Последовательное подключение радиаторов: Способы подключения радиаторов отопления — Услуги сантехника

Содержание

Способы подключения радиаторов отопления — Услуги сантехника

Содержание

Последовательное соединение батарей отопления

Последовательное соединение

Последовательное соединение батарей отопления практикуется в многоэтажных домах. Принцип действия отопительной системы сводится к подключению радиаторов один за другим, когда теплоноситель идет по кругу. Ввод трубы производится снизу радиатора, а вывод осуществляется снизу или сверху. Такая схема подключения способствует тому, что первые батареи в системе нагреваются сильнее последних. Возможна даже довольно существенная разница температур в них, а поэтому те радиаторы, которые греют сильнее, рекомендовано устанавливать в более холодных помещениях.

Последовательное подключение радиаторов отопления предполагает их непосредственное соединение к системе. Регулировка теплоотдачи в таких радиаторах  невозможна, а их замена и обслуживание производится с полным отключением всей отопительной системы.

Параллельное подключение радиаторов отопления

Параллельное подключение батарей

Параллельное соединение радиаторов используют чаще всего в многоквартирных домах. Отопительная система с таким видом подключения работает по следующему принципу: горячая вода по всем этажам идет по одной трубе вверх, и по другой – вниз. При этом теплоноситель последовательно проходит все радиаторы дома.

Минус подобной конструкции состоит в необходимости при ремонте одного радиатора отключения системы отопления во всем подъезде. Проблема решается установкой на отводах шаровых кранов, одновременно предоставляющих возможность регулирования уровня теплоотдачи отдельных радиаторов.

Следует отметить и другой недостаток параллельного подключения радиаторов отопления – снижение давления теплоносителя в магистрали приводит к недостаточному прогреванию батарей, что сокращает эффективность такой системы отопления.

Диагональное подключение радиаторов отопления

Диагональное соединение батарей с магистралью теплоподачи

Диагональное подключение радиаторов – наиболее эффективный вариант функционирования отопительной системы. При таком соединении подача горячего теплоносителя осуществляется через верхнюю трубу с одной стороны батареи, а возврат охлажденной воды в стояк – по нижней трубе с другой стороны. Такое соединение обеспечивает максимальный уровень теплоотдачи радиатора и рекомендовано к применению по отношению к многосекционным конструкциям.

Несовершенство диагонального подключения радиаторов отопления – в его непривлекательном дизайне. Появление дополнительной отопительной трубы, огибающей радиатор, выглядит не очень эстетично, особенно в интерьере офисных и презентационных помещений. Чаще всего такой тип соединения реализуется в частном домостроении, где большое значение придается именно повышению эффективности отопительной системы, а вопросам дизайна отводится второстепенная роль.

Нижнее подключение радиаторов отопления

Нижнее подключение батареи отопления

Подобная схема подключения радиаторов отопления считается наименее эффективной с точки зрения теплоотдачи. Тепловая мощность радиаторов при ее использовании значительно снижается, а теплопотери достигают 10-15%. По этой причине применения радиаторов отопления с нижним подключением стараются избегать. Но в тех случаях, когда в интерьере помещения важная роль отведена эстетической стороне вопроса, например, в помещениях офисов компаний, подобная схема весьма удобна. Либо при монтаже дизайнерских радиаторов сложной формы или нестандартного размещения. Она эффективно скрывает трубопроводы, которые чаще всего маскируют плинтусами либо встраивают в стяжку пола.

Оправдана такая обвязка при использовании биметаллических или алюминиевых радиаторов, в которых высокая теплопроводность материала изготовления способствует сокращению потерь теплоотдачи.

Однотрубное подключение радиаторов отопления

Однотрубная схема подключения радиаторов является наиболее простой. Подача теплоносителя и его вывод осуществляет в одну и ту же трубу. Но простота монтажа декомпенсируется недостатками такой системы – все радиаторы сети нагреваются неравномерно, первый из них получает больше тепла, последний – меньше. Разница температур на радиаторах разных концов сети может быть весьма ощутимой и достигать десяти градусов.

По этой причине однотрубное подключение радиаторов отопления лучше применять на чугунных батареях. При монтаже алюминиевых или биметаллических радиаторов перепад температур увеличивается.

Недостаток системы можно частично исправить установкой байпаса, который переносит теплоноситель из верхней подводящей трубы в отводящую нижнюю. Между входным отверстием радиатора и байпасом для автоматизации управления помещают вентиль или терморегулятор.

Двухтрубное подключение радиаторов отопления

Двухтрубные системы имеют в своей конструкции два трубопровода – прямой и обратный. Охлажденная вода из радиатора возвращается в котел по выходной трубе. Такая система отопления очень удобна тем, что позволяет обеспечивать равномерный нагрев всех радиаторов сети и регулировать их мощность по отдельности.

Двухтрубные системы могут быть горизонтальными или вертикальными. В горизонтальных подключение осуществляет с верхней или нижней разводкой. Вертикальные системы удобны в домах, имеющих переменную этажность.

Двухтрубное подключение радиаторов отопления на сегодняшний день считается более прогрессивным и способствует повышению комфорта проживания людей. Кроме того, они обеспечивают более современный дизайн интерьера и удобны при выполнении скрытой прокладки.

схема, инструкция, как подключить два и более батареи

Последовательное подключение радиаторов — наиболее популярный и экономичный вариант обогрева помещения, благодаря которому создаётся автономная, независящая от центральной, отопительная система.

Необходимый инструментарий

Для формирования такого соединения приборов отопления потребуются следующие составляющие:

  • Трубы: для главной магистрали желательно выбирать трубопровод из стали, оцинковки или металлопластика с соответствующими диаметрами 2,2 см, 2,2 см и 2,6 см. А также допускаются к использованию полипропиленовые трубы, но только не в системе с тремя и более радиаторами. Отходящие от магистрали патрубки изготавливаются из тех же материалов, но имеют меньшие диаметры.

Фото 1. Металлопластиковые трубы разного диаметра в разрезе: видна прослойка из металла между двумя слоями пластика.

  • Радиаторы: выбор необходимого оборудования осуществляется на основании личных предпочтений и советов специалиста. Для подобной схемы самым оптимальным считается 5 батарей, а для большего их количества требуется грамотно рассчитанный проект.
  • Ленты для уплотнения резьбы на батареях.
  • Термостатические клапаны для регулировки нагрева радиаторов.
  • Фитинги для соединения труб между собой.

Непосредственными составляющими являются также расширительный бак и отопительный котёл.

Подготовительные действия

Перед началом процесса рассчитывается подробный проект системы отопления для каждого конкретного помещения.

Затем выбирается один из вариантов последовательного подключения: горизонтальный или вертикальный исходя из особенностей жилой площади и личных предпочтений.

Затем, ориентируясь на выбранный тип схемы, требуется определиться с теплоносителем. При вертикальной развязке лучше использовать антифриз, разбавленный в воде, а при горизонтальной — обычную воду.

Как подключить два радиатора отопления, схема

  1. Изначально при последовательном соединении определяется месторасположение отопительного котла. Его располагают, как правило, в подвальном помещении на специальной противопожарной платформе. Над ним крепко фиксируется расширительный бак.

Внимание! Высота расширительного бака относительно котла должна составлять не менее трёх метров.

  1. При этом продумывается грамотная настройка дымохода: тяга должна быть достаточной, а сам дым выходить наружу, не оставаясь внутри помещения.
  2. После производится подключение магистрального трубопровода. Важно избегать изгибов при прокладке.
  3. По периметру всего дома проходит труба, параллельно которой врезаются все батареи.

Фото 2. Схема последовательного подключения батарей в однотрубной системе с котлом и циркуляционным насосом.

  1. Радиаторы размещаются под оконными проёмами.
  2. Замыкаться такая схема должна на отопительном котле.

Внимание! Перед котлом рекомендуется поместить фильтр, очищающий теплоноситель от любых примесей.

  1. А также необходимо предусмотреть элемент, через который будет производиться заполнение системы водой и её слив.
  2. В последовательной схеме подключения, можно дополнять кранами и терморегуляторами каждую батарею.

При вертикальной обвязке в схему включают для принудительной циркуляции теплоносителя циркуляционный насос, а при горизонтальной — создаётся уклон трубы подачи, и перед каждым радиатором монтируется кран Маевского для удаления из системы излишков воздуха.

Плюсы и минусы последовательного подключения батарей

Плюсы последовательного подключения:

  • низкая стоимость расходного материала;
  • допускается использование любых видов радиаторов;
  • при необходимости трубопровод заводится в «тёплый пол»;
  • охват приборами отопления всего периметра комнаты;
  • лёгкий монтаж;
  • небольшое количество расходуемого материала.

Минусы:

  • сложное проектирование процесса;
  • высокий коэффициент потерь тепла: из-за характерной вытянутости такой магистрали теплоноситель к концу охлаждается;
  • при отсутствии циркуляционного насоса возникают застои перемещаемой по радиаторам жидкости и снижение эффективности работы системы в целом;
  • при отсутствии терморегуляторов на батареях — отсутствие контроля над подачей тепла.

Полезное видео

Посмотрите видео, в котором показан пример последовательного подключения радиаторов в частном доме.

Помощь профессионалов

При проведении последовательного подключения радиаторов необходимо проконсультироваться со специалистами по части разработки полноценного проекта. Для исключения различного рода просчётов рекомендуется доверить им ведение этого процесса под ключ.

диагональное, последовательное, прямое, боковое, видео и фото

Наверное, сразу следует обратить внимание на то, что прямое подключение радиатора отопления подразумевает три основных варианта – боковой, нижний и диагональный, но при этом возможны некоторые нюансы. Кроме того, есть варианты для контуров, которые могут быть однотрубными или двухтрубными, ещё это зависит от количества этажей в здании, а также может рассматриваться с точки зрения дизайна. Но подробнее обо всём этом мы поговорим в материале, расположенном ниже, а также продемонстрируем вам по теме видео в этой статье.

Боковое подключение радиаторов отопления в однотрубной системе

Способы разного подключения

Разновидность контуров

Примечание. Контур системы отопления может быть либо однотрубным, либо двухтрубным.
От этого зависит эффективность теплоотдачи приборов, а также способы их подключения.

Диагональное подключение радиатора отопления в однотрубной системе

  1. Однотрубная система отопления подразумевает собой закольцованный контур из одной трубы, в которую врезаются радиаторы отопления – пример такого монтажа показан на верхнем изображении:
    • здесь теплоноситель, двигаясь от котла, по пути, через трубы меньшего диаметра, расходится по батареям и под давлением циркуляционного насоса возвращается назад в ту же трубу;
    • но пройдя через отопительный прибор, вода теряет температуру, следовательно, чем больше радиаторов в такой системе, тем холоднее вода будет в её конце;
    • в автономных системах не рекомендуется устанавливать более 3-4 радиаторов на одну закольцованную трубу, чтобы была возможность сохранить примерно одинаковую температуру в каждом из них;

Байпас в однотрубной системе

  1. В однотрубной системе, особенно в многоэтажных домах, удобнее подключать приборы сбоку, но как подключить радиатор отопления с боковым подключением, чтобы максимально сохранить температуру в последующих батареях?
    Для этого между трубами подачи и возврата врезается перемычка, называемая «байпас» и она служит двум целям:
    • во-первых, часть воды проходит по трубе, не попадая в батарею, следовательно, она не охлаждается;
    • во-вторых, благодаря байпасу можно произвести демонтаж без слива теплоносителя, если даже контур напрямую, без обвода, проходит через радиатор;

Принцип двухтрубного контура

  1. Более удобным можно назвать двухтрубный контур – здесь теплоноситель попадает в радиатор из трубы подачи, а охлаждённая вода сбрасывается в трубу возврата и возвращается в котёл для нового подогрева:
    • Но цена эксплуатации такого обустройства несколько выше, так как приходится подогревать большее количество воды, следовательно, нужно потратить больше энергоносителей, которые нужно оплачивать;
    • Зато такой контур никогда не вызывает проблем и в него можно врезать большое количество радиаторов, так как есть возможность сохранить во всех равномерную температуру;

Совместное подключение

  1. Кроме того, для двухтрубной системы инструкция предусматривает совместное подключение радиаторного контура с тёплым полом, но это два разных устройства, требующих циркуляции теплоносителя при разной температуре.
    • Но, несмотря на такое кажущееся разногласие, такое подключение имеет место – на входе в трубу тёплого пола устанавливается трёхходовой кран, работающий по дискретной системе, и когда контур нагревается до нужного состояния, срабатывает клапан и горячая вода с подачи сбрасывается в «обратку»;
    • Принцип такого подключения хорошо показан на схематическом изображении выше этого абзаца.

Последовательно и параллельно

Последовательное подключение

Помимо всего прочего, подключение может быть последовательным и параллельным, так, последовательное подключение радиаторов отопления показано на верхнем изображении.

Такая ситуация возникает также в том случае, когда перекрывают байпас и вода из одного радиатора сразу попадает в другой, минуя подачу и обратку. Но совсем не обязательно, чтобы циркуляция была по диагонали прибора – так, это может быть нижнее боковое подключение («ленинградка») или одностороннее боковое подключение, суть в том, что теплоноситель сразу попадает из батареи в батарею.

Параллельное подключение

Когда подключение радиаторов отопления параллельное, то они не зависят друг от друга, следовательно, температура воды в них будет равномерной, как в первом, так и в последнем приборе.

Но такое возможно только в двухтрубной системе, где на подачу теплоносителя никаким образом не влияет количество батарей. Схему такого подсоединения вы видите вверху, и оно может быть боковым, нижним или диагональным.

По диагонали, сбоку и снизу

Варианты подключения радиаторов отопления (сверху вниз): по диагонали, сбоку, снизу

Оптимальным считается диагональное подключение радиаторов, так как теплоноситель циркулирует в нём с наибольшей равномерностью, поэтому, когда вы видите в сопроводительных документах номинальную мощность, то производитель исходит именно от такого типа подсоединения, когда вся площадь прибора задействована одинаково.

Считается, что здесь потерь максимальной мощности не существует, и она выдаётся на все 100%. Есть ещё один вспомогательный вариант, когда можно оптимально задействовать всю ёмкость, но об этом немного ниже.

Несколько хуже (только на 95% номинальной мощности) работает прибор отопления, если его подсоединяют сбоку (с одной или с двух сторон) – здесь площадь нагрева будет более интенсивной со стороны подачи.

А вот при нижнем подключении, что также называется «ленинградкой» номинальный КПД составляет всего 90%, так как циркуляция затрудняется столбовым давлением и, вполне естественно, что здесь площадь нагрева является наиболее неравномерной.

Примечание. Прежде чем начать расчёт мощности для отопителей в вашей квартире или частном доме, вам следует окончательно определить способ подключения радиаторов. Только в таком случае вы сможете вычислить количество секций наиболее правильно.

Удлинитель протока, как оптимизатор распределения тепла

Удлинитель протока, как решение проблем

Далеко не всегда удаётся в автономной или централизованной системе отопления подсоединять батареи по диагонали, чтобы обеспечить максимальную (100%) отдачу тепла, и для этого есть разные причины – здесь и технические возможности, и особенности интерьера или попросту человеческий фактор – упустил из виду или не знал.

Когда секций не особенно много, во всяком случае, не более 8-10 штук, а то и меньше, то перепады температуры на общей площади радиатора не заметны, а если и заметны, то не особо. Но вот если количество секций увеличить, а такая потребность возникает довольно-таки часто, то перепады температуры на разных концах одного и того же приборе могут достигать 10̎⁰C и даже более.

Безусловно, можно провести переподключение, то есть, подсоединить прибор по диагонали и в таком случае теплоноситель станет равномерно распределяться по всей площади, но это не всегда возможно из-за тех же технических условий или особенностей интерьера.

В таких ситуациях есть своеобразная панацея – это удлинитель протока, который по непонятным причинам почему-то очень сложно найти в наших магазинах, торгующих сантехникой, но его, зато можно сделать самостоятельно.

Нагрев медной трубы перед пайкой

Для этого вам понадобится медная труба с наружным диаметром 18 мм и толщиной стенки не менее 1 мм, а также медная муфта для пайки (переходник на фитинг) с наружным диаметром 19,5 мм.

Длину трубы рассчитывают с учётом количества секций, так, её конец должен доставать до стыка последней и предпоследней секции – в некоторых случаях удлинитель делают до средины радиатора, но обрезать трубу вы сможете в любой момент. Мы не будем во всех подробностях описывать процесс пайки, скажем только, что флюс не должен попасть внутрь трубы, то есть его не должно быть много, так как может образоваться застывшая капля, и вода при циркуляции будет шуметь.

На фото: установка удлинителя протока

Удлинитель протока устанавливают в верхней части радиатора, но его лучше, конечно, использовать вместе с термоголовкой, которой вы сможете задавать нужную вам температуру. А вот распределение теплоносителя по площади батареи у вас теперь будет равномерным.

Заключение

Произвести подключение радиаторов отопления вы можете и своими руками, если, конечно, для этого у вас имеются необходимые инструменты. Но если вы в этом деле новичок, то не забывайте о том, что это достаточно ответственно – подтекание системы в период отопительного сезона явление не просто неприятное, а, можно сказать, из ряда вон выходящее. Поэтому, если не надеетесь на свои силы, то лучше пригласите специалиста.

Соединение батарей и радиаторов отопления последовательно

⁠Для обеспечения максимальной эффективности и гармоничности функционирования системы отопления необходимо ещё на стадии проектирования решить ряд важных вопросов:

  1. одно- или двухтрубная разводка труб
  2. параллельное или последовательное подключение радиаторов
  3. самотёчная или принудительная циркуляция теплоносителя
  4. нижняя, диагональная или боковая схема подсоединения батарей к общей магистрали

Исходя из выбранного типа комплекса обогрева определяется необходимая мощность, количество приборов, число секций или площадь панели каждого из них.

Виды систем отопления

Прежде всего они различаются по количеству линий разводки, что в конечном итоге определяет последовательное или параллельное соединение радиаторов отопления, схему подведения труб и т.д. Существует два основных типа

Однотрубные

В этом случае имеется одна магистраль, к которой производится подключение и входа, и выхода каждой батареи. Главное достоинство такой системы в простоте реализации, а также в возможности сэкономить на стройматериалах: трубах, фитингах, арматуре и т.д. Большинство отопительных сетей многоквартирных домов работают именно по такому принципу.

В ходе эксплуатации проявляются недостатки схемы

  1. неравномерное распределение тепла в цепочке приборов. Первые получают максимум энергии, до последних вода доходит значительно остывшей
  2. невозможность регулирования температуры, мощности отдельных радиаторов
  3. сложность проведения ремонтных работ, так как для замены одной батареи необходимо сливать всю систему, останавливать её функционирование
  4. необходимость открытой прокладки разводки, что не всегда выглядит аккуратно и эстетично

Частично решить проблему перекоса в распределении тепла, когда реализовано последовательное подключение в систему радиаторов отопления, можно, увеличивая количество секций для последних в цепи потребителей. Вообще такая схема эффективна в небольших комплексах на 4-5 приборов.

Двухтрубные

Их организация предполагает наличие подающей и обратной линии, к каждой из которых подключаются батареи. По первой магистрали движется от котла нагретый теплоноситель, во второй – отводится остывший. Таким образом нивелируются недостатки замкнутой цепи предыдущего типа, все потребители получают одинаковое количество энергии. Кроме того, появляется возможность отсоединения отдельных единиц от системы без остановки её работы.

Двухтрубная разводка более эффективна, так как позволяет избежать перерасхода топлива. Батареи в неиспользуемых в данный момент комнатах можно отключить или понизить их мощность до минимума, сэкономив дорогостоящие ресурсы. Так как последовательное соединение радиаторов отопления невозможно в двухтрубной системе, здесь реализуются две другие схемы

  1. Параллельная. Подающая и обратная линия проходят рядом от одного прибора к другому. Может прокладываться открытым способом либо в конструкциях пола, стен. Несколько схожа с последовательной, однако требует большего расхода материалов.
  2. Лучевая. Ещё более затратное и сложное в организации соединение батарей. Для реализации такой разводки необходим распределительный коллектор с двумя трубами для подачи и обратки. Все приборы подключаются к обеим гребёнкам, поэтому от каждого потребителя тянется две линии. Такая схема применяется также в контуре тёплого пола. Она прокладывается только скрытым способом ввиду большого количества коммуникаций.

Изначальные затраты на обустройство двухтрубной системы окупаются со временем за счёт удобного и точного регулирования мощности приборов.

Можно ли подключить в доме батареи отопления последовательно

Несмотря преимущества лучевой и параллельной схем простая разводка не менее востребована. При условии грамотного расчёта и правильной организации она может быть не менее эффективна. Её применяют в квартирах, подключённых к централизованной сети, а также в небольших системах обогрева дач, частных домов. Её можно реализовать как в горизонтальной обвязке в одноэтажном здании, так и в вертикальной, когда стояки соединяют верхние и нижние уровни. При этом возможна установка приборов любого типа: секционных, панельных, трубчатых.

Как выполнить подключение двух и более радиаторов отопления последовательно

  1. Батареи развешиваются по периметру дома под окнами по центру. Для фиксации применяются кронштейны и крепёжные планки. Положение корпуса проверяется по строительному уровню.
  2. Вдоль стен от котла прокладывается основная магистраль, к которой подключаются приборы. От каждого из них отходит по два ответвления со стороны входа и выхода, которые врезаются в трубопровод посредством тройников. После прохождения всех радиаторов система замыкается на теплогенераторе.
  3. В случае организации самотёчной системы главная линия прокладывается с небольшим уклоном. Принудительное движение рабочей среды предполагает установку перед котлом циркуляционного насоса. Рекомендуется планировать разводку с минимальным количеством изгибов, поворотов.
  4. Для заполнения/слива системы необходимо предусмотреть наличие соответствующей арматуры.
  5. Перед входом в теплогенератор желательно установить фильтр механической очистки, который будет задерживать частицы загрязнений из трубопровода.

Для большей наглядности схема последовательного соединения и врезки радиаторов отопления представлена на рисунке 1.

Рис.1

Способы подключения приборов

Специалисты в сфере проектирования и организации комплексов обогрева выделяют три основные типа, отличающиеся по алгоритму реализации и эффективности. Каждый из них имеет свои преимущества, проявляющиеся в конкретных условиях функционирования. Подключение бывает

Боковое

Предполагает присоединение радиатора к главной линии с одной стороны. При этом вход воды располагается вверху, выход – внизу для обеспечения максимально равномерного прогрева секций или поверхности панели. Такой способ установки считается эффективным, так как процент неохваченной площади теплообмена составляет не более 10%. Чаще всего последовательное боковое подключение батарей отопления выполняется в квартирах многоэтажных домов, являющихся потребителями централизованной коммунальной сети.

Зачастую такая схема дополняется байпасом – трубой меньшего диаметра, соединяющей подающую и обратную магистрали. Это приспособление дополняется запорными кранами, отсекающими прибор от системы.

Диагональное

Позволяет максимально задействовать площадь теплообмена отопительного прибора. Получаемая при этом мощность является эталонной и указывается в паспорте к товару. Для реализации этой схемы подключения необходимо вход в радиатор расположить вверху с одной стороны, выход – внизу с другой. За счёт этого поток рабочей среды равномерно пройдёт через все внутренние каналы.

Этот способ идеально подходит для батарей с большим количеством секций. Именно диагональная обвязка позволяет наиболее полно реализовать преимущества, которые даёт последовательное соединение отопительных радиаторов.

Среди её недостатков стоит выделить

  1. увеличенные расходы на стройматериалы по сравнению с боковым подключением
  2. невозможность спрятать коммуникации в стену или пол
  3. сложность проведения монтажных работ

Нижнее

Наиболее эстетичный способ интеграции прибора в систему, когда и вход, и выход теплоносителя находятся в нижней части корпуса с разных сторон. В этом случае трубы чаще всего прячутся под напольное покрытие и бетонную стяжку. В связи с этим обустройство такой схемы возможно на стадии строительства и ремонта.

Если соединение батарей отопления выполняется последовательно, при нижнем подключении возможна потеря до 15-20% КПД системы. Это происходит из-за того, что воде несколько проблематично подняться по внутренним коллекторам в верхнюю часть корпуса прибора. В результате некоторые участки прогреваются недостаточно.

Профилактические работы

Сводятся к периодической промывке внутренних каналов радиаторов. Это процесс может осуществляться несколькими способами

  1. гидропневматическим с использованием воды и сжатого воздуха, которые подаются в систему под пульсирующим давлением
  2. микробиологическим с применением специальных разрыхляющих налёт и ржавчину составов
  3. химическим, предполагающим добавление в теплоноситель активных реагентов
  4. пневматическим с созданием искусственного гидроудара

Периодичность этих работ при условии, что реализовано последовательное подключение радиаторов определяется индивидуально. Необходимость их проведения возникает в случае необоснованного повышения расхода энергии, значительной разницы температур горячих труб и тёплых отопительных приборов, увеличения времени, необходимого на прогрев помещения и т.д.

Заказывайте монтаж в нашей компании

Специалистами «Альфа-Терм» может быть выполнена установка радиаторов любого типа, мощности, конфигурации. Обратившись к нам, заказчик сможет получить весь перечень услуг от подбора подходящей модели по привлекательной цене до запуска оборудования в работу. С нами задача организации комфортной и эффективной системы отопления будет решена предельно просто.

Схемы подключения радиаторов отопления и их эффективность

Радиаторные системы отопления бывают двух видов: однотрубными и двухтрубными.

Однотрубная требует меньшего количества труб, но ее главный недостаток: разная температура теплоносителя на входе радиаторов. Получается, что тот, который ближе к котлу, греется сильнее, тот который дальше — слабее. В сетях большой протяженности может случиться так, что на последний радиатор заходит уже совсем холодный теплоноситель. Это часто можно наблюдать на первых этажах многоэтажек. Там обычно используется однотрубная система, а теплоноситель подается с верхних этажей вниз.

На рисунке представлена горизонтальная схема последовательного подключения радиаторов отопления, называется она еще «однотрубная» и «ленинградка». Для возможности ремонта с обеих сторон отопительного прибора установлены запорные краны. Закрыв их, вы можете снимать, менять и ремонтировать радиатор без останова всей системы. Подобная схема часто применяется при подключении батарей отопления в частном доме. Она просто монтируется, а при небольшой протяженности теплоотдача каждого радиатора регулируется при помощи игольчатых кранов, которыми можно изменять интенсивность потока теплоносителя.

Однотрубную систему называют еще «последовательное соединение радиаторов отопления»

Двухтрубная схема — параллельное подключение радиаторов к подаче. На вход каждого из них поступает теплоноситель одинаковой температуры, а остывшая вода собирается в другой трубопровод. И хотя расход труб (и денег) тут при монтаже больше, но сбалансировать (отрегулировать) теплоотдачу каждого отопительного прибора намного проще.

Подробнее о видах систем и разводки теплоносителя читайте тут. 

Двухтрубная система — параллельное подключение отопительных приборов

Варианты подключения радиаторов отопления

В любой из систем радиаторы можно подключить несколькими способами. Основных существуют три.

Диагональное

В этом случае чаще всего подача теплоносителя идет сверху, «обратка» подключается снизу. Теоретически это считается самой лучшей схемой подключения радиаторов. Расчетные потери тепла на больше 2-5%. Получается, что горячая вода более равномерно распространяется по всем секциям. В паспортных данных к каждой секции указана тепловая мощность. Так вот, при испытаниях используют именно эту схему.

Диагональное подключение — одно из самых эффективных (которое слева)

Иногда можно встретить другую картину — когда подача идет внизу, а обратный трубопровод подключен сверху. Хоть это и диагональное подключение, но при таком поступлении теплоносителя расчетные потери будут 20-25%. В некоторых ситуациях эта схема неплохо себя показывает, и если у вас при таком диагональном подключении вся поверхность прибора прогрета более-менее нормально, то для вашей системы это работает.

Но практика часто опровергает теорию. И далеко не всегда даже правильная диагональная схема подключения радиаторов отопления оказывается самым лучшим вариантом. В однотрубных системах с принудительной циркуляцией часто нижнее подключение работает лучше.

Нижнее

Согласно теории потери тепла при таком варианте большие — до 15-20%. Но при достаточно большом напоре, создаваемом циркуляционным насосом, вся поверхность радиатора снизу доверху оказывается хорошо нагретой. А все потому, что возникают вихревые потоки. Эта часть теплотехники (распределение и поведение вихревых потоков) до сих пор недостаточно исследована, предсказать поведение этих самых вихревых потоков пока невозможно. Но факт остается фактом: в некоторых случаях нижнее подключение радиаторов отопления — самое эффективное.

Нижнее подключение для двухтрубных и однотрубных систем

Схема популярна еще и потому, что при скрытой прокладке трубы в полу практически незаметна. Но вариантов нижнего подключения тоже два. Седельное — это когда трубы подключаются с противоположных сторон. Используется обычно на секционных радиаторах. И именно нижнее подключение — когда вход и выход отопительной панели находятся внизу на небольшом расстоянии друг от друга. Такой вариант подключения применяется для панельных радиаторов.

Боковое или одностороннее

Чаще всего такой тип подключения радиаторов отопления можно увидеть в многоэтажных домах с вертикальной разводкой. Это когда стояки опускаются сверху вниз, проходя через все этажи. На каждом из этажей подключены радиаторы. Чаще в этом случае система однотрубная (стояк один), но бывают и двухтрубные подключения (рядом два стояка).

Боковое или одностороннее подключение при двухтрубной или однотрубной системе

Этот вид подключения радиаторов отопления средний по потерям. Они составлять могут 5-10%. Используется часто из-за минимального расхода труб при подключении и неплохой, в принципе, эффективности.

Где установить

Со схемами подключения радиаторов отопления разобрались, но важно еще правильно выбрать место их расположения. Традиционно они размещаются под окнами. Это оправданно с точки зрения теплотехники. В комнатах идет самая большая потеря тепла именно через окна. Установив под ними радиаторы, мы создаем тепловую завесу, которая предотвращает утечку тепла из помещения. Аналогично будут действовать радиаторы расположенные вблизи от входных дверей.

Правила установки радиатора под окном

Но устанавливать радиатор тоже нужно правильно, выдерживая рекомендованные расстояния от пола и подоконника. При определении высоты отопительных приборов нужно исходить не только из требуемой мощности, но и из того, как «встанет» батарея такого размера.

Кроме типа подключения радиаторов нужно выбрать место установки

Кроме того стоит учитывать, что закрывая радиаторы декоративными экранами, пряча их в нишах или под полками, мы также снижаем количество поступающего от них тепла.

Лучшая схема подключения радиаторов отопления и устранение проблем

Все эти потери, которые могут возникнуть на отопительных приборах, принимать в расчет нужно только на больших системах. Подключение батарей отопления в частном доме в системе с принудительной циркуляцией (с насосом) может быть любое. На количестве отдаваемого тепла это если и отразится, то совершенно незначительно. Выбирайте тот вид подключения радиаторов отопления, который наиболее удобен в вашем случае. Он и будет лучшим. Важно правильно рассчитать количество секций, а снижение теплоотдачи на 7% или 15% вы при этом не почувствуете: все расчеты берутся с запасом, округления — в большую сторону. Так что особо переживать нет причин.

Волноваться приходится, когда «батареи не греют», или нагреваются неравномерно. Но тут нужно в каждом случае рассматривать конкретную ситуацию: подключение, тип системы и разводки. Но есть несколько стандартных ситуаций, в которых причины тоже часто стандартны:

Вообще ситуаций и причин множество. Но чаще всего, если раньше температура на приборе была нормальной, а вдруг стал он холодным, причина кроется в засоренной трубе или вентиле, в заросшей трубе. Проверьте все, почистьте. Должно заработать. Если результата нет — вызывайте спеца. Но он, скорее всего, будет повторять ваши манипуляции.

Причина того, что плохо греются батареи обычно в том, что забились краны или заросли трубы

Слабо греющие радиаторы — это одна проблема. Не менее дискомфортно себя чувствуешь, когда в помещении слишком жарко. И это часто ощущают на себе те люди, которые поставили металлопластиковые окна. Сразу становится очень тепло, временами, при умеренных температурах «за бортом», невыносимо жарко. Приходится или часто открывать окна, или закрывать вентили на подаче. Комфортным такое существование назвать сложно. Но все можно исправить.

Отрегулировать (понизить или повысить) температуру, а не закрыть полностью, можно несколькими способами. Есть игольчатые вентили, которые позволяют изменять подачу теплоносителя вручную. Вы частично перекрываете поток, тепла выделяется меньше. Похолодало — кран открыли больше — тепла стало выделяться больше. Есть автоматические устройства — терморегуляторы на батареи (радиаторы), их называют «термокран», «термостат», «регулятор». От этого суть не меняется. Поворотом головки этого термостата, вы выставляете ту температуру, которую хотите поддерживать в комнате. И устройство само регулирует поток теплоносителя. Точность поддержания температуры плюс-минус 1oC.

Итоги

Потери теплоотдачи радиаторов могут оказать влияние при неправильно рассчитанной системе или при большой ее протяженности. Если расчет верен, и система имеет определенный запас мощности, то подключайте радиаторы так, как вам удобнее. Гораздо важнее выдержать правильный уклон: та сторона радиатора, на которой установлен кран «Маевского» должна быть чуточку выше, чем ее противоположный конец.

Параллельное подключение радиаторов | ТЕПЛОВИЧЁК

На сегодняшний день при проектировании систем отопления используются две схемы подключения радиаторов в систему: последовательная и параллельная.

При последовательной схеме подключения труба подачи теплоносителя подключена к первому радиатору. Отводная труба первого радиатора является трубой подачи второго радиатора и так далее. Таким образом, теплоноситель последовательно передается по радиаторам от первого к последнему. Недостатком такой схемы является то, что нельзя использовать большое количество радиаторов, так как теплоноситель теряет свою температуру в каждом радиаторе. Как следствие, эффективность последнего радиатора меньше эффективности первого.

При параллельной схеме подключения трубы подачи всех радиаторов подключены к общему стояку. Аналогично отводные трубы всех радиаторов также подключены к своему стояку при двухтрубной трубной системе отопления или в тот же стояк подачи при однотрубной системе. В этом случае температура теплоносителя поступающего во все радиаторы одинакова. Следовательно, все радиаторы работают с одинаковой эффективностью.

Дополнительным плюсом использования параллельной схемы подключения радиаторов является возможность установки на каждый радиатор запорной арматуры, что значительно облегчает сезонное обслуживание радиатора. Нет необходимости полностью перекрывать общие стояки, чтобы провести чистку или замену радиатора, для этого достаточно перекрыть индивидуальные краны.

Кроме того, при использовании параллельной схемы подключения, на каждый радиатор можно установить ручной или автоматический терморегулятор, с помощью которого регулируется поток теплоносителя, поступающего в радиатор, и как следствие теплоотдача радиатора. Использование терморегуляторов позволяет поддерживать комфортные условия в помещении, независимо от колебаний температуры на улице.

Для установки запорной арматуры или терморегулятора радиатор должен быть оснащен байпасом. Байпас – это перемычка (отрезок трубы), который устанавливается между трубами подачи и отвода теплоносителя, и служит для сброса излишка теплоносителя при уменьшении потока через радиатор. Диаметр байпаса должен быть меньше диаметра трубы подачи на один калибр.

Вам необходимо включить JavaScript, чтобы проголосовать

Расскажите о нас друзьям:

Описание способов подключения батарей отопления

Батареи – это основной элемент системы отопления. Предназначены они для передачи тепловой энергии окружающему воздуху в помещении. Устройство и срок службы как новых типов, так и старых, примерно одинаковый.

Конечно же у всех типов батарей имеются свои плюсы и минусы. Но в этой статье поговорим не о качестве, а о том как и каким способом их подключить.

Относительно современных радиаторов можно сказать следующее: дизайн более привлекателен, почти все радиаторы не требуют покраски, отличаются по весу, габаритам, стоимости и материалу из которого изготовлены.

Цена (при одинаковом или даже лучшем качестве) на отдельные виды современных может быть ниже чем стоимость старого образца, в несколько раз.

Подключая систему отопления с нуля и покупая новое оборудование, лучше остановить свой выбор на современных батареях. Ведь цена почти такая же как и у более старого образца, но плюсы современных радиаторов очевидны.

В тоже время если у вас имеются в наличии радиаторы старого образца, не выбрасывайте их, придайте им более презентабельный вид. Сейчас в продаже полно всяких декоративных решеток и щитов, для украшения. Обычно, при подключении, основное внимание уделяется эстетичности и удобству производимых работ.

А вот на порядок не обращают внмания. И зря!!! Ведь при правильном подключении, появляется возможность для регулировки тепла не только во всем доме, но и в каждой комнате по отдельности.

Вариант выбирайте исходя из таких соображений – место где будет находится(или уже находится) отопительный котел, как расположен дом относительно сторон света, погодные условия вашей местности (в основном берите во внимание ветреность).

Давайте в этой статье рассмотрим три основных варианта подключения батарей:

  1. последовательное;
  2. параллельное;
  3. комбинированное.

Последовательное

При таком подключении увеличивается теплоотдача отдельных элементов, то есть — первая батарея в системе будет нагреваться сильнее. Ввод подключаемой трубы делается с низу радиатора, а выход можно сделать как с низу, так и с верху. Поэтому батареи которые нагреваются сильнее устанавливаем в более холодных комнатах.

Подключение радиаторов производится непосредственно в систему отопления. При таком способе нет возможности самому регулировать температуру батарей, а так же производить замену или обслуживание радиатора не отключая полностью всю систему.

Параллельное

Батареи подключаются при помощи отводов от центральной трубы. Подключение радиаторов можно делать так же как и при последовательном. На все отводы ставятся шаровые краны, для регулирования подачи теплоносителя.

При таком методе подключения, достигается эффект равномерного прогрева всех батарей в системе. Данный эффект используется для устранения не большой разницы температуры, то-есть ставим радиаторы с одинаковым количеством секций и с разным вариантом подключения, в разные по площади комнаты.

Важно: труба между отводами должна быть меньшего диаметра, что бы создавать сопротивление теплоносителю или поставить кран для регулировки давления. Без этого теплоноситель будет двигаться по трубе не поступая в радиатор.

Комбинированное

При таком подключении, комбинируя первые два варианта, если все продумать, можно добиться одинакового прогрева всех комнат в доме (закрывая или открывая краны на трубах добиваемся разной теплоотдачи).

Конечно есть исключения – местность с сильными и холодными ветрами. Таким образом вы сможете делать так, что бы радиатор, к примеру третий от котла был самый горячий, а при обычном (однотрубная система) такое невозможно.

Таким образом, установка кранов до и после батареи позволяет производить их обслуживание не сливая теплоноситель из системы.

Посмотрите видео: Как подключить радиатор отопления с наибольшей эффективностью

Как установить радиаторы: выбор между последовательным и параллельным

Радиаторы лучше устанавливать последовательно или параллельно ? В этой статье мы объясним разницу между обоими методами установки и поможем выбрать между однотрубной системой и двухтрубной системой.

Параллельная установка радиаторов

При установке центрального отопления вам предоставляется выбор между однотрубной системой и двухтрубной системой .Двухтрубная система состоит, как вы уже догадались, из двух отдельных труб: одна для подачи горячей воды к радиаторам, а другая — для отвода отработанной воды обратно в котел. Другими словами, радиаторы устанавливаются параллельно . Хотя, как правило, более дорогая, чем однотрубная система, двухтрубная система является предпочтительным вариантом для современных зданий.

Двухтрубные системы бывают двух разновидностей :

  • Двухтрубные системы с медными или пластиковыми трубами .Трубы присоединены к коллектору, каждый радиатор имеет отдельную подающую и обратную трубу. Этот тип системы на сегодняшний день является наиболее распространенным.
  • Двухтрубные системы с стальными трубами : каждый радиатор отдельно подключается к подающим и обратным трубам.

Клапаны Vasco идеально подходят для обоих типов двухтрубных систем.

Как установить радиаторы серии

Однотрубная система широко применялась в жилищном строительстве в семидесятые и восьмидесятые годы.При последовательном подключении возвратная вода одного радиатора служит питанием для следующего. Следовательно, последний радиатор в системе передает меньше тепла, чем первый. Чтобы компенсировать потерю тепла, радиаторы должны увеличиваться в размерах по мере удаления от источника тепла. Другой вариант — установка перепускного клапана , который смешивает охлажденную возвратную воду с теплой водой перед ее подачей к следующему радиатору.

И последнее, но не менее важное: для последовательной установки радиаторов требуется труб подходящего размера ! Проконсультируйтесь со специалистом по отоплению или посетите наш центр загрузок, чтобы ознакомиться с технической информацией и инструкциями по установке.

Энергетические характеристики радиаторов с параллельно и последовательно соединенными панелями

Основные моменты

Были измерены и смоделированы тепловыделения при фиксированной рабочей температуре.

В испытательной комнате EN 442 оба радиатора обеспечивали одинаковое тепловыделение.

Серийный радиатор показал на 0,3–0,7% меньшее тепловыделение в жилом помещении.

Параллельный радиатор имел более быстрый динамический отклик и до 10% более высокую тепловую мощность.

Последовательный радиатор с более теплой передней панелью не обеспечил исключительной экономии энергии.

Реферат

Лабораторные измерения были проведены для радиаторов с параллельно и последовательно соединенными панелями в испытательной комнате EN 442-2 для количественной оценки возможной экономии энергии последовательного радиатора. Измеренные результаты требовали пересчета для сравнения, а моделирование использовалось для ежегодной оценки производительности.Последовательный радиатор показал температуру передней и задней панелей на 4 ° C выше и на 3 ° C ниже при температуре подачи 50 ° C. Параллельный радиатор имел немного более быстрый динамический отклик, а его тепловыделение на 3% выше при Δ T 50 ° C увеличилось примерно до 10% при Δ T 25 ° C. Измеренное тепловыделение серийного радиатора было на 2% ниже в одном и на 4% выше в другом тесте, и было невозможно количественно определить очень небольшие различия между радиаторами. Моделирование показало, что температура воздуха серийного радиатора на 0,11–0,13 ° C ниже при фиксированной рабочей температуре.В смоделированной испытательной комнате EN 442-2 тепловыделение радиаторов было точно таким же, но в случае жилого помещения с менее интенсивным радиационным теплообменом серийный радиатор показал меньшее тепловыделение на 0,3% и меньшее годовое потребление тепловой энергии на 0,7%. . Как правило, влияние лучистой температуры можно было увидеть по результатам, но с точки зрения экономии энергии не было значительной разницы между исследованными радиаторами.

Ключевые слова

Водяной радиатор

Тепловыделение

Энергетические характеристики

Рабочая температура

Лучистая температура

Рекомендуемые статьи Цитирующие статьи (0)

Полный текст

Copyright © 2014 Elsevier B.V. Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Подключение нового радиатора: что вам нужно знать

Несмотря на то, что радиаторы Brugman легко установить , вам все же рекомендуется заранее подумать о том, где будут располагаться ваши новые нагревательные элементы. Вы устанавливаете модели серии или параллельно ? И в чем разница между двумя вариантами? Мы расскажем вам все, что вам нужно знать о подключении новых радиаторов.

Последовательное подключение радиаторов?

Последовательное соединение радиаторов, также известное как однотрубная система , в основном используется в домах 1970-х и 80-х годов. Тем не менее, некоторые люди все же выбирают последовательное соединение. В этом случае возвратная вода из последнего радиатора используется для подачи в следующий. Логично, что это даст последнему радиатору меньше тепла на , чем первому. Однако эту потерю тепла можно компенсировать установкой более крупных моделей, чем дальше они находятся от источника тепла.Вы также должны выбрать байпасный клапан . При этом охлажденная возвратная вода смешивается с нагретой питающей водой и питает следующий (е) радиатор (ы).

Убедитесь, что вы выбрали трубок достаточно большого размера , если вы используете метод последовательного соединения.

Или параллельно?

В настоящее время большинство людей выбирают параллельную установку, также известную как двухтрубная система . Для этой системы вам понадобятся две отдельные трубы . Один служит для подачи горячей воды в радиаторы, а другой возвращает обратную воду в котел.Эта система дороже однотрубной.

При параллельной установке радиаторов вы можете выбирать между медными (или пластиковыми) или стальными трубами. Вода уходит из коллектора, и каждому радиатору нужен отдельный трубопровод подачи и возврата. Это наиболее распространенный тип системы.

Дилер Brugman может рассказать вам больше об установке радиатора. Найдите ближайшую к вам точку продаж.

Следует ли подключать нагреватели параллельно или последовательно?

Домой> Архив блога> Категория: Промышленное отопление> Следует ли подключать обогреватели параллельно или последовательно?

Следует ли подключать обогреватели параллельно или последовательно?

Итак, ваши обогреватели должны быть подключены параллельно или последовательно? Этот вопрос возникает, когда к источнику питания необходимо подключить более одного нагревателя.Обычно любое количество нагревателей может быть подключено параллельно, но обычно только два нагревателя подключаются последовательно. Последовательное подключение более двух нагревателей значительно усложняется. Если нагреватели подключены последовательно, отказ одного нагревателя может повлиять на другие нагреватели. При параллельном подключении нагревателей отказ одного нагревателя обычно не влияет на другие нагреватели.

Самая распространенная пара

Чаще всего используется двухкомпонентный нагреватель. В этом случае, если нагреватели подключены последовательно, напряжение каждого нагревателя должно быть равно половине общего доступного напряжения.Например, два нагревателя на 240 вольт, подключенные последовательно к источнику питания на 480 вольт. Также мощность каждого нагревателя должна быть одинаковой. (Если мощность и напряжение каждого нагревателя не равны, нагреватели не будут делить общее напряжение поровну.) Если два нагревателя подключены параллельно, напряжение каждого нагревателя должно быть таким же, как напряжение питания.

Итак, почему следует выбирать один путь вместо другого?

Одна из причин заключается в том, что некоторые нагреватели не могут быть надежно построены при одном напряжении.Это связано с физическими размерами нагревателя, а также с ваттами и вольтами. В основном вам нужен оптимальный размер провода элемента (провода, который нагревается докрасна) в нагревателе. В некоторых нагревателях из-за небольшого расстояния нагреватель не может быть построен на 480 вольт. Кроме того, если вы подключите последовательно, отказ одного нагревателя, скорее всего, повлияет на другой нагреватель.

Заключение

Помните, что при параллельном подключении каждый нагреватель имеет одинаковое напряжение, но последовательно, каждый нагреватель имеет одинаковый ток.По сути, вы подключаете последовательно только тогда, когда у вас есть два нагревателя одинаковой мощности и напряжения. В большинстве других случаев вы подключаете параллельно.

Ищете нашу продукцию? Щелкните здесь, чтобы просмотреть полную линейку промышленных обогревателей и аксессуаров для промышленного обогрева от Thermal Corporation.

Написано Джимом Диксоном
Отредактировано Шелби Рис
Дата публикации: 20.07.2014
Последнее обновление: 09.06.2019

REHVA Journal 06/2014 — Энергетические характеристики радиаторов с параллельным и последовательным соединением панелей

Таллинн.

В этом исследовании представлены результаты измерений и моделирования радиаторов с параллельно и последовательно соединенными панелями, проведенные для количественной оценки возможной экономии энергии последовательного радиатора.Влияние лучистой температуры можно было увидеть, но с точки зрения экономии энергии существенной разницы между исследованными радиаторами не было. Результаты не подтверждают предыдущие заявления об экономии энергии примерно на 10%.
Ключевые слова: водяной радиатор, теплоотдача, энергоэффективность, рабочая температура, лучистая температура.

Эмиссионные потери излучателей тепла являются важной проблемой, особенно в случае зданий с низким энергопотреблением. Сообщается, что радиаторы с последовательно соединенными панелями могут обеспечить 11% -ную экономию энергии (технология Therm X2), и это было доказано увеличением радиационной теплопередачи до 100%, а также более коротким временем нагрева радиатора.В случае последовательно соединенных панелей горячая вода течет сначала через переднюю (со стороны помещения) панель, а затем на заднюю (со стороны стены) панель, Рисунок 1 . Затем охлажденная вода возвращается в систему отопления. Идея последовательного подключения заключается в повышении температуры поверхности радиатора со стороны помещения, что приведет к увеличению радиационной теплопередачи и рабочей температуры.

Рисунок 1. Изучаемые типы радиаторов с параллельно и последовательно соединенными панелями.

Целью этого исследования было количественно оценить влияние параллельно и последовательно соединенных панелей радиаторов на потери выбросов и потребление энергии с помощью контролируемых лабораторных измерений и динамического моделирования.Мотивация заключалась в том, чтобы показать, какие различия можно измерить в лаборатории и как их можно обобщить на годовую энергоэффективность обычных и низкотемпературных радиаторных систем.

Ограничение стандарта по теплоотдаче EN15316-2.1: 2007 заключается в том, что процедура расчета полностью основана на температуре воздуха. На самом деле разные радиаторы оказывают определенное влияние на температуру излучения, и рабочая температура является основным параметром стандарта теплового комфорта ISO 7730: 2005.Рабочая температура рассчитывается как среднее значение температуры воздуха и означает лучистую температуру и является температурой, которую ощущает человек. Для точного сравнения измерения и моделирование необходимо проводить при той же рабочей температуре, которая была учтена в этом исследовании.

Измерения тепловой мощности и температуры

Тепловыделения двух радиаторов были измерены в испытательной камере с охлаждаемыми поверхностями, соответствующими требованиям EN 442-2: 2003. Радиаторы представляли собой 2-панельные радиаторы физически одинакового размера, 0.6 м высотой и 1,4 м длиной, с параллельно и последовательно соединенными панелями и двумя пластинами конвекционных ребер между ними, оба типа 22-600-1400. Номинальная тепловая мощность параллельного подключения составляла 2 393 Вт, а последовательного 2 332 Вт при перегреве ΔT 50 K в соответствии с EN 442-2: 2003. На рисунках 2 и 3 показана схема измерения и точки измерения температуры.

Рисунок 2. Фотография схемы измерения.

Рисунок 3. Расположение точек измерения радиатора и температуры.Площадь помещения 4,0 на 4,0 м, высота помещения 3,0 м.

Использовались две температуры потока: 50 ° C и 70 ° C. Оба цикла измерений были повторены (Тест 1, Тест 2) для контроля повторяемости. Термостат с уставкой, максимально близкой к 20 ° C, во всех тестах изменял расход воды с соответствующими изменениями температуры возвратной воды в соответствии с потребностями в отоплении. Один и тот же термостат использовался при измерениях для обоих тестируемых радиаторов.Все испытания начинались со ступенчатого изменения нагрева.

Температура подачи 50 ° C привела после ступенчатого изменения к стабильной работе, когда тепловая мощность от потока воды снизилась примерно с 900 Вт до уровня 800 Вт, что соответствует ситуации, когда внутреннее тепловыделение близко к 15% от номинального тепла. выход, Рисунок 4 .

Рис. 4. Тест 1 с температурой подачи 50 ° C: массовый расход воды и тепловыделения со стороны воды.

Средняя температура поверхности передней и задней панели показывает более высокую температуру передней панели и более низкую температуру задней панели в случае последовательного радиатора, Рисунок 5 .Массовый расход воды в параллельном радиаторе стабилизировался до значительно более низкого уровня, и было подсчитано, что тепловая мощность параллельного радиатора на 3% выше при ΔT 50 K увеличивается примерно на 10% тепловая мощность при ΔT 25 K.

Рис. Температура поверхности передней и задней панели при 50 ° C Тест 1.

Результаты теплоотдачи были проанализированы в течение стабилизированного периода от 130 до 320 минут. Последовательный радиатор потреблял примерно на 3% меньше энергии в тесте 1, но примерно на 3% больше энергии в тесте 2.Поскольку рабочие температуры не были точно такими же, температура охлаждаемых поверхностей помещения T с была скорректирована с помощью аналитической модели теплопередачи помещения, описанной в (Maivel et al. 2014). Корректировка была сделана в обоих направлениях, чтобы проверить достоверность модели. Результаты представлены в таблице , таблица 1 , показывающая, что при одинаковых рабочих температурах тепловая мощность последовательного радиатора была примерно на 2% меньше и на 4% выше в тестах 1 и 2 соответственно (эффект регулировки около 1%).Аналитически рассчитанное чистое излучение от передней панели радиаторов составило 120 Вт и 148 Вт для параллельного и последовательного подключения, что соответствует доле излучения 15% и 18% соответственно.

Таблица 1. Аналитически рассчитанные значения температур и тепловыделений радиаторов.

Таллиннский технологический университет
микк[email protected]
Martin Konzelmann
WTP Wärmetechnische Prüfgesellschaft mbH
[email protected]
JarekKurnitski
9352 9352 9352 Воздух, T a, отрегулированный , ° C

испытания при температуре подачи 70 ° C соответствовали увеличению радиаторов примерно в 2 раза (примерно 1 600 Вт против 800 Вт). Начальные температуры в помещении были достаточно близкими при испытаниях с обоими радиаторами, что позволило точно сравнить динамический отклик во время ступенчатого изменения нагрева примерно на 3 ° C.В случае Parallel, начальная температура воздуха в помещении и температура поверхности были примерно на 0,1 ° C ниже, но параллельный радиатор достиг той же температуры, что и Serial, за 9 минут. После этого кривые температуры воздуха стали почти идентичными с немного более высоким максимальным значением для Parallel через 43 минуты, Рисунок 6 . После фазы нагрева клапан термостата не мог поддерживать стабильную температуру в обоих случаях из-за слишком больших размеров радиаторов.

Рисунок 6.Динамическая ступенчатая характеристика температуры воздуха в помещении и температуры поверхности при 70 ° C. Тест 1.

Практический пример в среде динамического моделирования

Программа моделирования IDA-ICE со стандартной моделью водяного радиатора была использована для моделирования испытательной комнаты EN 442-2 и типовое жилое помещение с такими же габаритами. В случае испытательной комнаты радиатор был расположен на внутренней стене, а остальные 3 стены, пол и потолок были внешними, Рисунок 7 . В случае жилого помещения радиатор располагался на внешней стене с окном, а также имелась другая внешняя стена.В жилом помещении была вытяжная вентиляция без рекуперации тепла. Моделирование проводилось при температуре наружного воздуха –22 ° C, чтобы сравнить разницу в теплопроизводительности и круглый год с эстонскими турецкими лирами для годовой тепловой энергии.

Рисунок 7. Смоделированные по EN 442-2 комната (верхняя) и жилая комната (нижняя) в модели IDA-ICE.

При моделировании использовался ПИ-регулятор, который с высокой точностью поддерживал заданное значение рабочей температуры 19,5 ° C. В случае испытательного помещения EN 442-2 значения U были выбраны таким образом, чтобы тепловые потери составляли около 800 Вт при температуре наружного воздуха -22 ° C.Модель радиатора IDA-ICE обеспечивала идентичную температуру поверхности передней панели радиатора параллельного типа, когда температура обратной линии была примерно на 6 ° C выше, чем при измерениях. Для достижения измеренной температуры поверхности передней панели последовательного радиатора температура подачи была увеличена до 57,6 ° C. При этих настройках температура поверхности передней панели была такой же, как и при измерениях для обоих радиаторов, и моделирование привело к почти одинаковому тепловыделению радиаторов, Таблица 2 .

Таблица 2. Результаты моделирования испытательной камеры EN 442-2, описанной в гл. 2.3. Все значения при температуре наружного воздуха –22 ° C.

Тест 1

Тест 1

Тест 2

T op 19.39 → 19,58

T op 19,58 → 19,39

T op 19,33 → 19,51

T

T

20,16

20,00

20,05

19,90

Охлажденная поверхность., T с, отрегулированный , ° C

18,58

18,28

18,58

18,29

, параллельный нагрев

815,1

824,9

713,1

722,4

Последовательный 50 ° C, тепловая мощность, Вт

7982,73

745,0

752,7

Сохранение серийного номера,%

2,01

2,14

2,14

9023

3 , ° C

576,2

9245 9034 9034 9034

0

803,3

Параллельный

Последовательный

Температура подачи, ° C

39,8

43.4

Температура поверхности передней панели, ° C

39,8

44,1

Температура поверхности задней панели, ° C

182

18 39,8

0003

Температура воздуха, ° C

20,69

20,58

Передняя панель q передняя , W

178.7

227,1

Конвекция q cr , W

624,7

576,2

0

Общая тепловая мощность q tot , Вт

803,4

803,3

2 в жилом тепловые потери около 630 Вт были немного меньше по сравнению с 800 Вт в лабораторных испытаниях, и потребовалась некоторая корректировка температуры потока, чтобы получить идентичные температуры поверхностей передней панели.Смоделированные тепловые мощности показывают разницу в 1,9 Вт, что соответствует экономии 0,3% за счет последовательного радиатора, Таблица 3 . В годовом моделировании энергопотребления Последовательный радиатор обеспечил экономию тепловой энергии на 0,7% и немного более высокую температуру поверхности передней панели, как показано на Рисунок 8 .

Таблица 3. Результаты моделирования жилого помещения, описанного в гл. 2.3. Все значения приведены при температуре наружного воздуха -22 ° C, за исключением годового потребления энергии.

9023

9,2

Вт 193

всего 9024

632,9

годовое потребление энергии 2 a)

Параллельный

Последовательный

Температура подачи, ° C

53 53 530

58,7

Температура обратной линии, ° C

38,3

43,1

Температура поверхности передней панели, ° C

Температура поверхности задней панели, ° С

39,9

44,1

Температура воздуха, ° С

19.61

19,48

Температура подачи для коррекции задней стенки, ° C

57,7

53

Температура поверхностей задней панели 18 ° C, скорректированная температура подачи

41,4

38,4

Передняя панель q передняя , W

179,2

227.7

Конвекция q cr , W

446,8

396,8

Задняя сторона q b

Скорректированная задняя сторона q b , скорректированная , W

8,8

8,4

905

634.6

633,7

Скорректированная общая тепловая мощность q tot , Вт

634,8

632,9

64,9

64,5

Рисунок 8. График длительности изменения температуры поверхности передней панели радиатора (100% = 8760 ч).

Выводы

· Лабораторные измерения показали в первом тесте на 3% меньше, а во втором тесте на 3% больше тепловыделения последовательного радиатора. Различия между испытаниями были выше, чем заявленная точность испытательного помещения EN 442-2 (+/- 1%), и были вызваны очень небольшими, но продолжающимися колебаниями расхода и температуры воды. Используемая измерительная установка не достигла полностью установившегося состояния и не смогла количественно оценить различия между протестированными излучателями, однако это указывает на то, что эти различия были очень небольшими, если они вообще существовали.

· Результаты моделирования испытательной комнаты EN 442-2 с температурами поверхности передней панели радиаторов, идентичными измеренным значениям, показали на 0,11 ° C более низкую температуру воздуха в случае последовательного радиатора, но точно такое же тепловыделение обоих радиаторов из-за более интенсивный радиационный теплообмен в случае серийного радиатора.

· Результаты моделирования типичного жилого помещения показали на 0,3% меньшее тепловыделение при расчетной температуре наружного воздуха и на 0,7% меньшее годовое потребление тепловой энергии в случае последовательного радиатора.Поэтому радиатор на внешней стене с более высокой температурой передней панели привел к количественной экономии энергии, подтверждающей важность излучаемой температуры как явления, но с точки зрения экономии энергии не было значительной разницы между исследованными радиаторами с параллельно и последовательно соединенными панелями.

· Последовательный излучатель имел температуру передней панели на 4 ° C выше, что привело к немного более высокой доле излучения, 18% по сравнению с 15% для параллельного излучателя в тесте 50 ° C. Температура задней панели последовательного радиатора была на 3 ° C ниже, что может иметь некоторый эффект экономии энергии в случае плохо изолированных стен.

· Параллельный радиатор показал немного более быстрый динамический отклик и более высокую тепловую мощность, что привело к немного более быстрому нагреву. На 3% более высокая тепловая мощность параллельного радиатора при ΔT 50 K увеличилась примерно на 10% теплопроизводительность при ΔT 25 K, что дает некоторые преимущества параллельному радиатору в низкотемпературных системах отопления.

Справочная информация

1. Therm X2 — Технология: потенциальная экономия средств. http://www.kermi.com/EN/Waerme-Design/Energiesparrechner/index.phtml.

2. EN 15316-2-1: 2007. Системы отопления в зданиях Метод расчета требований к энергии системы и эффективности системы. Часть 2–1: Выбросы систем отопления помещений, CEN 2007.

3. ISO 7730: 2005. Эргономика тепловой среды. Аналитическое определение теплового комфорта с использованием расчетов индексов PMV и PPD и местных критериев теплового комфорта, ISO 2005.

4. EN 442-2: 1996 / A2: 2003 Радиаторы и конвекторы — Часть 2: Методы испытаний и рейтинг, CEN 2003 г.

5. Майвел М., Конзельманн М., Курницки Дж. Энергетические характеристики радиаторов с параллельным и последовательным соединением панелей. Принято к публикации в журнале Energy and Buildings.

6. IDA-ICE, IDA Indoor Climate and Energy 4.6, http://www.equa-solutions.co.uk/.

Модель Тип R2F | Коммерческие водяные радиаторы

Общие:

Предоставить стальные двухпанельные радиаторы указанной длины и расположения, а также мощности, стиля и принадлежностей в соответствии с графиком.Излучатель с двойной нагревательной панелью должен представлять собой цельносварную стальную цельносварную конструкцию, состоящую из пары плоских панелей с водяными трубами, приваренных к коллекторам на каждом конце. С внутренней стороны каждой панели должны быть приварены стальные гофрированные ребра для увеличения конвективной мощности радиатора. Ребра должны начинаться на расстоянии не менее 3 дюймов от конца радиатора и иметь не менее 32 ребер на фут. Радиаторы должны иметь встроенную цельносварную перфорированную верхнюю решетку большого диаметра (минимум 0,09 дюйма), которая будет закрывать верх всех оребренных участков (для изогнутых радиаторов решетка отсутствует).

Коллекторы должны включать все необходимые впускные, выпускные и вентиляционные соединения по мере необходимости. Стандартные присоединительные размеры — это коническая резьба 1/2 дюйма NPT для подающего и обратного трубопроводов и 1/8 дюйма для вентиляционного соединения. Внутренняя перегородка предусмотрена там, где требуется для правильного потока воды.

Панели излучающего отопления должны быть доступны длиной от 2’-0 ”до 29’-6” с равным шагом в два дюйма без необходимости соединения. Излучение панели должно быть способно монтироваться на типичную конструкцию стеновой стойки без дополнительной блокировки или обвязки.Соответствующие кронштейны для настенного монтажа должны быть снабжены излучением.

Панель радиационная должна быть произведена в США.

АЛЬТЕРНАТИВ:

Двухпанельные радиаторы (высотой до четырех труб) должны быть оснащены напольными опорами (ИЛИ консольными настенными кронштейнами) вместо настенных кронштейнов.

Номинальное давление:

Номинальное давление излучения должно быть следующим:

СТАНДАРТ: рабочее давление — максимум 56 фунтов на квадратный дюйм, испытательное давление — максимум 74 фунта на квадратный дюйм

ИЛИ

СРЕДНЯЯ: рабочее давление — максимум 85 фунтов на квадратный дюйм, испытательное давление — максимум 110 фунтов на квадратный дюйм

ИЛИ

ВЫСОКИЙ: рабочее давление-128 фунтов на квадратный дюйм максимум, испытательное давление 184 фунтов на квадратный дюйм максимум

Радиационное расширение панели не должно превышать 1/64 дюйма на фут излучения при 215ºF.Установщик должен обеспечить соответствующую компенсацию расширения для каждого радиатора.

Отделки:

Излучение панели должно быть очищено и фосфатировано перед нанесением порошкового покрытия. Затем излучение окрашивается глянцевым порошковым покрытием с общей толщиной краски 2-3 мил (0,002–0,003 дюйма). Цвет должен быть выбран из стандартных цветов Runtal, или дополнительные цвета должны быть доступны в Дополнительная стоимость.

Гарантия:

На все радиаторы Runtal распространяется 5-летняя ограниченная гарантия

Производитель:

При соблюдении требований предоставьте плоские трубчатые панели излучения производства Runtal North America, Inc.

ДОПОЛНИТЕЛЬНЫЕ ПРЕДМЕТЫ, КОТОРЫЕ МОГУТ БЫТЬ ДОБАВЛЕНЫ В СПЕЦИФИКАЦИЮ:

Ребристые накладки на трубы, обработанные под радиаторы, должны быть обеспечены излучением.

Изготовитель излучения должен обеспечить комбинированный запорный клапан / штуцер шириной менее двух дюймов для подачи и возврата к каждому панельному радиатору, который будет устанавливаться на месте другими.

При необходимости следует использовать соединители

Runtal-Flex для компенсации расширения радиаторов.

Модель Тип R2F
Краткие характеристики


R2F-3 с боковыми и вертикальными соединениями — показан только для примера

Спецификация панельного радиатора

1.

Радиаторы изготавливаются из холоднокатаной низкоуглеродистой стали, полностью сварные и состоят из коллекторных труб на каждом конце, соединенных плоскими овальными водяными трубками.

2.

Доступны три толщины трубки:

Стандартное давление — мин. Толщина стенки 0,048 ″

Среднее давление — мин. Толщина стенки 0,058 ″

Высокое давление — мин. Толщина стенки 0,078 ″

3.

Коллекторные трубы радиатора имеют квадратную форму минимальной толщины стенки 0,109 ″ и включают все необходимые соединения подачи, возврата и выпуска воздуха.Внутренняя перегородка предоставляется по мере необходимости.

4.

Стандартные соединения трубопроводов представляют собой муфты с конической резьбой 1/2 ″ NPT, расположенные как в боковом, так и в вертикальном положении. Доступны дополнительные соединения 3/4 ″ NPT. Соединения для выпуска воздуха представляют собой гнезда с конической резьбой 1/8 ″ NPT.

5. Доступны три рабочих давления:
Стандартное давление — макс. 56 фунтов на кв. Дюйм (испытано при 74 фунтах на кв. Дюйм)
Среднее давление — макс. 85 psi (испытано при 110 psi)
Высокое давление — 128 фунт / кв. Дюйм макс. (Испытано при 184 фунт / кв. Дюйм)
Радиаторы
6. Расширение радиатора не превышает 0,016 дюйма на погонный фут при 215 ° F. Компенсация расширения должна быть обеспечена в трубопроводе по мере необходимости другими.
7. Радиаторы очищаются и фосфатируются перед нанесением порошкового покрытия.
8. Радиаторы окрашены глянцевым порошковым покрытием с общей толщиной краски от 2 до 3 мил (0,002 ″ -0,003 ″).
9. Цвет финишной краски должен быть выбран из доступных стандартных или дополнительных цветов перед заказом.
10. Кронштейны для настенного монтажа поставляются с радиаторами, если не указаны напольные стойки.
11. Блокировка опоры стены, необходимая для правильного монтажа радиатора, должна быть произведена другими.
12. производятся в США в размерах, мощности и количествах, указанных на планах и графиках.

Обзор (PDF)

Технические характеристики (PDF)

MYSON: Отопление с помощью инноваций!

РАДИАТОРЫ

T6 IVC изготовлены из холоднокатаной листовой стали и в соответствии со стандартом EN 442-1, со стильным и прочным флютом, с ребрами с интервалом 19/16 дюймов.Высокая мощность, включая вставку TRV и нижние центральные соединения объемом 2 дюйма, а также простота установки делают радиатор T6 IVC излюбленным выбором профессиональных инженеров-теплотехников и подрядчиков.

Каждый РАДИАТОР T6 IVC CENTER CONNECT RADIATOR оснащен проушинами для настенного монтажа, которые приварены к задней части. Радиаторы оснащены съемной верхней решеткой и двумя съемными закрытыми боковыми панелями. Каждый радиатор поставляется с монтажными кронштейнами, заглушкой, сливной пробкой и специальной поворотной вентиляционной пробкой.Предустановленная вставка термостатического клапана входит в комплект каждого радиатора.

Радиаторы серии T6 представляют собой усовершенствованную конструкцию, обеспечивающую высокие характеристики эффективности. Высокая производительность на единицу площади для моделей радиаторов была достигнута за счет обеспечения отличного контакта между пластинами конвектора и как водяными каналами, так и разделительным металлом радиаторных панелей. Поверхность конвектора приварена точечной сваркой к металлическим каналам, но также прочно входит в пазы на водяных каналах, обеспечивая тем самым высокую скорость теплопередачи.Кроме того, внутреннее распределение подачи с конфигурацией T обеспечивает эффективный поток воды сверху вниз для быстрого реагирования на спрос.

Стандартные соединения:
4 x внутренняя резьба G 1/2 «сторона BSP 4 угла
2 x наружная резьба G 3/4 дюйма внизу по центру
Максимальное положительное рабочее давление: 145 фунтов на кв. Дюйм
Максимальная рабочая температура: 230 ° F

T621 IVC Глубина: 31/8 дюйма
двойная панель и один ряд конвекторных пластин, а также боковые панели и верхняя решетка
T622 IVC Глубина: 41/8 дюйма
двойная панель и два ряда конвекторных пластин, а также боковые панели и верхняя решетка
Стандартная высота: 12, 20 и 24 дюйма (номинальная)
Стандартная длина: от 16 до 79 дюймов (номинальная)

• Дополнительные размеры и модели доступны по специальному заказу

Покрытия:

  1. Подложка: электрофоретическая, с использованием водорастворимых красок, соответствующих DIN 55900 часть 1, запеченная при 374 ° F;
  2. Финишное покрытие: электростатическое порошковое покрытие в соответствии с DIN 55900 часть 2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *