Онлайн калькулятор расчета мощности калорифера
Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Для упрощения этой процедуры мы подготовили для Вас онлайн калькулятор расчета мощности калорифера.
Подбор мощности калорифера невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера. Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик. Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.
Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.
Канальные нагреватели различаются способом передачи энергии и разделяются на:
- Водяные — энергия передаётся через трубы с горячей водой, паром.
- Электрические — тэны, получающие энергию от центральной сети электроснабжения.
Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.
Электрический калорифер
Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.
Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.
Главный недостаток этого агрегата — инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.
Водяной калорифер
Основа водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода — снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.
Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.
Кроме нагревательного элемента в состав системы входит: (обеспечивает подвод теплоносителя к обменщику), насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.
Расчёт мощности
Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:
- Температуры приточки. Берётся минимальное значение для зимнего периода.
- Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
- Среднего расхода воздуха м³/ч..
Остались вопросы? Звоните по телефону: +7 (953) 098-28-01
Вас так же может заинтересовать монтаж вентиляции.
clim23.ru
Калориферы КПСк. Расчет и подбор паровых калориферов КПСк
3. Находим действительную массовую скорость для выбранного одного или нескольких калориферов.
v (кг/м2•с) = G / f
G —
f —
Пример подбора и расчета парового калорифера КПСк. Шаг-
Подобрать подходящий калорифер КПСк для нагрева 4500 м3/час от температуры —
v (кг/м2•с) = (5805/3600) / 0.392 = 4.11 кг/м2•с
5805 —
4. Рассчитываем расход пара.
Gп (кг/сек) = Q / rп
Q —
rп —
Пример подбора и расчета парового калорифера КПСк. Шаг-
Подобрать подходящий калорифер КПСк для нагрева 4500 м3/час от температуры —
4. Подсчет расхода пара. Рассчитывается потребление теплоносителя (сухой насыщенный пар давлением 0.1 МПа) для нагрева приточного воздуха объемом 4500 м3/час от —
Gп (кг/сек) = 84521 / 2257510 = 0.037 кг/сек
84521 —
Скрытая теплота парообразования (конденсации) —
zao-tst.ru
Калориферы для приточной вентиляции — виды и расчет
Подаваемый в здания воздух должен соответствовать заданным характеристикам. Для этого воздух проходит обработку такими способами, как фильтрование, нагрев, охлаждение, увеличение содержания влаги. Нагревание воздуха обеспечивает калорифер для приточной вентиляции. Для получения воздушного потока заданного температурного режима, необходимо сделать расчет и подбор калорифера.
Типы калориферов
Теплообменники выпускаются в разнообразных модификациях и для различных типов теплоносителей. Теплоносителями чаще выступают пар или вода. Также распространены электрокалориферы.
Водяные калориферы
Калориферы на горячей воде используются в приточных вентиляционных системах круглого или прямоугольного сечения и монтируются в вентиляционных каналах. Водяные калориферы могут быть двух- или трехрядными. Воздух, проходящий через водяной теплообменник, не должен включать твердые, волокнистые или клейкие вещества.
![](/wp-content/uploads/raschet-mocshnosti-kalorifera_3.jpg)
Водяной калорифер для приточной вентиляции
Паровые калориферы
По сравнению с водяными, паровые устройства используется нечасто, — обычно на промышленных предприятиях, где есть производство пара для технологических потребностей.
![](/wp-content/uploads/raschet-mocshnosti-kalorifera_4.jpg)
Паровой калорифер для приточной вентиляции
Обратите внимание! Иногда случается масштабное потребление воздуха приточной вентиляцией, и при этом установка теплообменника со значительным проходным сечением не представляется возможной. В таких случаях производится установка целой серии устройств меньшего размера.
Расчет мощности калорифера
Для проведения расчета необходимы такие данные:
- Объем или масса приточного воздуха, подлежащего нагреву. Вычислять может объемный расход (куб. м/ч) или массовый расход (кг/ч).
- Изначальная температура воздуха, которая равна температуре воздуха на улице.
- Целевая температура, до которой необходимо разогреть приточный воздух, прежде чем подавать его в помещения.
- Температурный режим теплоносителя, который применяется для нагрева воздуха.
Инструкция для расчета
При расчете калорифера, используемого для приточной вентиляции необходимо вычислить площадь поверхности подогрева и необходимую мощность. Начинать нужно с вычисления площади сечения теплообменника по фронту:
Аф = Lρ / 3600 (ϑρ), здесь:
- L – расход приточного воздуха по объему, м³/ч;
- ρ – значение плотности наружного воздуха, кг/м³;
- ϑρ – массовая скорость воздушных масс в расчетном сечении, кг/(с м²).
klivent.biz
как рассчитать мощность прибора для нагрева воздуха для отопления
Расчет и подбор водяных калориферов КСк осуществляется в следующей последовательности:
1. подсчет тепловой мощности для нагрева воздуха, 2. расчет фронтального сечения для прохода воздуха и подбор подходящих калориферов, 3. нахождение массовой скорости, 4. определение расхода теплоносителя, 5. подсчет скорости горячей воды в теплообменнике, 6. вычисление коэффициента теплопередачи, 7. определение среднего температурного напора, 8. нахождение теплопроизводительности калорифера или установки, 9. установление запаса по тепловой мощности, 10. расчет аэродинамического сопротивления, 11. определение гидравлического сопротивления по теплоносителю.
Все действия по расчету и подбору водяных калориферов типа КСк выложены пошагово. Прилагаются
формулы и таблицы
, технические данные и характеристики всех моделей данных воздухонагревателей. Каждый шаг подсчетов и вычислений сопровождается конкретным примером.
1. Определить тепловую мощность для нагрева определенного объема воздуха.
G (кг/ч) = L х р
L — объемное количество нагреваемого воздуха, м3/час
p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м3
б) Определяем расход теплоты для нагревания воздуха
Q (Вт) = G х c х (t кон — t нач )
G — массовый расход воздуха, кг/час
с — удельная теплоемкость воздуха, Дж/(кг K) , (показатель берется по температуре входящего воздуха, смотреть ниже — по таблице)
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С
.
Шаг- 1
1. Определить тепловую мощность, необходимую для нагрева 1700
0
м3/час с температуры — 25°С до +23°С.
G (кг/ч) = 1 7000 х 1.3 0 = 2 21 00 кг/час
1 700 0 — объемное количество нагреваемого воздуха, м3/час
1.3 0 — плотность воздуха при температуре — 1°С (температура на входе — 25 °С плюс температура воздуха на выходе +2 3°С — делим на два) (- 25+2 3 )/2= — 2 /2= — 1 Плотность воздуха при температуре — 1 имеет значение 1.3 0
б) Определяем расход те п лоты для нагревания воздуха
Q (Вт) = (2 21 00 /3600 ) х 1009 х (2 3 — (- 25 ) ) = 2 97319 Вт
2 21 00
1009 — удельная теплоемкость при температуре входящего воздуха — 25 °С, Дж/(кг K)
+2 3 — температура нагретого воздуха на выходе из теплообменника , °С
— 25 — температура воздуха на входе в теплообменник , °С
Температуру входящего воздуха можно принять, исходя из географического региона, в котором будут эксплуатироваться калориферы. Данные с расчетными средними температурами городов представлены в 3- х таблицах справа. Если в таблице отсутствует ваш город, следует принять показатели близлежащего.
2. Подбор и расчет калориферов — этап второй. Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха. Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.
f (м2) = G / v
G v —
массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м2 с
). Допустимые значения — до 7 — 8
кг/м2 с
Пример подбора и расчета калорифера КСк .
Шаг- 2
0
м3/час от температуры — 25°С до +23
f (м2) = (2 2100 /3600 ) / 3.6 = 1. 705 м2
2 21 00 — массовый расход воздуха, кг/час
3.6 — массовая скорость воздуха , кг/м2 с
Из расчета получилась требуемая площадь фронтального сечения для прохода воздуха — 1.705 м2. Далее, ориентируясь на данные из нижевыложенной таблицы, подбираем калорифер КСк, подходящий под это сечение. Наиболее подходящие модели КСк 3- 11 и КСк 4- 11 (площадь фронтального сечения этих теплообменников — 1.660 м2).
Что делать, если при расчете, мы получаем требуемую площадь сечения, а в таблице для подбора калориферов КСк, нет моделей с таким показателем. Тогда мы принимаем два или несколько калориферов одного номера, чтобы сумма их площадей соответствовала или приближалась к нужному значению. Например: при расчете у нас получилась требуемая площадь сечения — 0.926 м2. Воздухонагревателей с таким значением в таблице нет. Принимаем два теплообменника КСк 3- 9 с площадью 0.455 м2 (в сумме это дает 0.910 м2) и монтируем их по воздуху параллельно.
Ниже представлена таблица с данными воздухонагревателей типа КСк. В таблице приводятся основные технические характеристики всех моделе
Калорифер для приточной вентиляции: водяной или электрический, расчет мощности
Какой калорифер для приточной вентиляции выбрать?
Глоток свежего воздуха нужен и усердному работнику, и праздному домоседу. Впрочем, в зимнее время приточный воздух может быть чрезмерно свежим.Однако этот недостаток устраняет простейший нагревательный прибор — калорифер для приточной вентиляции, возвращающий комфортную температуру потоку свежего воздуха.
Приточная вентиляция загородного дома
Разновидности вентиляционных калориферов
В системах воздухообмена используют две разновидности калориферов, а именно:
- Нагревательные приборы на электричестве.
- Нагревательные приборы на жидких теплоносителях.
Электрический калорифер для приточной вентиляции – это очень эффективный, но чрезмерно энергозатратный отопительный прибор. Ведь повышение температуры приточного потока в данном случае происходит за счет контакта воздуха с раскаленными пластинами из тугоплавкого металла. Причем повышение температуры пластины происходит за счет электрического сопротивления нагревательных элементов, поглощающих десятки киловатт энергии. Впрочем, низкая энергоэфективность не умаляет других достоинств электрических калориферов – легкости процесса монтажа и компактности конструкции прибора.
Нагреватели второго типа –водяные или паровые калориферы — повышают температуру приточного потока за счет передачи энергии теплоносителя, циркулирующего внутри радиатора этого прибора. Любой жидкостный калорифер — водяной для приточной вентиляции или паровой для системы воздушного отопления – является эталоном воздухонагревателя. Ведь жидкостный нагреватель воздуха не уступает по эффективность электрическому аналогу, одновременно демонстрируя и минимальное, по сравнению с электрическим калорифером, энергопотребление. Единственным недостатком подобного нагревательного прибора является относительно сложный монтаж.
Впрочем, эффективность любого калорифера зависит не только от технологии разогрева потока, но и от точных расчетов эксплуатационных характеристик нагревателей воздуха. Ведь ошибки в расчетах приведут к вызванному перегревом замыканию в электрическом калорифере или обмерзанию недостаточно теплого радиатора в жидкостном воздухонагревателе.
Расчёт калорифера вентиляции
Типовой расчет калорифера оперирует следующими параметрами:
Движение воздушного потока в калорифере
- Тепловой мощностью нагревательного прибора – чем она больше, тем лучше. Однако с ростом мощности увеличивается и расход энергии, а, следовательно, и цена эксплуатации калорифера. Поэтому мощность не может быть бесконечно большой – для экономии средств владельца вентиляции она должна быть всего лишь достаточной для обогрева нужной порции воздуха.
- Площадью нагревательного элемента – тут повторяется ситуация с мощностью. Вроде бы, чем больше площадь, тем лучше. Однако очень большой нагревательный элемент просто не поместится в воздуховоде и «съест» намного больше энергии, чем требуется. Поэтому площадь нагревателя должна соответствовать решаемой задаче – нагреву порции воздуха конкретного объема.
- Объемным или массовым расходом приточного потока – это та самая порция воздуха, подаваемая на радиатор калорифера в единицу времени. Расход измеряется в кубических метрах или килограммах в час, минуту или секунду. Причем тут все однозначно – чем больше расход, тем дороже эксплуатация калорифера.
- Температурой воздуха на входе и выходе из калорифера . Цена эксплуатации зависит от разницы температур. Ведь значительная разница температур вынуждает потреблять больше энергии, направленной на генерацию тепловой мощности калорифера.
Упомянутые выше параметры увязаны между собой следующим образом:
Расчёт мощности калорифера вентиляции (Q ) происходит в процессе перемножения разницы температур (T1-T2 ) и массового расхода (G ). Причем помимо этих множителей на результат произведения влияет целый ряд дополнительных коэффициентов. Поэтому финальная формула выглядит следующим образом
где с – это теплоемкость атмосферного воздуха (в большинстве случаев она равна 1.005 кДж/кг °С). Причем T1 – это температура воздуха на выходе из калорифера, а T2 – это температура приточного потока на входе в нагревательный прибор.
