дырочки. Ночью, в непиковые периоды с низкими затратами, ленточные нагреватели вырабатывают тепло. который поглощается керамическим кирпичом.Изоляция, окружающая кирпичи, ограничивает потери тепла. от кирпича до тех пор, пока это не потребуется для обогрева помещения. Днем обычный термостат используется для управления вентилятором фракционной мощности, который циркулирует воздух из комнаты через керамические кирпичи. для улавливания тепла и дует воздух в комнату. Как только термостат будет удовлетворен, он отключает циркуляционного вентилятора, и передача тепла прекращается до тех пор, пока это снова не потребуется термостату.

Подходит ли вам система аккумулирования тепла?

Системы аккумулирования тепла могут быть экономически оправданы практически для любого объекта, требующего больших количество тепла для отопления помещений и оплачивается по тарифам на электроэнергию, которые имеют большие разница между потреблением электроэнергии в пиковое и непиковое время.Эти типы ставок упоминаются в качестве графиков ставок по времени использования.

Технология хранения тепловой энергии | Ассоциация накопителей энергии

Краткое содержание

Жидкостное воздушное хранилище энергии (LAES), также называемое криогенным хранилищем энергии (CES), представляет собой долгосрочную крупномасштабную технологию хранения энергии, которая может быть расположена в точке спроса. Рабочая жидкость — сжиженный воздух или жидкий азот (~ 78% воздуха). Системы LAES имеют те же рабочие характеристики, что и гидроаккумуляторы, и могут использовать низкопотенциальные промышленные отходы тепла / холода из совместных процессов.Размер варьируется от 5 МВт до 100 + МВт, и, учитывая разделение мощности и энергии, системы очень хорошо подходят для длительных применений.

Обсуждение

Несмотря на новизну на системном уровне, процесс LAES использует компоненты и подсистемы, которые являются зрелыми технологиями, доступными от основных OEM-производителей. Эта технология в значительной степени опирается на установленные процессы в секторах производства электроэнергии и промышленного газа, с известными затратами, производительностью и жизненным циклом, что обеспечивает низкий технологический риск.

LAES включает три основных процесса:

  • Этап 1. Зарядка системы
    Зарядная система представляет собой ожижитель воздуха, который использует электрическую энергию для забора воздуха из окружающей среды, его очистки и последующего охлаждения воздуха до отрицательных температур до тех пор, пока воздух не сжижается. 700 литров окружающего воздуха превращаются в 1 литр жидкого воздуха.
  • Этап 2. Накопитель энергии
    Жидкий воздух хранится в изолированном резервуаре под низким давлением, который функционирует как накопитель энергии.Это оборудование уже используется во всем мире для хранения жидкого азота, кислорода и СПГ. Резервуары, используемые в промышленности, могут хранить ГВтч накопленной энергии.
  • Этап 3. Восстановление энергии
    Когда требуется мощность, жидкий воздух забирается из резервуара (резервуаров) и перекачивается до высокого давления. Воздух испаряется и перегревается до температуры окружающей среды. Это производит газ под высоким давлением, который затем используется для привода турбины.

Повышение эффективности:

Холодная рециркуляция — На этапе 3 очень холодный воздух выпускается и улавливается собственной высококачественной холодильной камерой.Это используется позже в процессе сжижения для повышения эффективности. В качестве альтернативы в систему можно интегрировать холодные отходы промышленных процессов, например, терминалов СПГ.

Тепловой накопитель — Низкая точка кипения сжиженного воздуха означает, что эффективность системы в оба конца может быть улучшена за счет введения вышеупомянутого тепла окружающей среды. Стандартная система LAES компании Highview Power Storage улавливает и накапливает тепло, выделяемое в процессе сжижения (стадия 1), и интегрирует это тепло в процесс рекуперации энергии (стадия 3).Система также может интегрировать отходящее тепло промышленных процессов, таких как выработка тепловой энергии или сталелитейные заводы, на стадии 3, регенерируя дополнительную энергию.

Совершите виртуальный тур по экспериментальной установке Highview Power Storage 350 кВт / 2,5 МВтч

Заключение

Установки LAES могут обеспечивать крупномасштабную, длительную энергию хранилище мощностью 100 МВт. Системы LAES могут использовать промышленные отходы тепло / холод от таких приложений, как тепловые электростанции, сталелитейные заводы и Терминалы СПГ для повышения эффективности системы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *