Постоянный или переменный ток: В чем разница между постоянным и переменным током — T&P

Содержание

В чем разница между постоянным и переменным током — T&P

Если вдоль всего Садового кольца встанут люди, возьмутся за руки, и одновременно будут шагать в одну сторону, то через каждый перекресток будет проходить много людей. Это постоянный ток. Если же они будут делать пару шагов вправо, потом влево, через каждый перекресток пройдет много людей, но это будут одни и те же люди. Это переменный ток.

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди — получается ток.

Генератор — как насос для воды, а провод — как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает —  это и есть смена направлений движения. А 220 вольт — это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток — это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

в чем разница между ними

В электричестве есть два рода тока – постоянный и переменный. Устройства также требуют для питания один или другой вид тока. От этого зависит возможность их работы, а иногда и целостность после подключения к неправильному питанию. Чем отличается переменный ток от постоянного мы расскажем в этой статье, дав краткий ответ наиболее простыми словами.

Определение

Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.

Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).

Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:

Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.

Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Формулы для расчета постоянного тока

Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по Закону Ома для участка цепи или для полной цепи:

E=I/R

E=I/(R+r)

Мощность также просто рассчитываются:

P=UI

Формулы для расчета переменного тока

В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления:

Для ёмкости:

Для индуктивности:

Здесь 1/wC и wL – емкостное и индуктивное реактивные сопротивления, а w – угловая частота, она равна 2пиF.

Для цепи с ёмкостью и индуктивностью:

wL-1/wC – это реактивное сопротивление, оно обозначается как Z.

На видео ниже более подробно рассказывается, в чем отличие переменного тока от постоянного:

Материалы по теме:

Переменный и постоянный ток в системах видеонаблюдения

Переменный ток (AC)

Переменный ток — это электрический ток, который периодически меняет свое направление, из-за чего меняется и уровень напряжения. Переменный ток используется для подачи электропитания в дома, офисные здания и т.д.

Постоянный ток (DC)

Постоянный ток не меняется по величине или направлению. Существует несколько способов получения постоянного тока:

  • Путем преобразования переменного тока в постоянный с помощью блоков питания
  • Использование аккумуляторов, которые генерируют постоянный ток

Почему в системах видеонаблюдения используется постоянный ток, а не переменный?

Любая схема с участием транзисторов требует постоянного смещения напряжения. Положительное напряжение постоянного тока заставляет транзисторы функционировать должным образом. Транзисторы являются основной частью монтажной платы, которая участвует в обработке информации при передаче сигнала.

Что такое напряжение?

Напряжение является давлением, которое толкает электроны через электрический проводник. Если для функционирования камеры видеонаблюдения требуется 350 mA, то для передачи к ней тока от источника питания требуется напряжение 12 В.

Что такое ток?

Ток — это электрический заряд, который протекает по электрической цепи. Ток измеряется в амперах (А), для работы большинства камер видеонаблюдения необходимо не больше 0.5 А или 500 мА.

Зачем мне нужно знать о прохождении тока в системах видеонаблюдения?

Для определения подходящего источника питания и типа кабеля.

Почему в PTZ видеокамерах указано значение переменного тока 24 В, а не 12 В?

PTZ видеокамеры наблюдения с поворотным механизмом устанавливаются в основном на крупных объектах, поэтому для передачи электропитания на больших расстояниях нужен длинный кабель и, соответственно, большее напряжение. В этом случае, при необходимости протягивать кабель на большие расстояния, переменный ток предпочтительней постоянного тока. Это связано с тем, что переменный ток имеет оптимальное допустимое отклонение напряжения. Допустимое отклонение напряжения постоянного тока составляет +/- 10%, в то время как допустимое отклонение напряжения переменного тока +/- 20%.

Большинство PTZ видеокамер наблюдения оснащены моторами, поэтому для функционирования им нужно больше ватт, чем обычной статичной видеокамере наблюдения.

Источник cctvdvrsystem.co.uk. Перевод статьи выполнила администратор сайта Елена Пономаренко

Постоянный и переменный ток. Значение трансформаторов.

Без электричества и электрических приборов уже попросту невозможно представить современный мир. Всё к чему мы так привыкли: освещение, бытовые приборы, компьютеры, телевизоры – так или иначе связано с электропитанием. Однако, стоит отметить, что одни приборы работают от переменного тока, а другие – питаются от источников постоянного тока.

Постоянным током называют ток, который в течение некоторого промежутка времени не меняет своего направления и величины. Таким образом, постоянный ток имеет постоянное напряжение и силу тока.

Постоянный ток используется:

  • Для передачи электроэнергии на высоковольтных линиях электропередач (например, 500 кВ). Это связано с тем, что если применять переменный ток того же напряжения, с учетом амплитудных значений напряжений и их перепада, то такие напряжения могут превышать величину напряжения постоянного тока в несколько раз. Использование переменного тока в высоковольтных проводах приведет к дополнительным тратам на изоляционные материалы, что значительно увеличит стоимость ЛЭП.
  • В контактных сетях электрического транспорта – троллейбусов и трамваев – до 3000 В.
  • В сетях до 1000 В для электродвигателей с тяжелыми условиями пуска – прокатные станы, центрифуги и прочее.
  • Для электросетей до 500 В, используемых для грузоподъемных механизмов – подъемных электрических кранов.
  • В качестве источника питания различных переносных бытовых приборов – фонарики, аудиоприёмники, диагностические приборы, мультиметры, мобильные телефоны.


Поток электронов идет строго по прямой линии, никак не колеблясь и не изменяясь. У такого тока нет частоты, потому что нет колебаний. Поток электронов (каждый электрон) двигается строго в одном направлении от «минуса» к «плюсу». Поэтому в батарейках так важно соблюдать полярность. Если подключите два «минуса» или два «плюса», ток просто не потечет.

Стоит отметить, что в условиях тяжелого пуска – то есть если пусковой момент высок, а требуется плавное регулирование скорости, тягового усилия и пускового момента – применяются двигатели постоянного тока. Таковыми, например, являются двигатели электротранспорта, электрических мельниц, центрифуг.

Постоянный ток, чаще всего можно встретить в различных элементах питания – аккумуляторах и батарейках. Скажем, в автомобилях используется аккумуляторы постоянного тока напряжением 12 В; для строительной техники, например, экскаваторов, бульдозеров используются аккумуляторы, имеющие напряжение в 24 В. Аккумулятор мобильного телефона автора статьи – постоянного тока напряжением 3,7 В.

Каждый источник постоянного тока имеет две клеммы или разъема, обозначаемые как плюс (+) и минус (-). Считается, что постоянный ток движется от плюсовой клеммы (+) к минусовой (-), при этом, между ними можно подключить оборудование (например лампочку). 

На самом деле, процессы, протекающие в электросети постоянного тока происходят очень быстро, и изобразить их в реальном времени не представляется возможным.

Схематично, действие постоянного тока в простейшей сети, многократно замедленное. Оно дает наиболее полное представление о процессах, происходящих в сети постоянного тока.

Переменный ток – это ток, который за определенный промежуток времени, меняет свое направление. Частота смены направления измеряется в герцах. 1 герц (Гц) означает, что за одну секунду совершен полный цикл смены направления (туда-обратно). В Европейских странах, в том числе и в России, в бытовых электросетях используется однофазный переменный ток, имеющий частоту 50 Гц, то есть меняющий своё направление 100 раз в секунду.

Таким образом, за одну секунду через нить лампы, горящей на обычном письменном столе, ток проходит 50 раз в одном направлении и пятьдесят раз в обратном.

В американских и канадских электросетях используется переменный ток с частотой в 60 Гц, вместо общепринятого переменного тока с частотой в 50 Гц.

Также, как источник постоянного тока имеет две клеммы – плюсовую и минусовую, источник однофазного переменного тока имеет две клеммы или разъема, называемые «фаза» и «ноль».

Кстати, переменный ток в домашней розетке называется однофазным, как раз из-за наличия одного разъема «фаза». Величина напряжения переменного однофазного тока равна 220 В.

Переменный ток действует следующим образом: переменный ток начинает движение из «фазы» в сторону «нуля», доходит до него, останавливается, и затем, движется в обратном направлении.

Особенностями переменного однофазного тока являются:

  • Среднее значение силы переменного тока за период равняется нулю.
  • Переменный ток за период меняет не только направление движения, но и свою величину.
  • Действующее значение силы переменного тока – это сила такого постоянного тока, при которой средняя мощность, которая выделяется в проводнике в цепи переменного тока, равна мощности, которая выделяется в том же проводнике в цепи постоянного тока. Когда говорят о токах и напряжении в сети переменного тока, имеют в виду их действующие значения.


Поток электронов постоянно колеблется с определенной частой (в 50 герц), образуя синусоиду (волнистую линию).
Поток электронов двигается как угодно, отдельные электроны в потоке тоже движутся хаотично. Для переменного тока не требуется соблюдать полярность.

 

Действующее напряжение сети переменного тока в обыкновенной бытовой розетке составляет напряжение в сети 220 вольт.

Широкое применение переменного тока в технике и для бытовых нужд вызвано тем, что, переменный ток легко трансформируется. Напряжение в сети переменного тока может быть легко повышено или понижено при помощи специального устройства –трансформатора.

Трансформатор — электромагнитное устройство, которое преобразует посредством электромагнитной индукции переменный ток таким образом, что напряжение в сети уменьшается либо увеличивается в несколько раз без изменения частоты, и практически без потери мощности.

Для преобразования напряжения переменного тока в сторону уменьшения (например, силовые трансформаторы с 10 000 В городских сетей до 220 В домашней сети) применяются понижающие трансформаторы. Для преобразования напряжения сетей в сторону повышения – повышающие трансформаторы.

 

Отличие постоянного и переменного тока, преобразование тока

Электрическим током называют направленное, упорядоченное движение заряженных частиц.

Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения.

Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.

Разница переменного тока от постоянного

Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени. Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.

Источниками переменного тока на объектах различного назначения являются розетки. К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.

Передача переменного тока потребителям

Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.

Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.

Преобразование переменного тока в постоянный

Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном. Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:

  1. Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
  2. Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
  3. Подключение стабилизаторов напряжения для снижения пульсаций.

Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.

Постоянный и переменный токи

Мы завершаем изучение темы «Постоянный электрический ток». Тем не менее, в этом параграфе мы рассмотрим и переменный ток. С чем это связано? Причина в самих терминах «постоянный ток» и «переменный ток», названия которых не вполне удачны, поскольку могут трактоваться по-разному в физике и электротехнике: так сложилось исторически. Обратимся к определениям.

В физике постоянным током называют электрический ток, не изменяющийся по силе и направлению с течением времени. Графиком такого «истинно постоянного» тока должна быть прямая, параллельная оси времени (см. рис. «а»). Тем не менее, в электротехнике постоянным током считают ток, который постоянен только по направлению, но может меняться по силе. Такой ток можно получить «выпрямлением» синусоидального переменного тока, например, того, который существует в домашней осветительной сети (см. рис. «б»). В результате получается пульсирующий однонаправленный ток (см. рис. «в»).

В физике переменным током называют электрический ток, изменяющийся с течением времени: по силе и/или направлению. С точки зрения физики, «пульсирующий» ток на рисунке «в» является переменным, поскольку меняется по силе (оставаясь постоянным по направлению). Такой однонаправленный ток в электротехнике считают «постоянным», так как по своим действиям он похож на настоящий постоянный ток. Например, он будет пригоден для зарядки аккумуляторов, работы электродвигателей, проведения электролиза. Переменный по направлению ток для этих целей непригоден.

Примечание. Почему ток в электрических сетях является именно синусоидальным и меняет своё направление 100 раз в секунду, мы расскажем позднее (см. § 10-ж). А пока рассмотрим, как из него можно получить однонаправленный пульсирующий ток – «постоянный» с точки зрения электротехники. Другими словами, как «перебросить» нижние части синусоиды вверх, то есть преобразовать форму тока без потери мощности этого тока? Для этого служат различные приборы, один из которых – полупроводниковый диод, пропускающий через себя ток лишь в одном направлении (см. § 09-и).

Ниже на левой схеме показано включение двух диодов в цепь переменного тока. При этом верхние части синусоиды проходят через верхний диод (по направлению его «стрелочки»), а нижние части синусоиды не проходят через нижний диод (против его «стрелочки»). Таким образом получается пульсирующий однонаправленный ток, и ровно половина исходной мощности не попадает к потребителю, так как образуются «равнины» с нулевым значением силы тока. Для особо интересующихся физикой заметим, что точно такой же результат будет, если оставить только один диод, причём, любой.

На правой схеме показано включение четырёх диодов по так называемой мостовой схеме. Она более выигрышна по сравнению с предыдущей: диоды попарно пропускают как верхние, так и нижние части синусоиды соответственно к клеммам «+» и «–». В результате из исходного переменного тока, на графике кторого можно условно выделить «холмы и овраги», на графике получающегося однонаправленного тока образуются «не холмы и равнины», а «удвоенные холмы». Это означает, что теперь к потребителю попадает вся мощность исходного тока.

И в заключение рассмотрим, как к непостоянному току можно применить закон Джоуля-Ленца Q=I²Rt, описывающий тепловое действие тока. Как быть, если сила тока постоянно меняется? Нужно её заменить на условно-постоянную силу тока, которая производит такое же тепловое действие. Такое условно-постоянное значение силы тока в физике называют эквивалентным (эффективным, действующим) значением силы непостоянного тока.

Определение: эквивалентное значение непостоянного тока равно значению такого постоянного тока, который, проходя через то же сопротивление, выделяет в нём то же количество теплоты за то же время. Именно эквивалентное значение тока показывают нам все амперметры. Аналогично и по отношению к напряжению и вольтметрам. Итак, определить эквивалентные значения непостоянных токов позволяют калориметрические измерения (см. § 06-в).

 

Каким образом происходит выпрямление переменного тока

Каким образом происходит выпрямление переменного тока

Переменный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

Как известно, электростанции вырабатывают переменный ток. Переменный ток легко преобразуется с помощью трансформаторов, он передается по проводам с минимальными потерями, на переменном токе работают многие электродвигатели, в конце концов, все промышленные и бытовые сети работают сегодня именно на переменном токе.

Однако для некоторых применений переменный ток принципиально не годится. Заряжать аккумуляторы необходимо постоянным током, электролизные установки питаются постоянным током, светодиоды требуют постоянного тока, и много где еще просто не обойтись без постоянного тока, не говоря уже о гаджетах, где изначально используются аккумуляторы. Так или иначе, иногда приходится добывать постоянный ток из переменного путем его преобразования, для решения этой задачи и прибегают к выпрямлению переменного тока.

Для выпрямления переменного тока используют диодные выпрямители. Простейшая схема выпрямителя, содержащая всего один полупроводниковый диод, называется однополупериодным выпрямителем. Переменный ток здесь проходит через первичную обмотку трансформатора, вторичная обмотка которого одним своим выводом соединена с анодом диода, а другим — с цепью нагрузки, которая в свою очередь, будучи присоединена к катоду диода, замыкает вторичную цепь трансформатора.

Рассмотрим, что происходит в первый момент времени, когда к аноду диода приложено положительное, относительно его катода, напряжение, действующее в течение первого полупериода переменного тока.

В этот момент электроны движутся от катода к аноду диода, через провод вторичной обмотки трансформатора, через дроссель и далее через нагрузку, — так замыкается цепь. Когда начинается противоположный полупериод, электроны от анода к катоду проникнуть не могут, поэтому тока в цепи во время этого полупериода нет. С наступлением следующего полупериода процесс повторяется.

Итак, поскольку ток в цепи течет лишь во время одного из полупериодов, такой тип выпрямления называется однополупериодным выпрямлением. А по причине того, что во время отрицательных полупериодов ток в цепь нагрузки не попадает, форма его получается пульсирующей, ведь действует он в одном направлении, хотя и изменяется по величине.

Сглаживающий фильтр, состоящий из дросселя (катушки индуктивности) и конденсаторов, применяется в данной схеме для того, чтобы снизить уровень пульсаций на нагрузке, и сделать ток почти идеально постоянным. Практически переменную составляющую схема фильтра в нагрузку не пропускает, пропускает лишь постоянную составляющую.

Катушка обладает индуктивным сопротивлением, которое зависит от частоты тока, и чем выше частота — тем больше индуктивное сопротивление катушки, поэтому переменной составляющей пульсирующего тока катушка сопротивляется. Постоянную составляющую катушка пропускает легко.

Конденсатор же пропускает переменную составляющую, но не пропускает постоянную, и чем выше частота тока, тем сильнее конденсатор ее пропускает. В общем и целом чем больше емкость конденсатора и чем выше индуктивность катушки дросселя — тем меньше ненужной переменой составляющей в постоянном токе, текущем конкретно через нагрузку.

Итак, когда в цепи действует положительная полуволна тока, первый конденсатор заряжается до амплитудной величины переменного напряжения вторичной обмотки (минус падение напряжения на диоде). Когда действует отрицательная полуволна, электричество в конденсатор не поступает, и он, разряжаясь на нагрузку, поддерживает в ней постоянный ток.

Если бы не было дросселя, то поскольку напряжение на конденсаторе в ходе данного процесса уменьшалось бы, ток на нагрузке так или иначе имел бы сильные пульсации. Чтобы пульсации понизить, в цепь и добавляется дроссель (катушка), да еще и с дополнительным конденсатором, расположенным за ним. Второй конденсатор принимает на себя ток, идущий через дроссель, который уже почти не содержит пульсаций.

Чтобы пульсации сгладить еще лучше, применяют двухполупериодный выпрямитель. Двухполупериодный выпрямитель может быть реализован одним из двух способов. Он может быть выполнен по мостовой схеме (состоящей из четырех диодов), либо включать в себя всего два диода, но тогда вторичная обмотка трансформатора должна иметь удвоенное количество витков и вывод посередине между половинами обмоток.

Двухполупериодный выпрямитель работает следующим образом. В течение одного из полупериодов (допустим, положительного) ток направлен от анода к катоду верхнего по схеме диода, а нижний по схеме диод ток в это время не пропускает, он заперт (так же ведет себя единственный диод в однополупериодном выпрямителе во время отрицательной полуволны тока).

Ток замыкается через фильтр, нагрузку, и далее — через средний вывод на обмотку трансформатора. Когда наступает второй полупериод, полярность тока такова, что нижний по схеме диод пропускает ток через фильтр и через нагрузку, а верхний диод заперт. Далее процессы повторяются.

Поскольку ток здесь подается к нагрузке в течение каждого из двух периодов, такое выпрямление называется двухполупериодным выпрямлением, а выпрямитель — двухполупериодным выпрямителем. Пульсации на выходе здесь вдовое меньше, чем у однополупериодного выпрямления, поскольку частота выпрямленных импульсов вдвое больше, индуктивное сопротивление дросселя получается вдвое большим, а конденсаторы не успевают значительно разряжаться.

Ранее ЭлектроВести писали о переменном и постоянном токе в индустрии красоты.

По материалам electrik.info.

Зависимость переменного тока от постоянного

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения. Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление.Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц.Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рис. 2. Разность потенциалов V между клеммами источника переменного напряжения колеблется, как показано. Математическое выражение для V дается как [латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].

На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано на рисунке, с переменным напряжением , заданным как

.

[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],

, где В — напряжение в момент времени t , В 0 — пиковое напряжение, а f — частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменного тока равно

.

[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],

, где I — это ток в момент времени t , а I 0 = V 0 / R — пиковый ток. { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.

Установление подключений: домашний эксперимент — лампы переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 В 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас беспокоит средняя мощность, а не ее колебания — например, у лампочки 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на рисунке 3, средняя мощность P средн. составляет

[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].

Это очевидно из графика, поскольку области выше и ниже линии (1/2) I 0 V 0 равны, но это также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или действующий ток I среднеквадратического значения и среднее значение или действующее значение напряжения В среднеквадратичное значение , соответственно, равное

[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]

и

[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

P среднеквадратичное = I среднеквадратичное значение В среднеквадратичное значение ,

, что дает

[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],

, как указано выше. Стандартной практикой является указание I rms , V rms и P , среднее значение , а не пиковые значения.Например, электричество в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичного значения составляет 120 В. Обычный автоматический выключатель на 10 А прервет постоянное I среднеквадратичное значение , превышающее 10 А. Ваш 1,0-кВт микроволновая печь потребляет P средн. = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].

Пример 1. Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам говорят, что В среднеквадратичное значение составляет 120 В, а P среднеквадратичное значение составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (a)

Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на В rms дает

[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]

Обсуждение для (а)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду.Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].

Мы знаем, что средняя мощность 60,0 Вт, поэтому

P 0 = 2 (60,0 Вт) = 120 Вт.

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

В чем разница между питанием переменного и постоянного тока?

Электричество В чем разница между питанием переменного и постоянного тока?

| Обновлено 27.04.2021Автор / Редактор: Люк Джеймс / Erika Granath

Электроэнергия бывает двух видов — переменного тока (AC) и постоянного тока (DC). Оба они необходимы для функционирования нашей электроники, но знаете ли вы разницу между ними и то, к чему они применяются?

Связанные компании

И переменный, и постоянный ток описывают типы протекания тока в цепи.В постоянном токе (DC) электрический заряд (ток) течет только в одном направлении. Напротив, электрический заряд переменного тока периодически меняет направление.

(Источник: Unsplash)

Что такое переменный ток?

Электропитание переменного тока (AC) — это стандартная электроэнергия, которая выходит из электрических розеток и определяется как поток заряда, который демонстрирует периодическое изменение направления.

Поток переменного тока изменяется с положительного на отрицательный из-за электронов — электрические токи возникают из-за потока этих электронов, который может двигаться в положительном (вверх) или отрицательном (вниз) направлении.Это известно как синусоидальная волна переменного тока, и эта волна возникает, когда генераторы переменного тока на электростанциях создают мощность переменного тока.

Основной доклад на PCIM Digital Days 2021

Не пропустите ключевой доклад «HVDC Grid Challenges Locks and Opportunities» от Седдика Бача, научного директора программы, SuperGrid Institute, на PCIM Digital Days с 3 по 7 мая 2021 года.

Откройте для себя вся программа!

Генераторы переменного тока вырабатывают переменный ток путем вращения проволочной петли внутри магнитного поля.Волны переменного тока образуются, когда провод движется в области с разной магнитной полярностью — например, ток меняет направление, когда провод вращается от одного полюса магнитного поля к другому. Это волнообразное движение означает, что мощность переменного тока может распространяться дальше, чем мощность постоянного тока, что является огромным преимуществом, когда речь идет о доставке энергии потребителям через розетки.

Что такое питание постоянного тока?

Электропитание постоянного тока (DC), как можно понять из названия, представляет собой линейный электрический ток — он движется по прямой линии.

Постоянный ток может поступать из нескольких источников, включая батареи, солнечные элементы, топливные элементы и некоторые модифицированные генераторы переменного тока. Электропитание постоянного тока также может быть «получено» из переменного тока с помощью выпрямителя, преобразующего переменный ток в постоянный.

Питание

постоянного тока гораздо более стабильно с точки зрения подачи напряжения, а это означает, что большая часть электроники полагается на него и использует источники питания постоянного тока, такие как батареи. Электронные устройства также могут преобразовывать мощность переменного тока из розеток в мощность постоянного тока с помощью выпрямителя, часто встроенного в источник питания устройства.Трансформатор также будет использоваться для повышения или понижения напряжения до уровня, подходящего для рассматриваемого устройства.

Однако не все электрические устройства используют питание постоянного тока. Многие устройства, особенно бытовые приборы, такие как лампы, стиральные машины и холодильники, используют переменный ток, который подается непосредственно из электросети через розетки.

Зачем нужны два разных типа питания?

Хотя многие современные электронные и электрические устройства предпочитают питание постоянного тока из-за его плавного потока и равномерного напряжения, мы не смогли бы обойтись без переменного тока.Оба типа власти важны; одно не «лучше» другого.

Фактически, AC доминирует на рынке электроэнергии; все электрические розетки подают питание в здания в виде переменного тока, даже если может потребоваться немедленное преобразование тока в мощность постоянного тока. Это связано с тем, что постоянный ток не способен преодолевать такие же большие расстояния от электростанций до зданий, как переменный ток. Также намного проще генерировать переменный ток, чем постоянный, из-за того, как работают генераторы, и система в целом дешевле в эксплуатации — с переменным током мощность может легко передаваться по национальным сетям через мили и мили проводов и опор.

DC в первую очередь вступает в игру, когда устройству необходимо сохранять энергию в батареях для будущего использования. Смартфоны, ноутбуки, портативные генераторы, фонарики, системы наружных камер видеонаблюдения… вы называете это, все, что работает от батарей, требует хранения постоянного тока. Когда батареи заряжаются от сети, переменный ток преобразуется в постоянный ток выпрямителем и сохраняется в батарее.

Но это не единственный используемый метод зарядки. Если вы когда-либо заряжали свой телефон с помощью блока питания, например, вы используете источник питания постоянного тока, а не переменного тока.В этих ситуациях источникам питания постоянного и постоянного тока может потребоваться изменить выходное напряжение (в данном случае, блок питания) для использования устройства (в данном случае телефона).

Следуйте за нами в LinkedIn

Вам понравилось читать эту статью? Тогда подпишитесь на нас в LinkedIn и будьте в курсе последних событий в отрасли, продуктов и приложений, инструментов и программного обеспечения, а также исследований и разработок.

Следуйте за нами здесь!

(ID: 46408650)

Переменный ток (AC) vs.Постоянный ток (DC)

Пораженный громом!

Откуда австралийская рок-группа AC / DC получила свое название? Да ведь переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменного тока (AC), с другой стороны, периодически меняет направление. Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключено к сети переменного тока, поэтому, если вы планируете подключить свой проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный ток. Переменный ток также имеет некоторые полезные свойства, такие как возможность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства для передачи электроэнергии на большие расстояния.

Что вы узнаете

  • История создания переменного и постоянного тока
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

и nbsp

и nbsp

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление.В результате уровень напряжения также меняется на противоположный вместе с током. AC используется для подачи электроэнергии в дома, офисные здания и т. Д.

Генерация переменного тока

переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенного для выработки переменного тока.

Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее.Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот короткая анимация, демонстрирующая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду по трубам вперед и назад (наш «переменный» ток).Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Формы сигналов

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенным типом переменного тока является синусоида. Переменный ток в большинстве домов и офисов имеет колеблющееся напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоидальную волну. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) — это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени. Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

V P — амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, а это означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

— это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны — подъем и спад) происходит в течение одной секунды.

t — наша независимая переменная: время (измеряется в секундах). По мере того, как меняется время, наша форма волны меняется.

φ описывает фазу синусоидальной волны. Фаза — это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °.Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерить напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Часто бывает полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере у нас было напряжение, изменяющееся от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может питать электродвигатели. Двигатели и генераторы — это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

Генерация постоянного тока

постоянного тока можно создать несколькими способами:

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
  • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. В действительности батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Практически все проекты электроники и запчасти для продажи на SparkFun работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который преобразуется в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. .

AC против DC

Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). 110 В допускает некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

Несмотря на то, что падение напряжения на линиях электропередач было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль от них и обслуживать большее количество людей и зданий.

Кампания Эдисона по выявлению мазков

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток более опасен, чем постоянный ток. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Возвышение AC

В 1891 году Международная электротехническая выставка проходила во Франкфурте, Германия, и показала первую передачу трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены дисплеем. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса в Ниагарском водопаде, 1896 г. (Изображение любезно предоставлено teslasociety.com)

Westinghouse выиграла контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и электроэнергия переменного тока начала снабжать электроэнергией промышленные предприятия в Буффало. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи энергии постоянного тока на большие расстояния. Однако из-за высокой стоимости и высокой стоимости обслуживания систем Thury HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) можно использовать специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый из них служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке. С этим пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

Взгляните на следующие учебные пособия, когда будете готовы глубже погрузиться в мир электроники:

и nbsp

Война токов: мощность переменного тока и постоянного тока

Это #GridWeek на Energy.gov. Мы подчеркиваем наши усилия по поддержанию надежной, отказоустойчивой и безопасной электросети по всей стране и то, что это значит для вас. В четверг, 20 ноября, в 14:00 по восточноевропейскому времени мы проведем чат в Твиттере на тему «Как работает сеть».Присылайте нам свои вопросы в Twitter, Facebook и Google+, используя #GridWeek.