Массовый расход (G ) зависит от производительности приточного вентилятора (L ) и плотности воздуха (P ). Расчетная формула выглядит следующим образом –
То есть, чем больше кубических метров в час прокачает вентилятор, тем больше будет и массовый расход и тепловая мощность калорифера. Причем производительность вентилятора определяется потребностью насытить каждый квадратный метр площади обслуживаемого помещения 3 кубическими метрами воздуха в час.
Площадь сечения нагревательного элемента (A) определяется как результат деления производительности вентилятора (L ) и плотности воздуха (P ) на скорость приточного потока в трубе (V ). Расчетная формула выглядит следующим образом
В свою очередь скорость зависит от производительности вентилятора и площади сечения воздуховода. Площадь нагревательных пластин в радиаторе или ТЭНе вычисляется по другой формуле
- где К – это КПД калорифера, зависящее от типа нагревательного прибора,
- Tt — это температура теплоносителя или пластины, а
- Tv -это температура воздуха.
Оперируя данными параметрами, мы можем, во-первых, подобрать тип калорифера, во-вторых, оптимизировать тепловую мощность нагревательного прибора, и, в-третьих, уменьшить цену эксплуатации воздухонагревателя. Однако даже самые верные расчеты не помогут добиться оптимизации эксплуатационных характеристик калорифера в том случае, если этот нагревательный прибор будет инсталлирован в систему с грубыми нарушениями технологического процесса.
Монтаж калорифера в вентиляционную систему
Установка калорифера в приточную ветвь вентиляции предполагает подключение нагревательного прибора не только к воздуховоду, но и к источнику энергии – электропроводке или разводке системы отопления.
Причем в первом случае ошибку в монтаже можно допустить лишь намеренно. Ведь калорифер «включается» в сеть точно так же, как и любой другой электроприбор.
Узел обвязки калорифера
Однако в этом деле есть свои нюансы:
- Во-первых, электрический калорифер необходимо оборудовать автоматом, защищающим сеть от возможного короткого замыкания или «пробоя» на линии подачи энергии к пластинам.
- Во-вторых, калорифер придется защищать от перегрева, используя датчики контроля температуры, отключающие питание при разогреве пластины выше граничной температуры.
- В-третьих, калорифер нуждается в заземлении, нивелирующем угрозу безопасности жильцов или персонала помещения, обслуживаемого приточной вентиляцией с подогревом.
Монтаж нагревательных приборов на жидких теплоносителях – это более сложная операция. Основные затруднения в этом случае вызывает обвязка калорифера для приточной вентиляции. А точнее качество данной операции.
Причем калорифер можно «увязать» с разводкой двумя способами:
- С помощью двухходового вентиля – простого решения, которое не дает возможности контролировать обратный расход теплоносителя.
- С помощью трехходового вентиля – более сложного узла, позволяющего совмещать калорифер, бойлер и котел.
При этом качество проделанной работы зависит не только от сложности узла распределения теплоносителя, но и от навыков специалиста, подключающего калорифер в систему. Ведь даже один негерметичный стык может спровоцировать падение тепловой мощности и дальнейшее обледенение радиатора. Поэтому монтаж водяных калориферов доверяют только опытным профессионалам, причем даже их работу принято контролировать самым тщательным образом.
http://climanova.ru
legkoe-delo.ru
Расчет мощности нагревателя
Расчет мощности электрического нагревателя
Организация приточно-вытяжной вентиляции помещений требует предварительный нагрев приточного воздуха перед подачей его в помещение.
Электрические нагреватели выпускают для подключения к прямоугольным и круглым вентиляционным каналам. Используют для подогрева приточного воздуха. Электрические нагреватели круглого сечения изготавливают из оцинкованной стали и представляют собой корпус и коммутационную коробку, в которой производится электрическое подключение нагревателя. Нагреватели снабжены термостатами защиты. Автоматический термостат защиты срабатывает при температуре 50 градусов. А второй термостат разрывает цепь при температуре выше 90 градусов и аварийное отключение можно снять только в ручном режиме. Как правило, термостаты подключаются последовательно в систему питания катушки магнитного пускателя. Канальные нагреватели устанавливают после вентилятора с равномерным обдувом ТЭНа. Приточная система вентиляции снабжается воздушным фильтром, который предотвращает загрязнение нагревателя.
Круглые нагреватели выпускают мощностью до 9 киловатт и снабжают нагревательными элементами из нержавеющей стали.
Организация приточно-вытяжной вентиляции помещений требует предварительный нагрев приточного воздуха перед подачей его в помещение.
Таблица минимального расхода воздуха круглых электрических нагревателей
Электрические нагреватели для прямоугольных каналов снабжены также термостатами защиты. Нагреватели оборудованы нагревательными элементами , снабженными дополнительным оребрением, которое увеличивает площадь соприкосновения ТЭНа нагревателя с приточным воздухом.
Таблица минимального расхода воздуха прямоугольных электрических нагревателей
Стоит отметить что прямоугольные нагреватели имеют дополнительное оребрение, что в значительной степени повышает энергоэффективность и теплоемкость особенно при подключении треугольником.
Для очистки воздуха используют воздушные фильтры
vent.vn.ua
водяной или электрический, расчет мощности
Глоток свежего воздуха нужен и усердному работнику, и праздному домоседу. Впрочем, в зимнее время приточный воздух может быть чрезмерно свежим. Однако этот недостаток устраняет простейший нагревательный прибор — калорифер для приточной вентиляции, возвращающий комфортную температуру потоку свежего воздуха.
![](/wp-content/uploads/raschet-mocshnosti-kalorifera_12.jpg)
Приточная вентиляция загородного дома
Разновидности вентиляционных калориферов
В системах воздухообмена используют две разновидности калориферов, а именно:
- Нагревательные приборы на электричестве.
- Нагревательные приборы на жидких теплоносителях.
Электрический калорифер для приточной вентиляции – это очень эффективный, но чрезмерно энергозатратный отопительный прибор. Ведь повышение температуры приточного потока в данном случае происходит за счет контакта воздуха с раскаленными пластинами из тугоплавкого металла. Причем повышение температуры пластины происходит за счет электрического сопротивления нагревательных элементов, поглощающих десятки киловатт энергии. Впрочем, низкая энергоэфективность не умаляет других достоинств электрических калориферов – легкости процесса монтажа и компактности конструкции прибора.
Нагреватели второго типа – водяные или паровые калориферы — повышают температуру приточного потока за счет передачи энергии теплоносителя, циркулирующего внутри радиатора этого прибора. Любой жидкостный калорифер — водяной для приточной вентиляции или паровой для системы воздушного отопления – является эталоном воздухонагревателя. Ведь жидкостный нагреватель воздуха не уступает по эффективность электрическому аналогу, одновременно демонстрируя и минимальное, по сравнению с электрическим калорифером, энергопотребление. Единственным недостатком подобного нагревательного прибора является относительно сложный монтаж.
Впрочем, эффективность любого калорифера зависит не только от технологии разогрева потока, но и от точных расчетов эксплуатационных характеристик нагревателей воздуха. Ведь ошибки в расчетах приведут к вызванному перегревом замыканию в электрическом калорифере или обмерзанию недостаточно теплого радиатора в жидкостном воздухонагревателе.
Расчёт калорифера вентиляции
Типовой расчет калорифера оперирует следующими параметрами:
![](/wp-content/uploads/raschet-mocshnosti-kalorifera_13.jpg)
Движение воздушного потока в калорифере
- Тепловой мощностью нагревательного прибора – чем она больше, тем лучше. Однако с ростом мощности увеличивается и расход энергии, а, следовательно, и цена эксплуатации калорифера. Поэтому мощность не может быть бесконечно большой – для экономии средств владельца вентиляции она должна быть всего лишь достаточной для обогрева нужной порции воздуха.
- Площадью нагревательного элемента – тут повторяется ситуация с мощностью. Вроде бы, чем больше площадь, тем лучше. Однако очень большой нагревательный элемент просто не поместится в воздуховоде и «съест» намного больше энергии, чем требуется. Поэтому площадь нагревателя должна соответствовать решаемой задаче – нагреву порции воздуха конкретного объема.
- Объемным или массовым расходом приточного потока – это та самая порция воздуха, подаваемая на радиатор калорифера в единицу времени. Расход измеряется в кубических метрах или килограммах в час, минуту или секунду. Причем тут все однозначно – чем больше расход, тем дороже эксплуатация калорифера.
- Температурой воздуха на входе и выходе из калорифера. Цена эксплуатации зависит от разницы температур. Ведь значительная разница температур вынуждает потреблять больше энергии, направленной на генерацию тепловой мощности калорифера.
Упомянутые выше параметры увязаны между собой следующим образом:
Расчёт мощности калорифера вентиляции (Q) происходит в процессе перемножения разницы температур (T1-T2) и массового расхода (G). Причем помимо этих множителей на результат произведения влияет целый ряд дополнительных коэффициентов. Поэтому финальная формула выглядит следующим образом
Q=0,278xCxGx(T1-T2),
где с – это теплоемкость атмосферного воздуха (в большинстве случаев она равна 1.005 кДж/кг °С). Причем T1 – это температура воздуха на выходе из калорифера, а T2 – это температура приточного потока на входе в нагревательный прибор.
Массовый расход (G) зависит от производительности приточного вентилятора (L) и плотности воздуха (P). Расчетная формула выглядит следующим образом –
G = LxP
То есть, чем больше кубических метров в час прокачает вентилятор, тем больше будет и массовый расход и тепловая мощность калорифера. Причем производительность вентилятора определяется потребностью насытить каждый квадратный метр площади обслуживаемого помещения 3 кубическими метрами воздуха в час.
![](/wp-content/uploads/raschet-mocshnosti-kalorifera_14.jpg)
Проводим расчеты
Площадь сечения нагревательного элемента (A) определяется как результат деления производительности вентилятора (L) и плотности воздуха (P) на скорость приточного потока в трубе (V). Расчетная формула выглядит следующим образом
A = LхP/3600хV
В свою очередь скорость зависит от производительности вентилятора и площади сечения воздуховода. Площадь нагревательных пластин в радиаторе или ТЭНе вычисляется по другой формуле
Ap=Qx1,2/Kx(Tt-Tv),
- где К – это КПД калорифера, зависящее от типа нагревательного прибора,
- Tt — это температура теплоносителя или пластины, а
- Tv -это температура воздуха.
Оперируя данными параметрами, мы можем, во-первых, подобрать тип калорифера, во-вторых, оптимизировать тепловую мощность нагревательного прибора, и, в-третьих, уменьшить цену эксплуатации воздухонагревателя. Однако даже самые верные расчеты не помогут добиться оптимизации эксплуатационных характеристик калорифера в том случае, если этот нагревательный прибор будет инсталлирован в систему с грубыми нарушениями технологического процесса.
Монтаж калорифера в вентиляционную систему
Установка калорифера в приточную ветвь вентиляции предполагает подключение нагревательного прибора не только к воздуховоду, но и к источнику энергии – электропроводке или разводке системы отопления.
Причем в первом случае ошибку в монтаже можно допустить лишь намеренно. Ведь калорифер «включается» в сеть точно так же, как и любой другой электроприбор.
![](/wp-content/uploads/raschet-mocshnosti-kalorifera_15.jpg)
Узел обвязки калорифера
Однако в этом деле есть свои нюансы:
- Во-первых, электрический калорифер необходимо оборудовать автоматом, защищающим сеть от возможного короткого замыкания или «пробоя» на линии подачи энергии к пластинам.
- Во-вторых, калорифер придется защищать от перегрева, используя датчики контроля температуры, отключающие питание при разогреве пластины выше граничной температуры.
- В-третьих, калорифер нуждается в заземлении, нивелирующем угрозу безопасности жильцов или персонала помещения, обслуживаемого приточной вентиляцией с подогревом.
Монтаж нагревательных приборов на жидких теплоносителях – это более сложная операция. Основные затруднения в этом случае вызывает обвязка калорифера для приточной вентиляции. А точнее качество данной операции.
Причем калорифер можно «увязать» с разводкой двумя способами:
- С помощью двухходового вентиля – простого решения, которое не дает возможности контролировать обратный расход теплоносителя.
- С помощью трехходового вентиля – более сложного узла, позволяющего совмещать калорифер, бойлер и котел.
При этом качество проделанной работы зависит не только от сложности узла распределения теплоносителя, но и от навыков специалиста, подключающего калорифер в систему. Ведь даже один негерметичный стык может спровоцировать падение тепловой мощности и дальнейшее обледенение радиатора. Поэтому монтаж водяных калориферов доверяют только опытным профессионалам, причем даже их работу принято контролировать самым тщательным образом.
Также советуем посмотреть:
climanova.ru