Начиная с конца 1880-х годов Томас Эдисон и Никола Тесла были втянуты в битву, известную теперь как Война течений.

Эдисон разработал постоянный ток — ток, который непрерывно течет в одном направлении, например, в батарее или топливном элементе. В первые годы развития электричества постоянный ток (сокращенно DC) был стандартом в США.

Но была одна проблема. Постоянный ток нелегко преобразовать в более высокие или более низкие напряжения.

Тесла считал, что переменный ток (или переменный ток) был решением этой проблемы. Переменный ток меняет направление на обратное определенное количество раз в секунду — 60 в США — и может быть относительно легко преобразован в различные напряжения с помощью трансформатора.

Эдисон, не желая терять гонорары, которые он получал от своих патентов на постоянный ток, начал кампанию по дискредитации переменного тока. Он распространял дезинформацию, говоря, что переменный ток более опасен, и даже зашел так далеко, что публично казнил бездомных животных электрическим током, используя переменный ток, чтобы доказать свою точку зрения.

Чикагская всемирная выставка — также известная как Всемирная колумбийская выставка — проходила в 1893 году, в разгар нынешней войны.

General Electric предложила электрифицировать ярмарку, используя постоянный ток Эдисона, за 554 000 долларов, но проиграла Джорджу Вестингаузу, который сказал, что может обеспечить электроэнергию ярмарку всего за 399 000 долларов, используя переменный ток Tesla.

В том же году Niagara Falls Power Company решила заключить с Westinghouse, которая лицензировала патент на многофазный асинхронный двигатель переменного тока Tesla, контракт на производство электроэнергии на Ниагарском водопаде.Хотя некоторые сомневались, что этот водопад может привести в действие весь Буффало, штат Нью-Йорк, Тесла был убежден, что он может привести в действие не только Буффало, но и весь восток Соединенных Штатов.

16 ноября 1896 года Буффало был освещен переменным током от Ниагарского водопада. К этому времени General Electric тоже решила запрыгнуть на поезд переменного тока.

Похоже, что переменный ток почти уничтожил постоянный ток, но в последние годы постоянный ток пережил своего рода возрождение.

Сегодня наша электроэнергия по-прежнему питается преимущественно переменным током, но компьютеры, светодиоды, солнечные элементы и электромобили работают на постоянном токе. Теперь доступны методы преобразования постоянного тока в более высокие и более низкие напряжения. Поскольку постоянный ток более стабилен, компании находят способы использования постоянного тока высокого напряжения (HVDC) для транспортировки электроэнергии на большие расстояния с меньшими потерями электроэнергии.

Получается, что Война течений еще не окончена.Но вместо того, чтобы продолжать горячую битву переменного и постоянного тока, похоже, что два тока в конечном итоге будут работать параллельно друг другу в своего рода гибридном перемирии.

И ничего из этого было бы невозможно без гения Теслы и Эдисона.

Примечание. Этот пост был первоначально опубликован в рамках серии статей «Эдисон против Теслы» в ноябре 2013 года.

Что такое переменный ток (AC)? | Базовая теория переменного тока

Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или обладающего напряжением постоянной полярности.

DC — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.

Переменный ток против постоянного

Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени.

Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):

Постоянный и переменный ток

В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер.Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током.

В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток, чтобы произвести желаемое тепло (рассеивание мощности). Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью.

Чтобы объяснить, почему это так, необходимы некоторые базовые знания об AC.

Генераторы переменного тока

Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, переменное напряжение будет создаваться на катушках с проволокой, когда этот вал вращается, в соответствии с законом электромагнитной индукции Фарадея.

Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока : Рисунок ниже

Работа генератора

Обратите внимание на то, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита.

При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.

Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока.

В генераторе постоянного тока катушка с проводом установлена ​​на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу.

Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:

Работа генератора постоянного тока

Генератор, показанный выше, будет производить два импульса напряжения за один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками.

Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.

Проблемы, связанные с замыканием и размыканием электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью. Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.

Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.

Двигатели переменного тока

Преимущества переменного тока перед постоянным током с точки зрения конструкции генератора также отражены в электродвигателях.

В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают. Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки провода для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

Трансформаторы

Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока обычно проще, чем генераторы постоянного тока и двигатели постоянного тока. Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть.

Существует эффект электромагнетизма, известный как взаимной индукции , при котором две или более катушек провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой.Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке. При использовании в таком виде это устройство известно как трансформатор :

.

Трансформатор «преобразует» переменное напряжение и ток.

Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обесточенной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки.

Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки, умноженный на соотношение первичных и вторичных витков. Эта взаимосвязь имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:

Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.

Если передаточное отношение обмотки изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:

Редукторная передача увеличивает крутящий момент и снижает скорость.Повышающий трансформатор увеличивает напряжение и уменьшает ток.

Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже.

При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток. для промышленности, бизнеса или потребительского использования.

Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.

Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистему для чего угодно, кроме использования на близком расстоянии (не более нескольких миль).

Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током.Поскольку явление взаимной индуктивности зависит от изменяющихся магнитных полей, а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.

Конечно, постоянный ток может прерываться (генерироваться импульсами) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но импульсный постоянный ток не так уж отличается от переменного тока.

Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.

ОБЗОР:

  • DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
  • AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление, соответственно.
  • Электромеханические генераторы переменного тока
  • , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
  • Конструкция двигателей переменного и постоянного тока
  • очень точно соответствует принципам конструкции соответствующих генераторов.
  • Трансформатор представляет собой пару взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой. Часто количество витков в каждой катушке устанавливается так, чтобы создать увеличение или уменьшение напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
  • Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
  • Вторичный ток = первичный ток (первичные витки / вторичные витки)

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

20.5 Сравнение переменного и постоянного тока — College Physics

Переменный ток

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения. Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление.Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 20.16 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рисунок 20.16 (a) Напряжение и ток постоянного тока постоянны во времени после установления тока.(б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рисунок 20.17 Разность потенциалов VV между клеммами источника переменного напряжения колеблется, как показано. Математическое выражение для VV задается следующим образом: V = V0sin 2 πftV = V0sin 2 πft размер 12 {V = V rSub {размер 8 {0}} «sin» «2» π ital «ft»} {}.

Рисунок 20.17 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано, с напряжением переменного тока, заданным параметром

. V = V0sin 2πft, V = V0sin 2πft, размер 12 {V = V rSub {size 8 {0}} «sin» «2» π ital «ft»} {}

20,38

где VV размер 12 {V} { } — это напряжение в момент времени tt размер 12 {t} {} , V0V0 размер 12 {V rSub {size 8 {0}}} {} — пиковое напряжение, а размер ff 12 {f} {} — частота в герцах. Для этой простой цепи сопротивления I = V / RI = V / R размер 12 {I = курсив «V / R»} {}, и поэтому переменный ток равен

I = I0 sin 2πft, I = I0 sin 2πft, размер 12 {I = I rSub {size 8 {0}} «sin 2» π ital «ft»} {}

20.39

, где II размер 12 {I} {} — это ток в момент времени tt, размер 12 {t} {}, а I0 = V0 / RI0 = V0 / R, размер 12 {I rSub {size 8 {0}} = V rSub {size 8 {0}} ital «/ R»} {} — пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на рисунке 20.16 (b).

Ток в резисторе меняется взад и вперед, как управляющее напряжение, так как I = V / RI = V / R размер 12 {I = курсив «V / R»} {}. Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль.Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помахаете рукой вперед и назад между вашим лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе. Тот факт, что световой поток колеблется, означает, что мощность колеблется. Поставляемая мощность P = IVP = IV размер 12 {P = курс «IV»} {}. Используя приведенные выше выражения для II размера 12 {I} {} и размера VV 12 {V} {}, мы видим, что зависимость мощности от времени составляет P = I0V0sin2 2πftP = I0V0sin2 2πft размер 12 {P = I rSub {size 8 { 0}} V rSub {size 8 {0}} «sin» rSup {size 8 {2}} «2» π ital «ft»} {}, как показано на рисунке 20.18.

Установление подключений: домашний эксперимент — лампы переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рисунок 20.18 Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется между нулем и I0V0I0V0 размером 12 {I rSub {размер 8 {0}} В rSub {размер 8 {0}}} {}.Средняя мощность (1/2) I0V0 (1/2) I0V0 размер 12 {\ (1/2 \) I rSub {размер 8 {0}} V rSub {размер 8 {0}}} {} .

Чаще всего нас интересует средняя мощность, а не ее колебания — например, 60-ваттная лампочка в вашей настольной лампе потребляет в среднем 60 Вт. Как показано на Рис. 20.18, средняя мощность PavePave размером 12 {P rSub {size 8 {«ave»}}} {} составляет

Pave = 12I0V0.Pave = 12I0V0. размер 12 {P rSub {size 8 {«ave»}} = {{1} больше {2}} I rSub {size 8 {0}} V rSub {size 8 {0}}} {}

20.40

Это видно из графика, поскольку области выше и ниже (1/2) I0V0 (1/2) I0V0 размер 12 {\ (1/2 \) I rSub {size 8 {0}} V rSub {size 8 {0}}} {} линии равны, но это также можно доказать с помощью тригонометрических тождеств. Аналогичным образом мы определяем средний или среднеквадратичный ток IrmsIrms размером 12 {I rSub {size 8 {«rms»}}} {} и среднее или среднеквадратичное напряжение VrmsVrms, размер 12 {V rSub {size 8 {«rms»}}} {} быть, соответственно,

Irms = I02Irms = I02 размер 12 {I rSub {size 8 {«rms»}} = {{I rSub {size 8 {0}}} больше {sqrt {2}}}} {}

20.41

и

Vrms = V02.Vrms = V02. размер 12 {V rSub {size 8 {«rms»}} = {{V rSub {size 8 {0}}} over {sqrt {2}}}} {}

20,42

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень. Это полезно для переменного тока, так как среднее значение равно нулю. Теперь

Pave = IrmsVrms, Pave = IrmsVrms, размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} V rSub {size 8 {«rms»}}} { }

20.43

, что дает

Pave = I02⋅V02 = 12I0V0, Pave = I02⋅V02 = 12I0V0, размер 12 {P rSub {size 8 {«ave»}} = {{I rSub {size 8 {0}}} больше {sqrt {2}}) } cdot {{V rSub {размер 8 {0}}} больше {sqrt {2}}} = {{1} больше {2}} I rSub {размер 8 {0}} V rSub {размер 8 {0}} } {}

20,44

как указано выше. Стандартной практикой является указание IrmsIrms размера 12 {I rSub {size 8 {«rms»}}} {}, VrmsVrms размера 12 {V rSub {size 8 {«rms»}}} {} и размера PavePave 12 {P rSub {size 8 {«ave»}}} {}, а не пиковые значения.Например, большая часть бытовой электроэнергии составляет 120 В переменного тока, что означает, что VrmsVrms размер 12 {V rSub {size 8 {«rms»}}} {} составляет 120 В. Обычный автоматический выключатель на 10 А прервет устойчивое IrmsIrms. размер 12 {I rSub {size 8 {«rms»}}} {} больше 10 A. Ваша микроволновая печь мощностью 1,0 кВт потребляет Pave = 1,0 кВт, Pave = 1,0 кВт, размер 12 {P rSub {size 8 {«ave» }} = 1 «.» 0` «кВт»} {} и так далее. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи.

Подводя итог, при работе с переменным током закон Ома и уравнения мощности полностью аналогичны уравнениям для постоянного тока, но для переменного тока используются среднеквадратические и средние значения. Таким образом, для переменного тока записан закон Ома

Irms = VrmsR.Irms = VrmsR. размер 12 {I rSub {size 8 {«rms»}} = {{V rSub {size 8 {«rms»}}} больше {R}}} {}

20,45

Различные выражения для мощности переменного тока PavePave размер 12 {P rSub {размер 8 {«ave»}}} {}:

Pave = IrmsVrms, Pave = IrmsVrms, размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»} } V rSub {размер 8 {«среднеквадратичное значение»}}} {}

20.46

Pave = Vrms2R, Pave = Vrms2R, размер 12 {P rSub {size 8 {«ave»}} = {{V rSub {size 8 {«rms»}} rSup {size 8 {2}}} больше {R }}} {}

20,47

и

Проложить = Irms2R. Проложить = Irms2R. размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} rSup {size 8 {2}} R} {}

20,48

Пример 20.9

Пиковое напряжение и мощность для AC

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (б) Какова пиковая потребляемая мощность 60-го.Лампа переменного тока 0 Вт?

Стратегия

Нам сообщили, что размер 12 VrmsVrms {V rSub {размер 8 {«rms»}}} {} составляет 120 В, а размер PavePave 12 {P rSub {size 8 {«ave»}}} {} — 60,0 Вт. можно использовать Vrms = V02Vrms = V02, размер 12 {V rSub {size 8 {«rms»}} = {{V rSub {size 8 {0}}} над {sqrt {2}}}} {}, чтобы найти пиковое напряжение , и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (а)

Решение уравнения Vrms = V02Vrms = V02 size 12 {V rSub {size 8 {«rms»}} = {{V rSub {size 8 {0}}} over {sqrt {2}}}} {} для пика напряжение V0V0 размер 12 {V rSub {size 8 {0}}} {} и замена известного значения на VrmsVrms размера 12 {V rSub {size 8 {«rms»}}} {} дает

V0 = 2Vrms = 1.414 (120 В) = 170 В.V0 = 2Vrms = 1,414 (120 В) = 170 В. Размер 12 {V rSub {размер 8 {0}} = sqrt {2} V rSub {size 8 {«rms»}} = «1» «.» «414» \ («120» «V» \) = «170 V»} {}

20,49

Обсуждение для (a)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В – 170 В и обратно 60 раз в секунду. Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

P0 = I0V0 = 212I0V0 = 2Pave.P0 = I0V0 = 212I0V0 = 2Pave. размер 12 {P rSub {размер 8 {0}} = I rSub {размер 8 {0}} V rSub {размер 8 {0}} = «2» осталось ({{1} больше {2}} I rSub {size 8 {0}} V rSub {size 8 {0}} right) = «2» P rSub {size 8 {«ave»}}} {}

20,50

Мы знаем, что средняя мощность составляет 60,0 Вт, поэтому

P0 = 2 (60,0 Вт) = 120 Вт. P0 = 2 (60,0 Вт) = 120 Вт. Размер 12 {P rSub {size 8 {0}} = «2» \ («60» «.» «0 Вт» \) = «120 Вт»} {}

20,51

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

Зачем использовать переменный ток для распределения электроэнергии?

Большинство крупных систем распределения электроэнергии — это переменный ток. Кроме того, мощность передается при гораздо более высоком напряжении, чем 120 В переменного тока (240 В в большинстве частей мира), которые мы используем дома и на работе. Благодаря эффекту масштаба строительство нескольких очень крупных электростанций обходится дешевле, чем строительство множества небольших. Это требует передачи энергии на большие расстояния, и, очевидно, важно минимизировать потери энергии в пути.Как мы увидим, высокие напряжения могут передаваться с гораздо меньшими потерями мощности, чем низкие напряжения. (См. Рис. 20.19.) В целях безопасности напряжение у пользователя снижено до знакомых значений. Решающим фактором является то, что намного легче увеличивать и уменьшать напряжение переменного тока, чем постоянного, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Рисунок 20.19 Мощность распределяется на большие расстояния при высоком напряжении, чтобы уменьшить потери мощности в линиях передачи. Напряжение, генерируемое на электростанции, повышается пассивными устройствами, называемыми трансформаторами (см. Трансформаторы), до 330 000 вольт (или более в некоторых местах по всему миру).В месте использования трансформаторы снижают передаваемое напряжение для безопасного использования в жилых и коммерческих помещениях. (Фото: GeorgHH, Wikimedia Commons)

Пример 20.10

При передаче высокого напряжения потери мощности меньше

(a) Какой ток необходим для передачи мощности 100 МВт при 200 кВ? (b) Какова мощность, рассеиваемая линиями передачи, если они имеют сопротивление 1,00 Ом1,00 Ом размером 12 {1 «». » «00»% OMEGA} {}? (c) Какой процент мощности теряется в линиях электропередачи?

Стратегия

Нам дано Pave = 100 MWPave = 100 MW, мощность 12 {P rSub {size 8 {«ave»}} = «100» `» MW «} {}, Vrms = 200 kVVrms = 200 kV, мощность 12 {V rSub { размер 8 {«rms»}} = «200» `» kV «} {}, а сопротивление линий R = 1.00ΩR = 1,00Ω размер 12 {R = 1 «.» «00» `% OMEGA} {}. Используя эти данные, мы можем найти текущий ток (из P = IVP = IV размер 12 {P = ital «IV»} {}), а затем мощность, рассеиваемую в линиях (P = I2RP = I2R размер 12 {P = I rSup {size 8 {2}} R} {}), и мы берем отношение к общей передаваемой мощности.

Решение

Чтобы найти ток, мы изменим соотношение Pave = IrmsVrmsPave = IrmsVrms размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} V rSub {size 8 {«rms» }}} {} и подставьте известные значения.Это дает

Irms = PaveVrms = 100 × 106 W200 × 103 V = 500 A. Irms = PaveVrms = 100 × 106 W200 × 103 V = 500 A. размер 12 {I rSub {size 8 {«rms»}} = {{P rSub { размер 8 {«ave»}}} больше {V rSub {size 8 {«rms»}}}} = {{«100» умножить на 10 «rSup {размер 8 {6}}» W «} больше {» 200 «times» 10 «rSup {size 8 {3}}» V «}} =» 500 A «} {}

20,52

Решение

Зная ток и учитывая сопротивление линий, мощность, рассеиваемая в них, определяется по формуле Pave = Irms2RPave = Irms2R размер 12 {P rSub {размер 8 {«ave»}} = I rSub {размер 8 {«rms»} } rSup {размер 8 {2}} R} {}.Подстановка известных значений дает

Pave = Irms2R = (500 A) 2 (1,00 Ом) = 250 кВт. Pave = Irms2R = (500 A) 2 (1,00 Ом) = 250 кВт. размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} rSup {size 8 {2}} R = \ («500 A» \) rSup {размер 8 {2 }} \ (1 «.» «00»% OMEGA \) = «250 кВт»} {}

20,53

Решение

Процент потерь — это отношение этой потерянной мощности к общей или входной мощности, умноженное на 100:

. % потерь = 250 кВт 100 МВт × 100 = 0,250%.% потерь = 250 кВт 100 МВт × 100 = 0.250%. размер 12 {% «loss =» {{«250» «кВт»} больше {«100» «МВт»}} ´ «100» = 0 «.» «250%»} {}

20,54

Обсуждение

Четверть процента — приемлемая потеря. Обратите внимание, что если бы мощность 100 МВт была передана при 25 кВ, то потребовался бы ток 4000 А. Это приведет к потере мощности в линиях на 16,0 МВт, или 16,0%, а не 0,250%. Чем ниже напряжение, тем больше требуется тока и тем больше потери мощности в линиях передачи с фиксированным сопротивлением.Конечно, можно построить линии с меньшим сопротивлением, но для этого потребуются более крупные и дорогие провода. Если бы сверхпроводящие линии можно было бы экономично производить, в линиях передачи вообще не было бы потерь. Но, как мы увидим в следующей главе, в сверхпроводниках тоже есть предел. Короче говоря, высокое напряжение более экономично для передачи энергии, а напряжение переменного тока намного легче повышать и понижать, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Широко признано, что высокое напряжение представляет большую опасность, чем низкое.Но на самом деле некоторые высокие напряжения, например, связанные с обычным статическим электричеством, могут быть безвредными. Таким образом, опасность определяется не только напряжением. Не так широко признано, что разряды переменного тока часто более вредны, чем аналогичные разряды постоянного тока. Томас Эдисон считал, что электрические разряды более опасны, и в конце 1800-х годов создал систему распределения электроэнергии постоянного тока в Нью-Йорке. Были ожесточенные бои, в частности, между Эдисоном и Джорджем Вестингаузом и Николой Тесла, которые выступали за использование переменного тока в ранних системах распределения энергии.Преобладал переменный ток в значительной степени благодаря трансформаторам и более низким потерям мощности при передаче высокого напряжения.

PhET Explorations

Генератор

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этих явлений, исследуя магниты и узнавая, как с их помощью загорается лампочка.

переменного тока против мощности постоянного тока и война токов

Многие из нас не понимают, как работает электричество.Достаточно того, что работает — вы включаете выключатель, и в комнате загорается свет. Поэтому может показаться удивлением узнать, что на самом деле существует два разных вида электричества, которые мы используем для питания многих устройств в нашей жизни. Они известны как переменный и постоянный ток или переменный и постоянный ток (не рок-группа 70-х годов).

Проще говоря, постоянный ток течет только в одном направлении, а переменный ток течет вперед и назад. Например, фонарик работает на постоянном токе, а заряд идет от аккумулятора и питает лампочку.С другой стороны, потолочный светильник в вашем доме использует переменный ток, полярность которого постоянно меняется, поскольку он проходит через электрическую систему вашего дома.

Но зачем нам два разных типа электричества и как были разработаны эти дуэльные системы? Ответ кроется в ожесточенном соперничестве между парой самых известных изобретателей в американской истории.

Истоки постоянного тока

До 1870-х годов люди полагались на газовые лампы, свечи или фонари, чтобы освещать свое окружение в ночное время.Были достигнуты успехи в элементарных батареях и электрическом освещении, но ничего достаточно практичного для повседневного использования. Все изменилось, когда Томас Эдисон изобрел лампу накаливания в 1879 году, которая была намного надежнее, чем все, что было раньше.

С появлением электрических лампочек появилась возможность снабжать электроэнергией дома и даже целые города, и Эдисон стремился захватить растущий рынок. Его лампы работали от постоянного тока, вырабатываемого электростанциями, известными как динамо-машины, которые использовали паровые двигатели для выработки электроэнергии.Изобретатель возглавил создание многочисленных электростанций постоянного тока в Нью-Йорке в 1880-х годах через свою компанию Edison Electric, предшественницу General Electric.

Электрическое освещение в домах и на предприятиях было откровением, но использование электричества постоянного тока имело свои недостатки. Электроэнергия поступала непосредственно от генерирующего объекта на 110 вольт, и могла пройти около мили или около того, прежде чем она потеряла слишком много напряжения. Это означало использование большого количества ценной недвижимости в городе для строительства электростанций, в то время как сельские общины вообще не участвовали в энергетической революции.

Повышение переменного тока

У одного из сотрудников Эдисона, молодого человека по имени Николай Тесла, возникла идея устранить некоторые недостатки постоянного тока. Тесла изобрел двигатель, вырабатывающий переменный ток. Переменный ток вырабатывается, что вполне уместно, с помощью генератора переменного тока, который вращает магнит внутри катушки с проводом, который создает электричество с постоянно меняющейся полярностью, когда провод взаимодействует с чередующимися сторонами магнитного поля.

Помимо самой новой формы электричества, ключом к идее Теслы были трансформаторы или катушки разных размеров для изменения напряжения электричества.Благодаря мощности трансформаторов переменный ток стал выгодным для крупномасштабной генерации и распределения, потому что чем выше напряжение, тем эффективнее передача. Линии высокого напряжения слишком опасны для проникновения в здание, но с помощью трансформатора напряжение можно снизить до более безопасного уровня по мере приближения к конечному пункту назначения — домам и офисам.

Напряжение постоянного тока было нелегко изменить, поэтому оно оказалось гораздо менее полезным для масштабных операций, так как вам остается выбор либо передавать при низком, неэффективном напряжении, либо отправлять опасно высокие уровни напряжения в дома людей. .

Война токов

Несмотря на обещание, проявленное изобретениями Теслы, Эдисон не был заинтересован в помощи в разработке технологии, поэтому Тесла ушел, чтобы начать действовать самостоятельно. Результатом стал ряд патентов, которые он продал в 1888 году Джорджу Вестингаузу, основателю Westinghouse Electric Company.

Компании Westinghouse и Эдисона яростно боролись за выгодные права на электрификацию американских городов в соревновании, получившем название «Война течений». Эдисон начал кампанию по лоббированию, которая пропагандировала опасность переменного тока в попытке предотвратить распространение изобретения Теслы.Чтобы продемонстрировать, что кондиционер может быть смертельным, сотрудники Эдисона изобрели электрический стул переменного тока, который использовался в штате Нью-Йорк для казни осужденных заключенных. Эдисон даже публично продемонстрировал, как убивал бездомных животных электрическим током, используя переменный ток, в своих попытках увести публику от конкурирующей системы.

Конкуренция достигла апогея на Всемирной выставке 1893 года в Чикаго, когда Tesla выиграла контракт на поставку электроэнергии. Решающий удар был нанесен три года спустя, когда Джордж Вестингауз использовал Ниагарский водопад для питания генератора переменного тока, который принес электричество в Баффало на 26 миль в 1896 году.Таким образом, переменный ток доказал свою полезность и продолжал доминировать в электроэнергетическом секторе, поскольку в течение долгих лет и десятилетий в домах по всей территории Соединенных Штатов загорался свет.

Производство переменного и постоянного тока сегодня

В последние десятилетия на рынке появилась технология генерации и передачи постоянного тока высокого напряжения, или HVDC, которая в некоторых случаях работает более эффективно, чем переменный ток, но переменный ток по-прежнему является подавляющим победителем в электрической сети.

Большинство типов электростанций спроектированы на основе тех же основных принципов, что и генератор переменного тока Теслы, создавая переменный ток с помощью вращающегося магнитного поля. Угольные, газовые и атомные станции работают за счет нагрева воды и использования пара для вращения генератора, в то время как гидроэлектростанции и ветряные электростанции используют энергию природы для непосредственного вращения турбин.

Солнечные панели, напротив, вырабатывают постоянный ток. Если электричество подается в сеть или для питания электрической системы дома, его необходимо сначала преобразовать в переменный ток с помощью инвертора.В остальном наиболее распространенными источниками питания постоянного тока являются батареи. Соответственно, постоянный ток намного легче хранить, поэтому, поскольку крупномасштабные аккумуляторы быстро распространяются вместе с производством возобновляемой энергии, у постоянного тока есть еще одна возможность закрепиться в электрической сети.

По высоковольтным линиям электропередачи обычно подается электричество переменного тока с напряжением около 345 000 вольт, а по местным линиям электропередачи — около 13 800 вольт, что по-прежнему чрезвычайно опасно для любого, кто вступает в контакт.К тому времени, когда он достигает вашего дома, напряжение понижается с помощью трансформаторов до 120–240 вольт, чтобы вы могли безопасно питать свои электрические устройства и приборы.

Что для вас означают разные типы тока

Как переменный, так и постоянный ток играют важную роль в среднем домохозяйстве. Бытовая техника в вашем доме, например, холодильник, стиральная и посудомоечная машины, используют переменный ток. В домах, которые не подключены к газу, большинство печей, водонагревателей, духовок и сушилок также работают от переменного тока.

Но у постоянного тока есть свои применения. Переменная часть переменного тока происходит быстро — в Соединенных Штатах электроны меняют направление 60 раз в секунду, также известное как 60 Гц. Однако, несмотря на то, что изменение происходит так быстро, каждый раз, когда ток меняет направление, возникают крошечные потери мощности. Это не проблема для лампочек или других приборов, которые рассчитаны на использование переменного тока, но современная чувствительная электроника не справляется даже с неизмеримо короткими перерывами в подаче электроэнергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *