Расчет теплоносителя: Как рассчитать объем воды в системе отопления, радиаторах, трубах.

Содержание

Как рассчитать объем воды в системе отопления, радиаторах, трубах.

Расчет объема воды (теплоносителя), заполняющего систему отопления, будет одним из первых при выборе котла.

Это необходимо для понимания какой оптимальный объем может прогреть ваш котел или другой источник тепла. Параметры труб очень сильно влияют на данный показатель: при наличии насоса вы смело можете выбрать трубу меньшего диаметра и установить больше секций отопления.

Если выбрать трубы большого диаметра, то при максимальной мощности котла можно получить недогрев теплоносителя: большой объем воды будет раньше остывать, прежде чем дойдет до крайних точек системы отопления. Что в свою очередь приведет к дополнительным финансовым расходам.

Приблизительный расчет объема воды в системе отопления производится из соотношения 15 л воды на 1 кВт мощности котла.

Чтобы определить какой объем воды нужен для системы отопления дома, рассмотрим простой пример.

 

Мощность котла 4 кВт, тогда объем системы равен 4 кВт*15 литров = 60 литров. Но необходимо учитывать размеры и количество секций радиаторов при этом.

Если у вас дом на 4 комнаты, то это не значит, что надо ставить по 12-15 секций в каждую: у вас будет очень жарко, котел будет работать неэффективно. Если комнат больше, то и экономить на радиаторах не стоит: 1 современная секция эффективно отдает тепло для 2…2,5 м2 площади.

Как просто определить какой мощности нужен котел для системы отопления дома?

Формулы для расчета объема жидкости (воды или другого теплоносителя) в системе отопления

Объем воды в системе отопления можно рассчитать как сумма составляющих:

V =V(радиаторов)+V(труб)+V(котла)

Объем системы должен учитывать объем воды в трубах, котле и радиаторах.

В расчет объема теплоносителя не входит объем расширительного бака. Объем бачка учитывается при расчете критических состояний работы системы (когда вода будет поступать в него при нагреве).

Формула для расчета объема жидкости в трубе:

V (объем) = S (площадь сечения трубы) * L (длина трубы)

Важно! Размеры могут отличаться у различных производителей, в зависимости от типа трубы, материала, ее технологии производства. Поэтому расчет удобнее вести по реальному внутреннему диаметру трубы, который проще промерить с помощью инструмента. Как правило, такой расчет необходимо выполнять больше специалисту, когда система отопления разветвленная и сильно протяженная.

Сравнение видов водяного отопления дома (с естественной и принудительной циркуляцией).

Объемы воды для различных элементов системы отопления

Объем воды (литры) в секции радиатора

Материал/тип радиатораГабариты*: высота×ширина, ммОбъем, л
Алюминий600×800,450
Биметалл600×800,250
Современная чугунная батарея (плоский)580×751,000
Чугунная батарея старого образца ()600×1101,700

*ВАЖНО! Габариты в таблице даны ориентировочно.

В большинстве моделей современных производителей они составляют ±20 мм по ширине, высота радиаторов отопления может варьироваться от 200 до 1000 мм.

Объем сильно отличающихся по высоте радиаторов можно приблизительно рассчитать из данной таблицы по правилу пропорции: необходимо объем разделить на высоту и умножить после на высоту выбранной модели. Если система отопления протяженная, то лучше уточнить параметры объема у производителя.

Объем воды в 1 погонном метре трубы

  • ø15 (G ½») — 0,177 литра
  • ø20 (G ¾») — 0,310 литра
  • ø25 (G 1,0″) — 0,490 литра
  • ø32 (G 1¼») — 0,800 литра
  • ø40 (G 1½») — 1,250 литра
  • ø50 (G 2,0″) — 1,960 литра

Также читайте обзор какие трубы лучше всего выбрать.

Основные размеры внутренних диаметров труб (взят ряд значений от 14 до 54 мм), с которыми может столкнуться потребитель.

Внутренний диаметр, ммОбъем жидкости в 1 м погонного трубы, лВнутренний диаметр, мм
Объем жидкости в 1 м погонного трубы, л
140,1539300,7069
150,1767320,8042
160,2011340,9079
170,2270361,0179
180,2545381,1341
190,2835401,2566
20
0,3142421,3854
210,3464441,5205
220,3801461,6619
230,4155481,8096
240,4524501,9635
260,5309522,1237
280,6158542,2902

Расчет расширительного бака

Основные правила:

  1. Объем расширительного бака должен быть не менее 10% от объема системы отопления. Данного объема будет достаточно для расширения теплоносителя при нагреве в пределах 45…80 °С.
  2. Для больших протяженных систем, с высокой температурой теплоносителя, запас по объему должен быть не менее 80% от объема системы отопления. Это актуально для котлов с максимальной температурой теплоносителя выше 80…90 °С, паровых систем отопления от печей.
  3. Объем расширительного бака с предохранительным клапаном может составлять 3-5% от объема системы отопления. Но при этом важно контролировать его работу: при срабатывании клапана необходимо пополнять систему водой.
  4. При расчете необходимо учитывать давление в системе. В большинстве случаев для одно и двухэтажных коттеджей оно составляет 1,5…2 атмосферы. Масса готовых баков рассчитаны на данные показатели с запасом. При проектировании системы отопления большого объема, с повышенными характеристиками давления в коммуникациях (для высотных зданий), необходимо учитывать данный параметр.
  5. Учитывать вид теплоносителя при выборе – обязательно. Чем легче жидкость в системе – тем больший расширительный бак ей требуется.

Сравнение: Какой котел выбрать для отопления дома? Достоинства и недостатки.

Виды теплоносителей

  1. Вода. Самый простой и доступный ресурс. Может использоваться в любых системах отопления. В сочетании с полипропиленовыми трубами – практически вечный теплоноситель.
  2. Антифриз. Используется для наполнения систем нерегулярно отапливаемых зданий.
  3. Спиртосодержащие жидкости. Дорогой вариант заполнения системы отопления. Качественные препараты содержат не менее 60% спирта, порядка 30% воды, часть объема занимают другие добавки. Смеси воды с этиловым спиртом с различным процентным содержанием. Незамерзающая жидкость (до -30°С при содержании спирта не менее 45%), но опасна: может гореть, сам этил является ядом для человека.
  4. Масло. Как теплоноситель сегодня используется в отдельных приборах отопления, но в системах отопления от него отказываются: дорого и тяжело эксплуатировать систему, опасно технологически (необходим долгий разогрев теплоносителя до температуры 120°С и выше). Преимущество – действительно долго остывает, поддерживая температуру в помещении, но основной недостаток – дороговизна теплоносителя.

Расчет теплоносителя в системе отопления: какой объем теплоносителя необходим

В процессе проектирования и монтажа системы отопления встает вопрос: какой объем теплоносителя необходим для эффективной работы сети? Если жидкости окажется недостаточно, в доме будет холодно. Если купить слишком много теплоносителя, траты будут неоправданными: качественный материал не бывает дешевым, поэтому переплата может быть значительной. Разберемся, как правильно выполнить расчет.

Порядок действий

Объем циркулирующей жидкости будет равен суммарному объему всех элементов системы: труб, радиаторов, котла и т. д. Расчет теплоносителя начинают с простых математических вычислений для каждого компонента сети.

Котел. Размеры емкости зависят от мощности и габаритов установки. Характеристики для каждой модели котла указаны в паспорте.

Трубы. Для расчета потребуются характеристики всех коммуникаций в доме. Объем трубы рассчитывается как произведение длины на площадь поперечного сечения:

Vт = L х S

Важно, чтобы единица измерения была общей для обоих параметров: миллиметры или метры. Площадь поперечного сечения можно вычислить, зная диаметр трубы (D, мм) и постоянную π = 3,14:

S = π х R2 = π x (D/2)2.

Можно подставить значения в формуле и произвести расчеты, а можно воспользоваться готовой таблицей объема труб длиной 1 м:

Диаметр трубы, дюймДиаметр, ммОбъем, л
½150,177
¾200,314
1250,491
320,804
401,257
2502,467
653,318
3805,026
41007,854

Напомним, что 1 мм = 0,1 см = 0,001 м, а 1 мм2 = 0,01 см2 = 1 х 106 м2.

Радиаторы. Объем теплоносителя указан в паспорте изделия. Обратите внимание, что данные обычно приводят для одной секции. Необходимо умножить это число на количество ребер во всех радиаторах.

Если документы на приборы утеряны, для ориентировочного расчета можно использовать такие цифры:

  • биметаллические радиаторы – 0,2−0,3 л на 1 секцию;
  • чугунные – 1,5 л;
  • алюминиевые – 0,4 л.

Например, в комнате установлен 1 биметаллический радиатор на 12 секций. Объем теплоносителя будет равен (12 х 0,2) 2,4 л.

Что важно учесть

Выполнить расчет самостоятельно с высокой точностью практически невозможно. Поэтому специалисты рекомендуют сначала заполнить систему теплоносителем на 90 % и запустить оборудование. Если все узлы функционируют нормально, из сети стравливают остатки воздуха и доливают жидкость. В процессе эксплуатации системы отопления объем теплоносителя может уменьшаться. Это связано с естественным испарением. По мере уменьшения объема снижается производительность котла. Чтобы сеть работала эффективно, в систему монтируют резервный бак с запасом теплоносителя. Жидкость из емкости будет постоянно пополнять сеть, компенсировать гидроудары. По уровню теплоносителя в баке легко отслеживать скорость испарения. Главное, учесть объем резервуара при первичных расчетах.

Расчет объема воды в системе отопления с онлайн калькулятором

Каждая отопительная система обладает рядом значимых характеристик – номинальную тепловую мощность, расход топлива и объем теплоносителя. Расчет объема воды в системе отопления требует комплексного и скрупулезного подхода. Так, вы сможете выяснить, котел, какой мощности выбрать, определить объем расширительного бака и необходимое количество жидкости для заполнения системы.

Значительная часть жидкости располагается в трубопроводах, которые в схеме теплоснабжения занимают самую большую часть. Поэтому для расчета объема воды нужно знать характеристики труб, и важнейший из них – это диаметр, который определяет вместимость жидкости в магистрали. Если неправильно сделать расчеты, то система будет работать не эффективно, помещение не будет прогреваться на должном уровне. Сделать корректный расчет объемов для системы отопления поможет онлайн калькулятор.

Калькулятор объема жидкости в отопительной системе

В системе отопления могут использоваться трубы различных диаметров, особенно в коллекторных схемах. Поэтому объем жидкости вычисляют по следующей формуле:

S (площадь сечения трубы) * L (длина трубы) = V (объем)

Рассчитывается объем воды в системе отопления можно также как сумма ее составляющих:

V (система отопления)=V(радиаторов)+V(труб)+V(котла)+V(расширительного бака)

В сумме эти данные позволяют рассчитать большую часть объема системы отопления. Однако кроме труб в системе теплоснабжения есть и другие компоненты. Чтобы произвести расчет объема отопительной системы, включая все важные компоненты теплоснабжения, воспользуйтесь нашим онлайн калькулятором объема системы отопления.

Сделать вычисление с помощью калькулятора очень просто. Нужно ввести в таблицу некоторые параметры, касающиеся типа радиаторов, диаметра и длины труб, объема воды в коллекторе и т.д. Затем нужно нажать на кнопку «Рассчитать» и программа выдаст вам точный объем вашей системы отопления.

Выберите вид радиаторов

По умолчаниюАлюминиевые секционныеСтальные панельные

Проверить калькулятор можно, используя указанные выше формулы.

Пример расчета объема воды в системе отопления:

Приблизительный расчет делается исходя из соотношения 15 литр воды на 1 кВт мощности котла.
Например, мощность котла 4 кВт, тогда объем системы равен 4 кВт*15 литров = 60 литров.

Значения объемов различных составляющих

Объем воды в радиаторе:

  • алюминиевый радиатор — 1 секция — 0,450 литра
  • биметаллический радиатор — 1 секция — 0,250 литра
  • новая чугунная батарея 1 секция — 1,000 литр
  • старая чугунная батарея 1 секция — 1,700 литра.

Объем воды в 1 погонном метре трубы:

  • ø15 (G ½») — 0,177 литра
  • ø20 (G ¾») — 0,310 литра
  • ø25 (G 1,0″) — 0,490 литра
  • ø32 (G 1¼») — 0,800 литра
  • ø15 (G 1½») — 1,250 литра
  • ø15 (G 2,0″) — 1,960 литра.

Чтобы посчитать весь объем жидкости в отопительной системе нужно еще добавить объем теплоносителя в котле. Эти данные указываются в сопроводительном паспорте устройства или же взять примерные параметры:

  • напольный котел — 40 литров воды;
  • настенный котел — 3 литра воды.

Выбор котла напрямую зависит от объема жидкости в системе теплоснабжения помещения.

Основные виды теплоносителей

Существует четыре основных вида жидкости, используемых для заполнения отопительных систем:

  1. Вода – максимально простой и доступный теплоноситель, который может использоваться в любых отопительных системах. Вместе с полипропиленовыми трубами, которые предотвращают испарение, вода становится практически вечным теплоносителем.
  2. Антифриз – этот теплоноситель обойдется уже дороже воды, и используется в системах нерегулярно отапливаемых помещений.
  3. Спиртосодержащие теплоносители – это дорогостоящий вариант заполнения отопительной системы. Качественная спиртосодержащая жидкость содержит от 60% спирта, около 30% воды и порядка 10% объема составляют другие добавки. Такие смеси обладают отличными незамерзающими свойствами, но огнеопасны.
  4. Масло – в качестве теплоносителя используется только в специальных котлах, но в отопительных системах практически не применяется, так как эксплуатация такой системы обходится очень дорого. Также масло очень долго разогревается (необходим разогрев, как минимум, до 120°С), что технологически очень опасно, при этом и остывает такая жидкость очень долго, поддерживая высокую температуру в помещении.

В заключении стоит сказать, что если система отопления модернизируется, монтируются трубы или батареи, то нужно произвести перерасчет ее общего объема, согласно новым характеристика всех элементов системы.

Объем воды (теплоносителя) в трубе (полипропилен, металл, мателлопласт)

Объем воды или теплоносителя в различных трубопроводах, таких как полиэтилен низкого давления (ПНД труба) полипропиленовые трубы, трубы армированные стекловолокном,  металлопластиковые трубы, стальные трубы, необходимо знать при подборе какого либо оборудования, в частности расширительного бака.

Что вы узнаете

К примеру в металлопластиковой трубе диаметр 16 в метре трубы 0,115 гр. теплоносителя.

Вы знали? Скорее всего нет. Да и вам собственно зачем это знать, пока вы не столкнулись с подбором, к примеру расширительного бака. Знать объем теплоносителя в системе отопления необходимо не только для подбора расширительного бака, но и для покупки антифриза. Антифриз продается в неразбавленном до -65 градусов и разбавленном до -30 градусов виде. Узнав объем теплоносителя в системе отопления вы сможете купить ровное количество антифриза. К примеру, неразбавленный антифриз необходимо разбавлять 50*50 (вода*антифриз), а значит при объеме теплоносителя равном 50 литров, вам необходимо будет купить всего 25 литров антифриза.

Предлагаем вашему вниманию форма расчета объёма воды (теплоносителя) в трубопроводе и радиаторах отопления. Введите длину трубы определенного диаметра и моментально узнаете сколько в этом участке теплоносителя.

Объем воды в трубах различного диаметра: выполнение расчета

Важно учитывать толщину трубы. Размер пластиковых труб — внешний диаметр, стальные -внутренний диаметр

После того как вы рассчитали объем теплоносителя в водопроводе, но для создания полной картины, а именно для того чтобы узнать весь объем теплоносителя в системе, еще вам понадобится рассчитать  объем теплоносителя в радиаторах отопления.

Расчет объема воды в трубах

Расчет объема воды в радиатора отопления

Калькулятор

Объем воды в некоторых алюминиевых радиаторах

Уж теперь то вам точно не составит труда подсчитать объем теплоносителя в системе отопления.

Расчет объема теплоносителя в радиаторах отопления

Для того чтобы подсчитать весь объем теплоносителя в системе отопления нам необходимо еще прибавить объем воды в котле. Его можно узнать в паспорте котла или же взять примерные цифры:

  • напольный котел — 40 литров воды;
  • настенный котел — 3 литра воды.

Помог ли вам калькулятор? Смогли ли вы рассчитать сколько в вашей системе отопления или в трубе теплоносителя? Отпишитесь пожалуйста в комментариях.

Краткое руководство по использованию калькулятора «Расчет объема воды в различных трубопроводах»:

  1. в первом списке выберите материал трубы и его диаметр (это может быть пластик, полипропилен, металлопластик, сталь и диаметры от 15 — …)
  2. во втором списке пишем метраж выбранной трубы из первого списка.
  3. Жмем «Рассчитать».

«Рассчитать количество воды в радиаторах отопления»

  1. в первом списке выбираем меж осевое расстояние и из какого материала радиатор.
  2. вводим количество секций.
  3. Жмем «Рассчитать».

Как рассчитать объем расширительного мембранного бака

Формула подбора расширителя — V воды в трубе+радиаторы+котел * 10-12%

При знании объема воды можно легко подобрать расширительный бачок.

Автор статьи:

Задавайте вопросы в комментариях, делитесь своим опытом, так же принимается любая конструктивная критика, готов обсуждать. Не забывайте делиться полученной информацией с друзьями.

Расчёт теплоносителя в системе отопления

Необходимый объём теплоносителя рассчитывается согласно следующей формуле:

Общий объем = V котла + V радиаторов + V труб + V расширительного бачка

V котла:

Точный объём котла можно узнать только в техническом паспорте производителя. При его отсутствии можно взять примерные значения: Напольные модели могут вмещать от 10 до 25 литров воды. В среднем твердотопливный котел мощностью 24 кВт содержит в теплообменнике около 20 л. теплоносителя;
Настенные газовые менее вместительны – от 3 до 7 л.

V радиаторов отопления:

Для определения объема теплоносителя в радиаторах отопления удобно сначала подсчитать количество одинаковых по размеру и типу секций и умножить их на внутренний объем одной секции.

 

Межосевое расстояние

Чугунные батареи, объем л.

Алюминиевые и биметаллические радиаторы, объем л.
3001,20,27
3500,3
5001,50,36

 

Примерное количество теплоносителя в 1 секции радиатора, высотой 500 мм.:

1 секция алюминиевых радиаторов — 0,450 литра

1 секция биметаллических радиаторов — 0,350 литра

1 секция новых чугунных радиаторов — 1,000 литр

1 секция старых чугунных радиаторов — 1,400 литра

 

труб отопления:

Для определения объема теплоносителя в трубах отопления необходимо определить суммарную длину всех однотипных труб и умножить ее на внутренний объем 1 м. п. трубы соответствующего диаметра.Следует учесть, что внутренний объем труб из стали,полипропилена и металлопласта отличаются.

 

Внутренний объем 1 метра стальной трубы.

Диаметр, дюймыНаружный диаметр, ммВнутренний диаметр, ммОбъем, м3Объем, л
1/2»21,3150,000180,177
3/4»26,8200,000310,314
33,5250,000490,491
1 1/4»42,3320,000800,804
1 1/2»48400,001261,257
60500,001961,963
2 1/2»75,5700,003853,848
88,5800,005035,027
3 1/2»101,3900,006366,362
1141000,007857,854

 

Внутренний объем 1 метра полипропиленовой трубы.

Наружный диаметр, ммВнутренний диаметр, ммОбъем, м3Объем, л
2013,20,000140,137
2516,40,000220,216
3221,20,000350,353
4026,60,000560,556
5033,40,000880,876
63420,001390,139
75500,001961,963
90600,002832,827
11073,40,004234,231

 

Внутренний объем 1 метра металлопластиковой трубы.

Наружный диаметр, ммВнутренний диаметр, ммОбъем, м3Объем, л
16120,000110,113
20160,000200,201
26200,000310,314
32260,000530,531
40330,000860,855

 

V расширительного бачка:

Данные об объеме расширительного бачка можно взять из технического паспорта.

Определить, какой емкостью должен обладать расширительный бак, можно, располагая данными о коэффициенте температурного расширения теплоносителя. У теплоносителя этот показатель составляет 0,044.

Выполняя расчет достаточно воспользоваться формулой: V-бака = (V сист × K) / D, где:

V-бака – необходимый объем расширительного бачка;

V-сист – общий объем жидкости в остальных элементах системы отопления;

K – коэффициент расширения;

D – эффективность расширительного бачка (указывается в технической документации).

Примечение:

При расчёте необходимо учитывать,что теплоноситель в канистры фасуется в кг:

«Термострим -30»               —                1кг = 0,95л  1л=1,052кг

«Термострим -65»                —                1кг = 0,92л  1л=1,086кг

«Термострим ЭКО -30»        —                 1кг = 0,97л  1л=1,03кг

 

Пример: на систему 200 л необходимо 200х1,052=210,4 кг теплоносителя (Для Термострим -30)

Теплоноситель необходимо размешивать с водой непосредственно перед заливом в систему!

 

Таблицы и правила размешивания теплоносителя:

Термострим — 65

Для получения рабочей смеси с необходимой температурой начала кристаллизации теплоноситель разводится дистиллированной или деминерализованной водой.

Содержание теплоносителя на 100 л систему отопления:

-40°C-30°C-25°C-20°C
Содержание теплоносителя77л65л60л54л
Содержание воды23л35л40л46л

 

Термострим – 30 и ЭКО – 30

 Содержание теплоносителя на 100 л систему отопления:

-30°C-25°C-20°C
Содержание теплоносителя100л90л80л
Содержание воды10л20л

 

Если система отопления другого объема то коэффициент увеличивается или уменьшается пропорционально.Например для системы 50л коэффициент равен 0,5,для системы 210 л равен 2,1.

 Купить теплоноситель для систем отопления

 Купить оптом теплоноситель Термострим можно на нашем сайте по телефонам указанным в контактах либо оставить заявку на электронную почту.

Расчет объёма воды в системе отопления дома

 

Укажите запрашиваемые данные и нажмите
«РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ»

Объем теплообменника котла , литров (паспортная величина)

.

РАСШИРИТЕЛЬНЫЙ БАК

Объем расширительного бака, литров

.

ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА

.

Разборные, секционные радиаторы

Общее количество секций

.

Неразборные радиаторы и конвекторы

Объем прибора по паспорту

Количество приборов

Тип и диаметр трубы

Общая длина контуров

.

ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка)

Стальные трубы ВГП

Армированные полипропиленовые трубы

Металлопластиковые трубы

.

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие)

Суммарный объем дополнительных элементов системы

Тепловой и гидравлический расчет теплого пола.

Примерное кол-во тепла, необходимое для обогрева помещения.
Единицы измерения — Ватт. Теплопотери помещения Вт

При указании площади учитывать необходимые отступы от стен.
Единицы измерения — квадратные метры. Площадь теплого пола м2

Назначение рассчитываемого помещения Назначение помещения Постоянное пребывание людейПостоянное пребывание людей (Влажное помещение)Временное пребывание людейВременное пребывание людей (Влажное помещение)Детское учреждение

Необходимая температура воздуха в рассчитываемом помещении.
Единицы измерения — градусы цельсия. Требуемая t°С воздуха в помещении °С

Температура воздуха в нижерасположенном помещении.
Если помещение отсутствует, указывать 0.
Единицы измерения — градусы цельсия. t°С воздуха в нижнем помещении °С

Шаг укладки трубы ТП.
Единицы измерения — сантиметры. Шаг трубы 1015202530см

Тип труб используемых в системе ТП, внешний диаметр и толщина стенок. Тип труб Металлопластиковые 16х1.5Металлопластиковые 16х2.0Металлопластиковые 20х2.0Металлопластиковые 26х3.0Металлопластиковые 32х3.0Металлопластиковые 40х3.5Полиэтиленовые 16х2.2Полиэтиленовые 16х2.0Полиэтиленовые 20х2.0Полиэтиленовые 25х2.3Полиэтиленовые 32х 3.0Полипропиленовые 16х1.8Полипропиленовые 16х2.7Полипропиленовые 20х1.9Полипропиленовые PPR 20х3.4Полипропиленовые 25х2.3Полипропиленовые PPR 25х4.2Полипропиленовые 32х3.0Полипропиленовые PPR 32х5.4Полипропиленовые PPR 40х6.7Полипропиленовые PPR 50х8.3Полипропиленовые PPR-FIBER 20х2.8Полипропиленовые PPR-FIBER 20х3.4Полипропиленовые PPR-FIBER 25х3.5Полипропиленовые PPR-FIBER 25х4.2Полипропиленовые PPR-FIBER 32х4.4Полипропиленовые PPR-FIBER 32х5.4Полипропиленовые PPR-FIBER 40х5.5Полипропиленовые PPR-FIBER 40х6.7Полипропиленовые PPR-FIBER 50х6.9Полипропиленовые PPR-FIBER 50х8.3Полипропиленовые PPR-ALUX 20х3.4Полипропиленовые PPR-ALUX 25х4.2Полипропиленовые PPR-ALUX 32х5.4Полипропиленовые PPR-ALUX 40х6.7Полипропиленовые PPR-ALUX 50х8.3Медные 10х1Медные 12х1Медные 15х1Медные 18х1Медные 22х1Медные 28х1Медные 35х1.5Стальные ВГП легкие 1/2″Стальные ВГП обыкновенные 1/2″Стальные ВГП усиленные 1/2″Стальные ВГП легкие 3/4″Стальные ВГП обыкновенные 3/4″Стальные ВГП усиленные 3/4″Стальные ВГП легкие 1″Стальные ВГП обыкновенные 1″Стальные ВГП усиленные 1″

Температура теплоносителя на выходе из котла в систему ТП.
Единицы измерения — градусы цельсия. Температура теплоносителя на входе°С

Температура теплоносителя на входе в котел из системы ТП. В среднем ниже на 5-10°С температуры теплоносителя на входе в систему ТП.
Единицы измерения — градусы цельсия. Температура теплоносителя на выходе°С

Длина трубы от котла до рассчитываемого помещения «туда-обратно».
Единицы измерения — метры. Длина подводящей магистрали метров

Слои НАД трубами:

↑ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплители мм

↑ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиКовролин (0.07 λ Вт/м К)Линолеум многослойный ρ1600 (0.33 λ Вт/м К)Линолеум многослойный ρ1800 (0.38 λ Вт/м К)Линолеум на тканевой основе ρ1400 (0.23 λ Вт/м К)Линолеум на тканевой основе ρ1600 (0.29 λ Вт/м К)Линолеум на тканевой основе ρ1800 (0.35 λ Вт/м К)Паркет (0.2 λ Вт/м К)Ламинат (0.3 λ Вт/м К)Плитка ПВХ (0.38 λ Вт/м К)Плитка керамическая (1 λ Вт/м К)Пробка (0.047 λ Вт/м К) мм

↥ БетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиРаствор гипсоперлитовый ρ600 (0.23 λ Вт/м К)Раствор гипсоперлитовый поризованный ρ400 (0.15 λ Вт/м К)Раствор гипсоперлитовый поризованный ρ500 (0.19 λ Вт/м К)Раствор известково-песчаный ρ1600 (0.81 λ Вт/м К)Раствор сложный (цемент+песок+известь) ρ1700 (0.87 λ Вт/м К)Раствор цементно-перлитовый ρ1000 (0.3 λ Вт/м К)Раствор цементно-перлитовый ρ800 (0.26 λ Вт/м К)Раствор цементно-песчаный ρ1800 (0.93 λ Вт/м К)Раствор цементно-шлаковый ρ1200 (0.58 λ Вт/м К)Раствор цементно-шлаковый ρ1400 (0.64 λ Вт/м К) мм

Слои ПОД трубами (начиная от трубы):

↧ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплители мм

↓ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиАрмопенобетон (0.13 λ Вт/м К)Асбест (0.08 λ Вт/м К)Асбозурит ρ600 (0.15 λ Вт/м К)Битумокерамзит (0.13 λ Вт/м К)Битумоперлит ρ400 (0.13 λ Вт/м К)Изделия перлитофосфогелиевые ρ200 (0.09 λ Вт/м К)Изделия перлитофосфогелиевые ρ300 (0.12 λ Вт/м К)Каучук вспененный Аэрофлекс ρ80 (0.054 λ Вт/м К)Каучук вспененный Кайманфлекс ST ρ80 (0.039 λ Вт/м К)Каучук вспененный Кайманфлекс ЕС ρ80 (0.039 λ Вт/м К)Каучук вспененный Кайманфлекс ЕСО ρ95 (0.041 λ Вт/м К)Куцчук вспененный Армафлекс ρ80 (0.04 λ Вт/м К)Маты алюминиево-кремниевые волокнистые Сибрал ρ300 (0.085 λ Вт/м К)Маты из супертонкого стекловолокна ρ20 (0.036 λ Вт/м К)Маты минераловатные Парок (0.042 λ Вт/м К)Маты минераловатные Роквул ρ35 (0.048 λ Вт/м К)Маты минераловатные Роквул ρ50 (0.047 λ Вт/м К)Маты минераловатные Флайдер ρ11 (0.055 λ Вт/м К)Маты минераловатные Флайдер ρ15 (0.053 λ Вт/м К)Маты минераловатные Флайдер ρ17 (0.053 λ Вт/м К)Маты минераловатные Флайдер ρ25 (0.05 λ Вт/м К)Маты стекловолоконные ρ150 (0.07 λ Вт/м К)Маты стекловолоконные ρ50 (0.064 λ Вт/м К)Опилки древесные (0.08 λ Вт/м К)Пакля ρ150 (0.07 λ Вт/м К)Пенопласт ППУ ρ80 (0.025 λ Вт/м К)Пенопласт ПХВ-1 ρ100 (0.052 λ Вт/м К)Пенопласт ПХВ-1 ρ125 (0.064 λ Вт/м К)Пенопласт ЦУСПОР ρ50 (0.025 λ Вт/м К)Пенопласт ЦУСПОР ρ70 (0.028 λ Вт/м К)Пенопласт карбамидный Мэттэмпласт (пеноизол) ρ20 (0.03 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ100 (0.076 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ40 (0.06 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ50 (0.064 λ Вт/м К)Пенопласт резольнофенолфор3дегидный ρ75 (0.07 λ Вт/м К)Пенополистирол ρ100 (0.052 λ Вт/м К)Пенополистирол ρ150 (0.06 λ Вт/м К)Пенополистирол ρ40 (0.05 λ Вт/м К)Пенополистирол Пеноплекс ρ35 (0.03 λ Вт/м К)Пенополистирол Пеноплекс ρ43 (0.032 λ Вт/м К)Пенополистирол Радослав ρ18 (0.043 λ Вт/м К)Пенополистирол Радослав ρ24 (0.041 λ Вт/м К)Пенополистирол Стиродур 2500С ρ25 (0.031 λ Вт/м К)Пенополистирол Стиродур 2800С ρ28 (0.031 λ Вт/м К)Пенополистирол Стиродур 3035С ρ33 (0.031 λ Вт/м К)Пенополистирол Стиродур 4000С ρ35 (0.031 λ Вт/м К)Пенополистирол Стиродур 5000С ρ45 (0.031 λ Вт/м К)Пенополистирол Стиропор PS15 ρ15 (0.044 λ Вт/м К)Пенополистирол Стиропор PS20 ρ20 (0.042 λ Вт/м К)Пенополистирол Стиропор PS30 ρ30 (0.04 λ Вт/м К)Пенополиуретан ρ40 (0.04 λ Вт/м К)Пенополиуретан ρ60 (0.041 λ Вт/м К)Пенополиуретан ρ80 (0.05 λ Вт/м К)Пенополиуретан Изолан 101 (2) ρ70 (0.027 λ Вт/м К)Пенополиуретан Изолан 101 (3) ρ70 (0.028 λ Вт/м К)Пенополиуретан Изолан 105 (2) ρ70 (0.025 λ Вт/м К)Пенополиуретан Изолан 105 (3) ρ70 (0.027 λ Вт/м К)Пенополиуретан Изолан 123 (2) ρ75 (0.028 λ Вт/м К)Пенополиуретан Изолан 123 (3) ρ75 (0.028 λ Вт/м К)Пенополиуретан Изолан 18М ρ65 (0.026 λ Вт/м К)Пенополиуретан Изолан 210 ρ65 (0.025 λ Вт/м К)Пенополиуретан Корунд ρ70 (0.027 λ Вт/м К)Пеностекло ρ200 (0.09 λ Вт/м К)Пеностекло ρ300 (0.12 λ Вт/м К)Пеностекло ρ400 (0.14 λ Вт/м К)Перлитопластбетон ρ100 (0.05 λ Вт/м К)Перлитопластбетон ρ200 (0.06 λ Вт/м К)Плиты минераловатные прошивные на синтетическом связующем ρ125 (0.07 λ Вт/м К)Плиты минераловатные прошивные на синтетическом связующем ρ50 (0.06 λ Вт/м К)Плиты минераловатные прошивные на синтетическом связующем ρ75 (0.064 λ Вт/м К)Плиты базальтовые ТермоЛайт ρ40 (0.044 λ Вт/м К)Плиты базальтовые ТермоЛайт ρ55 (0.043 λ Вт/м К)Плиты базальтовые Термовент ρ90 (0.04 λ Вт/м К)Плиты базальтовые Термокровля ρ110 (0.04 λ Вт/м К)Плиты базальтовые Термокровля ρ160 (0.043 λ Вт/м К)Плиты базальтовые Термокровля ρ185 (0.045 λ Вт/м К)Плиты базальтовые Термокровля ρ210 (0.045 λ Вт/м К)Плиты базальтовые Термомонолит ρ130 (0.041 λ Вт/м К)Плиты базальтовые Термопол ρ150 (0.041 λ Вт/м К)Плиты базальтовые Термостена ρ70 (0.043 λ Вт/м К)Плиты базальтовые Термофасад ρ150 (0.043 λ Вт/м К)Плиты камышитовые ρ200 (0.09 λ Вт/м К)Плиты камышитовые ρ300 (0.14 λ Вт/м К)Плиты минераловатные ППЖ ρ200 (0.054 λ Вт/м К)Плиты минераловатные Роквул ρ100 (0.045 λ Вт/м К)Плиты минераловатные Роквул ρ150 (0.047 λ Вт/м К)Плиты минераловатные Роквул ρ200 (0.05 λ Вт/м К)Плиты минераловатные Флайдер ρ15 (0.055 λ Вт/м К)Плиты минераловатные Флайдер ρ17 (0.053 λ Вт/м К)Плиты минераловатные Флайдер ρ20 (0.048 λ Вт/м К)Плиты минераловатные Флайдер ρ30 (0.046 λ Вт/м К)Плиты минераловатные Флайдер ρ35 (0.046 λ Вт/м К)Плиты минераловатные Флайдер ρ45 (0.045 λ Вт/м К)Плиты минераловатные Флайдер ρ60 (0.045 λ Вт/м К)Плиты минераловатные Флайдер ρ75 (0.047 λ Вт/м К)Плиты минераловатные Флайдер ρ85 (0.05 λ Вт/м К)Плиты минераловатные на крахмальном связующем ρ125 (0.064 λ Вт/м К)Плиты минераловатные на крахмальном связующем ρ200 (0.08 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ100 (0.07 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ200 (0.08 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ300 (0.09 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ350 (0.11 λ Вт/м К)Плиты минераловатные на синтетическом и битумном связующем ρ50 (0.06 λ Вт/м К)Плиты минераловатные полужесткие ρ90 (0.045 λ Вт/м К)Плиты минераловатные полужесткие гидрофобизированные ρ100 (0.045 λ Вт/м К)Плиты минераловатные фасадные ПФ ρ180 (0.053 λ Вт/м К)Плиты стекловолоконные ρ50 (0.064 λ Вт/м К)Плиты торфяные ρ200 (0.064 λ Вт/м К)Плиты торфяные ρ300 (0.08 λ Вт/м К)Плиты торфяные Геокар ρ380 (0.072 λ Вт/м К)Плиты фибролитовые ρ300 (0.14 λ Вт/м К)Плиты фибролитовые ρ400 (0.16 λ Вт/м К)Плиты фибролитовые ρ600 (0.23 λ Вт/м К)Плиты фибролитовые ρ800 (0.3 λ Вт/м К)Полиэтилен вспененный (0.044 λ Вт/м К)Полиэтилен вспененный Пенофол ρ60 (0.04 λ Вт/м К)Пух гагчий (0.008 λ Вт/м К)Совелит ρ400 (0.087 λ Вт/м К)Шевелин (0.045 λ Вт/м К)Эковата ρ40 (0.043 λ Вт/м К)Эковата ρ50 (0.048 λ Вт/м К)Эковата ρ60 (0.052 λ Вт/м К) мм

↓ НетБетоныБетоны ЛегкиеГидроизоляцияГрунтыДеревоКаменьМеталлыОблицовкаПолыРазноеРастворыСтеновые материалыСыпучие материалыУтеплителиАсфальтобетон ρ2100 (1.05 λ Вт/м К)Бетон тяжелый ρ2400 (1.51 λ Вт/м К)Железобетон ρ2500 (1.69 λ Вт/м К)Плиты железобетонные пустотные при потоке сверху-вниз (1.11 λ Вт/м К)Плиты железобетонные пустотные при потоке снизу-вверх (1.27 λ Вт/м К)Силикатный бетон ρ1800 (1.16 λ Вт/м К) мм

Как рассчитать концентрацию охлаждающей жидкости в автомобиле

Система охлаждения автомобиля помогает отводить тепло от двигателя, позволяя автомобилю работать при нормальной рабочей температуре. Без системы охлаждения ваш автомобиль скоро перегреется и, в конечном итоге, сломается из-за перегрева различных его частей.

Охлаждающая жидкость не только предотвращает перегрев, но и должна работать при низких температурах без замерзания. Чтобы помочь в этом процессе, был изобретен антифриз, который при смешивании с водой в соответствующих количествах может поддерживать нормальную работу двигателя даже в самые холодные зимы.Чтобы правильно сбалансировать уровни антифриза и воды, необходимо рассчитать, сколько концентрированной охлаждающей жидкости имеется в вашей системе охлаждающей жидкости, а затем добавить антифриз или воду по мере необходимости.

Часть 1 из 3: Как работает ваша система охлаждения

Чтобы правильно рассчитать концентрацию охлаждающей жидкости в системе охлаждения вашего автомобиля, вам необходимо иметь общее представление о том, как работает весь процесс охлаждения. Помимо требования правильного соотношения воды и антифриза, охлаждающая жидкость должна циркулировать через систему охлаждающей жидкости, чтобы должным образом охладить двигатель.

Шаг 1: Знакомство с антифризом . Основной принцип антифриза заключается в том, что он снижает температуру замерзания и повышает температуру кипения воды внутри радиатора.

Антифриз состоит из смеси воды и этиленгликоля или C2h3O2.

Шаг 2. Знакомство с системой охлаждения . Помимо антифриза и воды, система охлаждающей жидкости в автомобиле играет большую роль в поддержании оптимальной температуры работы двигателя.

Система охлаждения в автомобиле, в частности радиатор, создает среду с высоким давлением, которая повышает точку кипения содержащейся в ней жидкости.

Шаг 3: Понимание цикла охлаждающей жидкости . Антифриз и вода не оседают и автоматически охлаждают двигатель автомобиля; смесь проходит цикл, чтобы помочь процессу охлаждения.

Когда двигатель достигает определенной температуры, термостат, расположенный в трубе, проходящей между радиатором и двигателем, открывается, впуская в двигатель свежеохлажденную охлаждающую жидкость.В этот момент горячая охлаждающая жидкость из двигателя удаляется.

Охлаждающая жидкость поглощает тепло окружающего двигателя перед тем, как вернуться в радиатор, где охлаждающая жидкость из последнего цикла рассеяла свое тепло через змеевики радиатора и теперь снова остыла. Этот процесс продолжается, пока работает двигатель.

Часть 2 из 3: Проверка уровня охлаждающей жидкости

Необходимый материал

Чтобы ваш автомобиль оставался прохладным и в оптимальном рабочем состоянии, вам необходимо проверять уровень охлаждающей жидкости и ее состояние.Помимо добавления охлаждающей жидкости в бачок радиатора, когда она становится низкой, вы также должны время от времени промывать систему и доливать новую охлаждающую жидкость. Это связано с тем, что со временем антифриз разрушается и загрязняется мусором из двигателя и радиатора.

  • Предупреждение : Перед проверкой антифриза в автомобиле дайте двигателю полностью остыть, чтобы избежать ожогов. Вы также должны проверять антифриз, пока он имеет комнатную температуру, чтобы получить наилучшие показания.

Шаг 1: Всасывание охлаждающей жидкости . Сначала слейте охлаждающую жидкость в ареометр антифриза через отверстие в напорном бачке радиатора.

Это также называется переливным или расширительным баком. Это точка, в которую вы добавляете воду или антифриз в систему.

Вы также можете залить охлаждающую жидкость прямо из отверстия радиатора, сняв крышку. Перед этим убедитесь, что автомобиль достаточно остыл. Заполните ареометр, сжимая резиновую грушу с одного конца, пока другой погружается в охлаждающую жидкость.Убедитесь, что ареометр полностью заполнен.

  • Совет : Обязательно используйте ареометр антифриза, а не тот, который предназначен для проверки содержания кислоты в жидкости в аккумуляторной батарее вашего автомобиля. В то время как ареометры бывают самых разных стилей, в наиболее распространенных из них есть маленькие плавающие шарики разных цветов или стрелки, указывающие на температуру на шкале, напечатанную непосредственно на ареометре, которая помогает определить прочность раствора охлаждающей жидкости.

Шаг 2: Считайте показания ареометра .Чтобы считывать показания ареометра, проверьте количество и цвет плавающих шариков или место, где указывают стрелки на шкале точки замерзания, напечатанной на ареометре.

Какой бы тип ареометра вы ни использовали, его цель — показать диапазон температур, при котором охлаждающая жидкость должна работать в вашем автомобиле. Ареометр должен показывать диапазон от 34 градусов по Фаренгейту или ниже до 265 градусов по Фаренгейту или выше. Все, что находится между ними, означает, что систему охлаждающей жидкости необходимо промыть.

Часть 3 из 3: Расчет надлежащего соотношения воды и антифриза

После того, как вы определили уровень защиты вашего автомобиля, пора определить, сколько антифриза или воды вам нужно добавить.Транспортные средства, такие как легковые автомобили и легкие грузовики, требуют соотношения антифриза и воды 50/50. Это дает охлаждающей жидкости достаточное количество защиты от замерзания и кипения, а также обеспечивает защиту от коррозии, необходимую двигателю и радиатору.

Чтобы правильно определить процентное содержание антифриза в воде в радиаторе, выполните следующие действия.

Шаг 1: Определите объем охлаждающей жидкости вашего автомобиля . Обычно это от 8 до 18 литров.

Руководство по эксплуатации вашего автомобиля должно содержать эту информацию.

Шаг 2: Запишите показания ареометра . Вам также понадобятся показания ареометра уровня концентрации антифриза в воде в вашем автомобиле.

Нормальное значение — от 33 до 50 процентов. Все, что больше или меньше, означает, что вам нужно добавить либо антифриз, либо воду, чтобы довести концентрацию до нормального диапазона.

Шаг 3: Умножьте объем охлаждающей жидкости на процентное содержание антифриза в системе охлаждения .Например, если уровень антифриза в вашем автомобиле составляет 25 процентов, а автомобиль вмещает 12 литров охлаждающей жидкости, вы должны умножить 0,25 на 12, чтобы получить количество 3 литров концентрированной охлаждающей жидкости в системе.

Шаг 4: Подсчитайте, сколько нужно добавить . Чтобы узнать, сколько вам нужно добавить, умножьте количество охлаждающей жидкости, которое может вместить ваш автомобиль, на процент концентрированной охлаждающей жидкости, который вы хотите получить.

Например, если вы хотите, чтобы система охлаждающей жидкости содержала 50 процентов концентрированной охлаждающей жидкости, вы должны умножить 0.50 х 12, чтобы получилось 6 литров.

Шаг 5: Определите сумму, которую нужно добавить . Затем вычтите количество концентрированной охлаждающей жидкости, находящейся в настоящее время в вашей системе охлаждения, из желаемого количества.

Используя приведенные выше примеры, вы должны вычесть 3 литра из 6 литров, чтобы получить 3 литра, которые вы хотите добавить к охлаждающей жидкости, находящейся в настоящее время в автомобиле, чтобы довести процентное значение до 50.

Если объем концентрированной охлаждающей жидкости слишком велик, замените охлаждающую жидкость водой, чтобы добавить ее в систему, чтобы привести ее в соответствие.

Таким образом, вместо добавления 3 литров антифриза с концентрацией 75/25 антифриза от концентрации воды, вы должны добавить 3 литра воды, чтобы уменьшить количество концентрированной охлаждающей жидкости.

Изображение: CSGNetwork

Чтобы упростить задачу, вы можете использовать онлайн-калькулятор, такой как тот, который можно найти на csgnetwork.com, чтобы рассчитать количество концентрированной охлаждающей жидкости или воды, которую необходимо добавить, чтобы ваша охлаждающая жидкость была в пределах допустимого диапазона.

  • Совет : Еще одним фактором при определении необходимости замены охлаждающей жидкости вместо добавления антифриза или воды является состояние охлаждающей жидкости.Пока у вас есть охлаждающая жидкость в ареометре, проверьте его на цвет и наличие мусора. Если охлаждающая жидкость прозрачная или в ней плавают частицы, вероятно, ее необходимо заменить. По большей части вам нужно менять охлаждающую жидкость только каждые два-три года.

  • Предупреждение : Антифриз ядовит для людей и животных. Всегда следите за тем, чтобы утилизировать антифриз или промытую охлаждающую жидкость надлежащим образом.

Обеспечение надлежащей концентрации антифриза и воды в системе охлаждающей жидкости вашего автомобиля важно для поддержания нормальной работы автомобиля и защиты двигателя и радиатора от коррозии.Если вам нужна помощь с заливкой охлаждающей жидкости и определением ее состояния, позвоните одному из наших опытных механиков, чтобы долить охлаждающую жидкость и помочь вам определить лучший курс действий.

Как рассчитать концентрацию охлаждающей жидкости в автомобиле

Система охлаждения автомобиля помогает отводить тепло от двигателя, позволяя автомобилю работать при нормальной рабочей температуре. Без системы охлаждения ваш автомобиль скоро перегреется и, в конечном итоге, сломается из-за перегрева различных его частей.

Охлаждающая жидкость не только предотвращает перегрев, но и должна работать при низких температурах без замерзания. Чтобы помочь в этом процессе, был изобретен антифриз, который при смешивании с водой в соответствующих количествах может поддерживать нормальную работу двигателя даже в самые холодные зимы. Чтобы правильно сбалансировать уровни антифриза и воды, необходимо рассчитать, сколько концентрированной охлаждающей жидкости имеется в вашей системе охлаждающей жидкости, а затем добавить антифриз или воду по мере необходимости.

Часть 1 из 3: Как работает ваша система охлаждения

Чтобы правильно рассчитать концентрацию охлаждающей жидкости в системе охлаждения вашего автомобиля, вам необходимо иметь общее представление о том, как работает весь процесс охлаждения.Помимо требования правильного соотношения воды и антифриза, охлаждающая жидкость должна циркулировать через систему охлаждающей жидкости, чтобы должным образом охладить двигатель.

Шаг 1: Знакомство с антифризом . Основной принцип антифриза заключается в том, что он снижает температуру замерзания и повышает температуру кипения воды внутри радиатора.

Антифриз состоит из смеси воды и этиленгликоля или C2h3O2.

Шаг 2. Знакомство с системой охлаждения .Помимо антифриза и воды, система охлаждающей жидкости в автомобиле играет большую роль в поддержании оптимальной температуры работы двигателя.

Система охлаждения в автомобиле, в частности радиатор, создает среду с высоким давлением, которая повышает точку кипения содержащейся в ней жидкости.

Шаг 3: Понимание цикла охлаждающей жидкости . Антифриз и вода не оседают и автоматически охлаждают двигатель автомобиля; смесь проходит цикл, чтобы помочь процессу охлаждения.

Когда двигатель достигает определенной температуры, термостат, расположенный в трубе, проходящей между радиатором и двигателем, открывается, впуская в двигатель свежеохлажденную охлаждающую жидкость. В этот момент горячая охлаждающая жидкость из двигателя удаляется.

Охлаждающая жидкость поглощает тепло окружающего двигателя перед тем, как вернуться в радиатор, где охлаждающая жидкость из последнего цикла рассеяла свое тепло через змеевики радиатора и теперь снова остыла. Этот процесс продолжается, пока работает двигатель.

Часть 2 из 3: Проверка уровня охлаждающей жидкости

Необходимый материал

Чтобы ваш автомобиль оставался прохладным и в оптимальном рабочем состоянии, вам необходимо проверять уровень охлаждающей жидкости и ее состояние. Помимо добавления охлаждающей жидкости в бачок радиатора, когда она становится низкой, вы также должны время от времени промывать систему и доливать новую охлаждающую жидкость. Это связано с тем, что со временем антифриз разрушается и загрязняется мусором из двигателя и радиатора.

  • Предупреждение : Перед проверкой антифриза в автомобиле дайте двигателю полностью остыть, чтобы избежать ожогов.Вы также должны проверять антифриз, пока он имеет комнатную температуру, чтобы получить наилучшие показания.

Шаг 1: Всасывание охлаждающей жидкости . Сначала слейте охлаждающую жидкость в ареометр антифриза через отверстие в напорном бачке радиатора.

Это также называется переливным или расширительным баком. Это точка, в которую вы добавляете воду или антифриз в систему.

Вы также можете залить охлаждающую жидкость прямо из отверстия радиатора, сняв крышку. Перед этим убедитесь, что автомобиль достаточно остыл.Заполните ареометр, сжимая резиновую грушу с одного конца, пока другой погружается в охлаждающую жидкость. Убедитесь, что ареометр полностью заполнен.

  • Совет : Обязательно используйте ареометр для антифриза, а не тот, который предназначен для проверки содержания кислоты в жидкости в аккумуляторной батарее вашего автомобиля. В то время как ареометры бывают самых разных стилей, в наиболее распространенных из них есть маленькие плавающие шарики разных цветов или стрелки, указывающие на температуру на шкале, напечатанную непосредственно на ареометре, которая помогает определить прочность раствора охлаждающей жидкости.

Шаг 2: Считайте показания ареометра . Чтобы считывать показания ареометра, проверьте количество и цвет плавающих шариков или место, где указывают стрелки на шкале точки замерзания, напечатанной на ареометре.

Какой бы тип ареометра вы ни использовали, его цель — показать диапазон температур, при котором охлаждающая жидкость должна работать в вашем автомобиле. Ареометр должен показывать диапазон от 34 градусов по Фаренгейту или ниже до 265 градусов по Фаренгейту или выше. Все, что находится между ними, означает, что систему охлаждающей жидкости необходимо промыть.

Часть 3 из 3: Расчет надлежащего соотношения воды и антифриза

После того, как вы определили уровень защиты вашего автомобиля, пора определить, сколько антифриза или воды вам нужно добавить. Транспортные средства, такие как легковые автомобили и легкие грузовики, требуют соотношения антифриза и воды 50/50. Это дает охлаждающей жидкости достаточное количество защиты от замерзания и кипения, а также обеспечивает защиту от коррозии, необходимую двигателю и радиатору.

Чтобы правильно определить процентное содержание антифриза в воде в радиаторе, выполните следующие действия.

Шаг 1: Определите объем охлаждающей жидкости вашего автомобиля . Обычно это от 8 до 18 литров.

Руководство по эксплуатации вашего автомобиля должно содержать эту информацию.

Шаг 2: Запишите показания ареометра . Вам также понадобятся показания ареометра уровня концентрации антифриза в воде в вашем автомобиле.

Нормальное значение — от 33 до 50 процентов. Все, что больше или меньше, означает, что вам нужно добавить либо антифриз, либо воду, чтобы довести концентрацию до нормального диапазона.

Шаг 3: Умножьте объем охлаждающей жидкости на процентное содержание антифриза в системе охлаждения . Например, если уровень антифриза в вашем автомобиле составляет 25 процентов, а автомобиль вмещает 12 литров охлаждающей жидкости, вы должны умножить 0,25 на 12, чтобы получить количество 3 литров концентрированной охлаждающей жидкости в системе.

Шаг 4: Подсчитайте, сколько нужно добавить . Чтобы узнать, сколько вам нужно добавить, умножьте количество охлаждающей жидкости, которое может вместить ваш автомобиль, на процент концентрированной охлаждающей жидкости, который вы хотите получить.

Например, если вы хотите, чтобы система охлаждающей жидкости содержала 50 процентов концентрированной охлаждающей жидкости, умножьте 0,50 на 12, чтобы получить количество 6 литров.

Шаг 5: Определите сумму, которую нужно добавить . Затем вычтите количество концентрированной охлаждающей жидкости, находящейся в настоящее время в вашей системе охлаждения, из желаемого количества.

Используя приведенные выше примеры, вы должны вычесть 3 литра из 6 литров, чтобы получить 3 литра, которые вы хотите добавить к охлаждающей жидкости, находящейся в настоящее время в автомобиле, чтобы довести процентное значение до 50.

Если объем концентрированной охлаждающей жидкости слишком велик, замените охлаждающую жидкость водой, чтобы добавить ее в систему, чтобы привести ее в соответствие.

Таким образом, вместо добавления 3 литров антифриза с концентрацией 75/25 антифриза от концентрации воды, вы должны добавить 3 литра воды, чтобы уменьшить количество концентрированной охлаждающей жидкости.

Чтобы упростить задачу, вы можете использовать онлайн-калькулятор, такой как тот, который можно найти на csgnetwork.com, чтобы рассчитать количество концентрированной охлаждающей жидкости или воды, которую необходимо добавить, чтобы ваша охлаждающая жидкость была в пределах допустимого диапазона.

  • Совет : Еще одним фактором при определении необходимости замены охлаждающей жидкости вместо добавления антифриза или воды является состояние охлаждающей жидкости. Пока у вас есть охлаждающая жидкость в ареометре, проверьте его на цвет и наличие мусора. Если охлаждающая жидкость прозрачная или в ней плавают частицы, вероятно, ее необходимо заменить. По большей части вам нужно менять охлаждающую жидкость только каждые два-три года.

  • Предупреждение : Антифриз ядовит для людей и животных.Всегда следите за тем, чтобы утилизировать антифриз или промытую охлаждающую жидкость надлежащим образом.

Обеспечение надлежащей концентрации антифриза и воды в системе охлаждающей жидкости вашего автомобиля важно для поддержания нормальной работы автомобиля и защиты двигателя и радиатора от коррозии. Если вам нужна помощь с заливкой охлаждающей жидкости и определением ее состояния, позвоните одному из наших опытных механиков, чтобы долить охлаждающую жидкость и помочь вам определить лучший курс действий.

IRJET-Запрошенная вами страница не найдена на нашем сайте

IRJET приглашает статьи из различных инженерных и технологических дисциплин для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6 , Июнь 2021 Публикация в процессе …

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для свою систему управления качеством.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6, июнь 2021 Публикация в процессе …

Просмотр Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6, июнь 2021 Публикация в процессе …

Просмотр Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6, июнь 2021 Публикация в процессе …

Просмотр Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6, июнь 2021 Публикация в процессе …

Просмотр Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6, июнь 2021 Публикация в процессе …

Просмотр Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6, июнь 2021 Публикация в процессе …

Просмотр Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


IRJET приглашает специалистов по различным инженерным и технологическим дисциплинам, научным дисциплинам для Тома 8, выпуск 6 (июнь-2021)

Отправить сейчас


IRJET Vol-8, выпуск 6, июнь 2021 Публикация в процессе …

Просмотр Документы


IRJET получил «Импакт-фактор научного журнала: 7,529» за 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


Thermal Wizard Калькулятор жидкостного охлаждения

Справка по системам жидкостного охлаждения

Если вы знаете свой ΔT, введите это значение в поле слева от кнопки «ПОИСК» для получения более оптимальных результатов и нажмите «ПОИСК».

Просмотр таблиц решений продуктов
СОРТИРОВКА — при просмотре таблиц продуктов вы можете отсортировать каждый столбец данных, увеличивая или уменьшая значения, щелкнув стрелку рядом с заголовком каждого столбца

  • Qc Op — отображает охлаждающую способность термоэлектрического модуля при требуемой разнице температур.Показанная мощность охлаждения соответствует рабочей точке, определяемой напряжением питания. Щелкнув номер детали, можно графически просмотреть характеристики охлаждения (Qc) во всем рабочем диапазоне от минимального до максимального напряжения или тока (от Imin до Imax или от Vmin до Vmax)
  • Power Supply — мощность, потребляемая термоэлектрическими модулями, а также любыми вентиляторами в моделях с воздушным охлаждением
  • Напряжение питания — отображает номинальное напряжение питания, предназначенное для достижения номинальной холодопроизводительности узла.Вентилятор и термоэлектрические модули в сборке могут работать при более высоких или более низких напряжениях в зависимости от требуемой охлаждающей нагрузки и требуемой эффективности
  • Qc Max — максимальная охлаждающая способность термоэлектрической сборки. Это значение измеряется при нулевой разнице температур с напряжением питания, установленным на номинальное значение. Фактическая производительность термоэлектрической сборки обычно меньше QcMax из-за необходимости работать при некоторой разнице температур
  • ΔT Max — отображает максимальную разницу температур, наблюдаемую на термоэлектрической сборке.Это значение измеряется при нулевом тепловом потоке (Qc) с номинальным напряжением питания. Термоэлектрический узел обычно работает при ΔTs меньше ΔT Max, чтобы отводить тепло от холодной к теплой стороне термоэлектрического узла
  • .

НОМЕР ДЕТАЛИ — отображает активную таблицу данных. Вы можете точно настроить требования вашего приложения, отрегулировав значения напряжения, тока, контрольной температуры, температуры окружающей среды и т. Д. ΔT, тепловое сопротивление горячей стороны или тепловое сопротивление холодной стороны, а затем нажмите кнопку ОБНОВИТЬ.Чтобы просмотреть другой продукт, нажмите кнопку «Назад» в браузере или кнопку «НАЗАД».

КУПИТЬ СЕЙЧАС »- отображает доступный инвентарь и цены для этого номера детали у авторизованных дистрибьюторов через поисковую систему Octopart Inventory Search Engine

ЗАПРОС ЦЕНА — открывает форму запрашивая у вас контактную и дополнительную информацию о приложении. Номер интересующей вас детали и спецификация Qc будут предварительно заполнены в вашей форме. Вам ответит специалист Laird по теплотехнике

Свяжитесь с экспертом по теплотехнике Laird сейчас

Как рассчитать время нагрева или охлаждения | Блог

Во многих случаях может быть полезно узнать, сколько времени потребуется, чтобы нагреть или охладить вашу систему до определенной температуры.Или вы можете рассчитать, сколько энергии требуется для нагрева или охлаждения данного объема жидкости за определенный промежуток времени.

К счастью, есть довольно простое уравнение, которое можно использовать, если вы знаете массу жидкости в ванне, ее удельную теплоемкость, разницу температур, а также мощность или время.

Тем не менее, использование этого уравнения не совсем надежно, поскольку существуют различные факторы, которые могут нарушить расчет. В этом посте мы рассмотрим уравнение для расчета времени нагрева или охлаждения и причины, по которым вам следует искать систему с чуть большей мощностью, чем вы думаете, что вам нужно.

Расчет времени нагрева или охлаждения

Вы можете использовать то же основное уравнение для расчета времени нагрева или охлаждения, хотя для расчета времени охлаждения требуется немного больше работы. При нагреве подаваемая мощность постоянна, но при охлаждении мощность (или охлаждающая способность) изменяется в зависимости от температуры.

Расчет времени нагрева

Чтобы узнать, сколько времени потребуется для нагрева ванны до определенной температуры, можно использовать следующее уравнение:

t = mcΔT / P

Где:

  • т — время нагрева или охлаждения в секундах
  • м — масса жидкости в килограммах
  • c — удельная теплоемкость жидкости в джоулях на килограмм и на Кельвин
  • ΔT — разница температур в градусах Цельсия или Фаренгейта
  • P — мощность, при которой подается энергия, в ваттах или джоулях в секунду

Аналогичным образом, чтобы рассчитать мощность, необходимую для нагрева или охлаждения ванны до определенной температуры за заданное время, вы можете использовать это уравнение:

P = mcΔT / т

Хотя этим уравнениям довольно просто следовать, может возникнуть некоторая путаница, когда дело доходит до того, какие единицы использовать.Вместо этого вы можете использовать онлайн-калькулятор.

Этот красивый и простой калькулятор позволяет рассчитать время, мощность или потребляемую энергию, но он годится только для расчетов с использованием воды. Если вам нужно рассчитать время нагрева для других жидкостей, этот калькулятор больше подходит, поскольку он позволяет вам ввести удельную теплоемкость вещества, которое вы используете. У него есть две опции, позволяющие рассчитать требуемую мощность или время.

Калькулятор услуг по технологическому отоплению.

Расчет времени охлаждения

Для расчета времени охлаждения вы можете использовать то же уравнение, что и выше. Вопрос в том, какое значение вы должны использовать для мощности. Холодопроизводительность (или мощность охлаждения) зависит от температуры. Холодопроизводительность снижается при более низких заданных температурах, поскольку разница температур между охлаждающей жидкостью и хладагентом меньше. Теплопередача снижается, поэтому снижается охлаждающая способность.

Например, вот характеристики охлаждающей способности для охлаждающих и нагреваемых циркуляционных ванн PolyScience 45 л.

У вас есть несколько вариантов, в зависимости от того, насколько точно вы хотите, чтобы ваш расчет был:

  • Используйте консервативную оценку , предполагая более низкую мощность до следующей указанной температуры. Например, принимая указанные выше характеристики, вы можете предположить, что охлаждающая способность составляет 250 Вт для всех температур от -20 ° C до 0 ° C и 800 Вт для всех температур от 0 ° C до 20 ° C.
  • Возможно заниженная оценка, но с большей точностью. путем измерения средней мощности между различными температурами.
  • Используйте быстрый и грязный (и, вероятно, менее точный) метод , учитывая только охлаждающую способность при средней температуре.
  • Выбирайте альтернативный быстрый метод , который использует средние значения холодопроизводительности в различных точках диапазона температур (точки должны включать верхний и нижний пределы диапазона температур, чтобы это было жизнеспособным).

Что делать, если ваша минимальная температура ниже минимальной указанной температуры холодопроизводительности? Как правило, это не должно вызывать беспокойства, поскольку значения холодопроизводительности обычно указываются для температуры, равной или ниже минимальной температуры агрегата.

Если вы пытаетесь охладить до более низкой температуры, она может быть слишком низкой, а это означает, что устройство не сможет обеспечить необходимую вам охлаждающую способность. Однако, если в технических характеристиках не указана охлаждающая способность при температуре, близкой к минимальной температуре устройства, вы можете попросить производителя или нас предоставить необходимую информацию.

Факторы, которые следует учитывать при расчете времени нагрева или охлаждения

Как уже упоминалось, есть несколько причин, по которым ваши расчеты могут не дать реалистичного результата.Таким образом, если вы используете это уравнение для определения времени нагрева или охлаждения, вы должны предположить, что процесс займет немного больше времени, чем ожидалось. Точно так же, если вы используете расчет, чтобы определить, сколько мощности вам нужно для достижения заданного времени нагрева или охлаждения, вы должны предположить, что потребуется некоторая дополнительная мощность.

Вот факторы, которые необходимо учитывать:

1. Повышение или потеря тепла окружающей среды

Прирост или потеря тепла из-за окружающей среды неизбежны даже в закрытой системе.Охлаждаемая система может поглощать тепло из окружающего воздуха или компонентов системы, снижая ее охлаждающую способность. В системе отопления вы можете терять тепло в окружающий воздух или компоненты системы, например, когда оно проходит по трубам или трубам.

Изоляция вашей системы и контроль температуры окружающей среды могут помочь, но все же может быть неизвестное количество тепла.

2. Потери жидкости из-за испарения

Если вы работаете с открытой системой, вы можете потерять часть жидкости из-за испарения во время процесса нагрева или охлаждения.Количество происходящего испарения будет зависеть от нескольких факторов, в том числе:

  • Какая жидкость вы используете: Жидкости с более низкой точкой кипения, такие как этанол, метанол и вода, могут легко испаряться.
  • Площадь ванны: Чем больше площадь поверхности, тем выше скорость испарения.
  • Используемый диапазон температур: Чем выше температура, тем выше скорость испарения.

Потеря тепла происходит из-за испарения, и когда вы тратите тепловую энергию впустую, время, необходимое для нагрева ванны, увеличивается.Кроме того, в результате потери жидкости значение массы (m) в уравнении не будет точным, что может привести к ухудшению результатов. Если вы используете смесь из двух или более жидкостей, и один компонент смеси испаряется быстрее, чем другие, соотношение будет изменено, что приведет к неточности в определении удельной теплоемкости (c).

Испарение трудно предсказать и точно учесть (и если вы достаточно хорошо разбираетесь в термодинамике, чтобы делать это комфортно, вы, вероятно, не читали бы эту статью).Таким образом, лучше всего либо оценить скорость испарения с помощью эмпирического теста, а затем учесть это математически, используя теплоту испарения, либо просто добавить коэффициент безопасности.

3. Проблемы с обслуживанием

В системах отопления из-за отложений минералов на элементах водяной бани обычно накапливается накипь. При отсутствии контроля это накопление может повлиять на эффективность передачи тепла от элемента к жидкости. Поскольку элемент изолирует накипь, требуется больше энергии для нагрева системы до желаемой температуры.

При нагревании увеличивается время, необходимое для достижения желаемой температуры в системе заданной мощности. Если вы смотрите на мощность, она увеличит количество энергии, необходимое для достижения желаемой температуры за определенное время.

Для систем охлаждения на холодопроизводительность также могут влиять проблемы с обслуживанием. В конденсаторах с водяным охлаждением коррозия, образование накипи или биологический рост могут препятствовать передаче тепла, снижая охлаждающую способность. В конденсаторах с воздушным охлаждением скопление пыли и мусора на лопастях и ребрах вентилятора может уменьшить поток воздуха, что приведет к аналогичному эффекту снижения охлаждающей способности.

Регулярное техническое обслуживание устройства, включая очистку различных компонентов, промывку жидкости и использование ингибитора коррозии, может помочь.

Расчет испарительного охлаждения

Возможности и ограничения косвенного испарительного охлаждения


В центральных системах отопления, вентиляции и кондиционирования воздуха все большее значение приобретают системы охлаждения, основанные на косвенном испарительном охлаждении. Эксперты говорят, что в Германии около 10% из примерно 25 000 новых систем отопления, вентиляции и кондиционирования, производимых ежегодно, оснащены этой экологически чистой технологией охлаждения, и эта тенденция усиливается.

Используя бесплатный инструмент расчета, опытные проектировщики и инженеры предприятий могут очень легко определить энергетические и экологические преимущества, а также реальные показатели производительности и сезонные коэффициенты производительности испарительного охлаждения для отдельных проектов с точностью до десятичной точки.

На сегодняшний день охлаждение и осушение теплого наружного воздуха до уровней подачи воздуха в центральных системах отопления, вентиляции и кондиционирования воздуха обычно осуществляется с помощью механических блоков водяного охлаждения, которые работают с синтетическими охлаждающими агентами.Цель непрямого испарительного охлаждения состоит в том, чтобы взять на себя максимально возможную долю этой задачи охлаждения за счет использования испаренной воды и, таким образом, снижения нагрузки на блок холодной воды.

В результате снижаются потребление электроэнергии и выбросы CO2, а также вредные для окружающей среды выбросы охлаждающего агента из систем охлаждения в окружающей среде. Таким образом, испарительное охлаждение для охлаждения воздуха в системах отопления, вентиляции и кондиционирования воздуха может сыграть важную роль в экономии энергии и защите окружающей среды.

Принцип непрямого испарительного охлаждения

При непрямом испарительном охлаждении отработанный воздух, удаляемый из здания, увлажняется как можно ближе к точке 100% насыщения. При этом воздух охлаждается на 2,5 К на грамм абсорбированной воды на кг воздуха. Отработанный воздух, охлажденный прибл. Затем температура от 8 до 10 К проходит через рекуперацию тепла в системе отопления, вентиляции и кондиционирования воздуха и может поглощать значительно большее количество тепла из теплого наружного воздуха. В результате после рекуперации тепла в охладителе чиллера наружному воздуху требуется гораздо меньше после охлаждения для достижения желаемой температуры приточного воздуха, например.г., 19 ° С. Во многих случаях испарительное охлаждение может заменить более 50% холодных работ, которые в противном случае пришлось бы производить механически во время периода охлаждения, что приводит к значительной экономии эксплуатационных расходов. Это будет показано в следующих примерах.
Эффективность испарительного охлаждения
Производительность испарительного охлаждения зависит от многих влияющих переменных.
К ним относятся следующие параметры:

Качество увлажнения Для достижения максимального охлаждающего эффекта вытяжной воздух должен быть максимально увлажнен до 100% относительной влажности.Хорошие системы, такие как «ME» от Condair GmbH, Гархинг, достигают значений до 97%.

Эффективность рекуперации тепла
Чем эффективнее рекуперация тепла в системе отопления, вентиляции и кондиционирования воздуха (коэффициент рекуперации тепла φ), тем больше тепла отработанный воздух, охлажденный при испарительном охлаждении, может извлечь из теплого наружного воздуха. Директива по экологическому проектированию для систем отопления, вентиляции и кондиционирования воздуха, действующая с 2016 года, оказывает положительное влияние в этом отношении: в зависимости от модели рекуперации тепла она требует хорошей степени рекуперации тепла не менее 63% для систем отопления, вентиляции и кондиционирования воздуха.

Влияние состояния вытяжного воздуха
Чем суше вытяжной воздух, тем сильнее его можно увлажнить и охладить. При использовании испарительного охлаждения отработанный воздух с температурой от 24 до 28 ° C и относительной влажностью 95% можно охладить на прибл. 9 K (влажность вытяжного воздуха 30%) или прибл. 5 К (влажность вытяжного воздуха 60%). Чем суше отработанный воздух, тем выше эффективность испарительного охлаждения.

Влияние состояния наружного воздуха
Чем больше разница между температурой наружного воздуха и температурой вытяжного воздуха и чем лучше коэффициент рекуперации тепла при рекуперации тепла, тем больше тепла холодный отработанный воздух может извлечь из теплого помещения воздуха.Если, например, температура отработанного воздуха после охлаждения испарением составляет 18 ° C, он может охладить наружный воздух до температуры 32 ° C на прибл. 9 K (коэффициент рекуперации тепла 0,65) и 11,5 K (коэффициент рекуперации тепла 0,80).

Другие преимущества испарительного охлаждения
Для механических агрегатов холодной воды, которые используются в системах HVAC, требуется прибл. 1 кВт-ч электромонтажных работ на 3–4 кВт-ч холодных работ для производства холодной воды. В Германии на каждый кВтч электроэнергии приходится прибл. 0,5 кг CO2 (факторы смеси электроэнергии, состоящие из ядерной энергии, электростанций и регенеративной энергии).Если электрическая работа агрегатов водяного охлаждения снижается за счет испарительных систем охлаждения, в результате также сокращаются выбросы CO2.

В уравнение входит дополнительный эффект окружающей среды. Охладителю требуется 1 кг хладагента в цикле охлаждения на каждые 3–4 кВт охлаждающей способности. Как только это количество охлаждающего агента попадает в окружающую среду из цикла охлаждения из-за небольших утечек, это соответствует экологическому ущербу в размере прибл. От 1400 до 2100 кг CO2 (на основе современных охлаждающих агентов).Установки с холодной водой имеют уровень утечки прибл. От 4 до 5% от объема заполнения в год. Если благодаря системам испарительного охлаждения чиллеры могут быть изготовлены меньшего размера и работать с меньшим количеством охлаждающего агента, выбросы охлаждающего агента, которые способствуют парниковому эффекту, также будут уменьшены.

В EEWärmeG (Закон о возобновляемых источниках энергии) все токи нагрева и охлаждения, которые проходят от отработанного воздуха к приточному воздуху во время рекуперации тепла в системе отопления, вентиляции и кондиционирования воздуха, считаются регенерируемыми энергиями и могут быть включены в баланс EEWärmeG.Это также относится к холодным работам, создаваемым испарительным охлаждением.

Расчет испарительного охлаждения
Как показали предыдущие пояснения, расчет производительности и реально достижимая холодная работа системы испарительного охлаждения зависит от многих параметров. Расчеты становятся еще более сложными, если принять во внимание аспекты, специфичные для объекта, проекта и эксплуатации, особенно наружного воздуха в отношении температуры, влажности и энтальпии в течение года.Condair интегрировал все эти факторы в очень производительный и удобный расчетный инструмент myCoolblue. Этот инструмент, доступный бесплатно в виде приложения (www.condair.de/myCoolblue-app), состоит из трех шагов:

Шаг 1
Включает ввод сайта проекта и всех необходимых операционных данных (время использования, цель значения температуры и влажности). В приложении сохраняются годовые тенденции наружных температур и энтальпий для 15 климатических регионов Германии и более 300 международных городов.Их можно выбрать на карте мира или в меню. Спецификации стандартных расчетных условий основаны на VDI (Ассоциация инженеров Германии) 4710 (корреляции t, x) и на погодных данных Meteonorm.

Шаг 2
Относится к вводу системных данных. Это объемный поток воздуха, прогнозные измерения системы HVAC, системы рекуперации тепла, уровень эффективности и повышение давления вентиляторов, а также расположение компонентов в системе HVAC.

Step 3
Быстро вычисляет результаты на основе этих данных и отображает их как абсолютные значения или в графическом виде. Результатами являются, например, необходимая номинальная производительность охлаждающего генератора с учетом и без учета испарительного охлаждения, годовая продолжительность работы испарительного охлаждения и общая годовая холодная работа для воздушного охлаждения с пропорциями чиллера, испарительного охлаждения и рекуперация тепла (регенеративная пропорция).Результаты, в свою очередь, могут быть рассчитаны для трех случаев:

Случай 1: Годовое моделирование для обычного лета (средние значения за 10 лет) для среднего ожидаемого энергетического вклада испарительного охлаждения и оценка экономической эффективности. В этом случае необходимо убедиться, что результаты представляют собой среднее значение за наблюдаемый период и, таким образом, представляют «синтетический» годовой тренд.

Случай 2: Годовое моделирование с чрезвычайно теплым летом для расчета испарительного охлаждения и генератора холодной воды для покрытия максимальной потенциальной потребности в охлаждении.В этом случае выбирается год в период наблюдений с особенно теплыми летними температурами, который соответствует прогнозируемым экстремальным значениям, которые следует учитывать в случае чувствительных требований.

Случай 3: Расчет производительности для стандартных внешних условий только в соответствии с VDI (Ассоциация инженеров Германии) 4710 или сравнимые расчетные условия на основе метеорологических данных Meteonorm, но без годового моделирования. В результатах также показан сезонный коэффициент полезного действия.Это результат взаимосвязи между работой холода, создаваемой испарительным охлаждением, и работой насоса, необходимой для испарительной воды, и работой вентилятора для преодоления потери давления на стороне воздуха в системе испарительного охлаждения. На основе данных создается файл PDF, который можно распечатать для проекта или отправить по электронной почте.

Используя приложение, можно всего за несколько секунд рассчитать и представить несколько вариантов, например изменение объемных потоков воздуха, температуры, типа рекуперации тепла, степени эффективности вентиляторов, расположения компонентов в системе HVAC, максимально допустимой влажности в помещении или на участке.Таким образом, результаты моделирования в приложении предлагают оптимальную основу для получения реалистичных расчетов и оценок потенциала и производительности испарительного охлаждения, которые часто могут значительно различаться в зависимости от проекта.

Примеры расчетов
Ниже приведено несколько примеров расчетов для оценки экономии затрат на охлаждение при испарительном охлаждении с использованием приложения «myCoolblue». Для типового проекта (офисное здание) указаны следующие условия эксплуатации:

• Расход воздуха 27000 м³ / ч (= 7.5 м³ / с) • Поперечное сечение системы Ш 2250 мм x В 1750 мм
• Скорость воздуха 1,9 м / с
• Температура приточного воздуха от 18 до 20 ° C
• Температура целевой зоны / Летняя компенсация от 22 до 26 ° C
• Влажность воздуха в помещении до максимум 65%
• Коэффициент рекуперации тепла 70%
• Работа системы отопления, вентиляции и кондиционирования воздуха 12 часов в день, 5 дней в неделю (= 3120 часов в год)

Для уточнения характеристик испарительного охлаждения, этот проект расположен на различных немецких и международных площадках с жарким, прохладным, влажным и сухим климатом.Эти варианты сайта и выдача соответствующих результатов с помощью приложения занимают всего несколько секунд. Значения в таблице 1 показывают несколько основных тенденций испарительного охлаждения: В умеренных и теплых местах (Мангейм, Потсдам, Эссен, Росток) испарительное охлаждение обеспечивает от 44 до 51% требуемой годовой работы холода для воздушного охлаждения. На холодном заводе в Фихтельберге, хотя процентная доля 78% выше, абсолютная величина необходимой в первую очередь холодной обработки очень низка.

На объектах, где довольно сухо, но жарко летом (Мадрид, Эр-Рияд, Лас-Вегас), испарительное охлаждение достигает значений от 52 до 75% годовой работы в холодном состоянии — при сезонных факторах производительности от высоких до очень высоких. Однако эта тенденция уменьшается по мере того, как становится более влажным место (Чикаго, Коломбо): здесь доля испарительного охлаждения в годовой работе холода составляет только от 10 до 29%. Однако в тропических регионах, таких как Коломбо, испарительное охлаждение работает круглый год.

Здесь испарительное охлаждение берет на себя задачу предварительного охлаждения наружного воздуха. Чтобы затем обеспечить необходимую влажность и температуру приточного воздуха (особенно осушение!), Механические охлаждающие машины должны обеспечивать высокую производительность при низких температурах потока воды.

Экономическая эффективность испарительного охлаждения
Помимо множества экологических преимуществ косвенного испарительного охлаждения, экономическая эффективность такого охлаждающего решения также играет важную роль.Любые дополнительные затраты, понесенные при покупке, должны быть компенсированы экономией на эксплуатационных расходах по сравнению с механическими системами охлаждения.

На основании описанных выше очень многих факторов, зависящих от конкретной площадки и эксплуатации, каждый проект кондиционирования и охлаждения следует проверять индивидуально на предмет рентабельности испарительного охлаждения. В этом отношении, помимо параметров, описанных выше, фактические расходы на электроэнергию и воду также играют ключевую роль.Однако, как правило, испарительное охлаждение не следует рассматривать отдельно, а скорее как комбинированную систему с рекуперацией тепла, поскольку без этого использование косвенного испарительного охлаждения физически невозможно.

Срок окупаемости комбинации с рекуперацией тепла незначительно увеличивается за счет использования испарительного охлаждения. Следовательно, диапазон возможных периодов амортизации велик и должен определяться для каждого проекта индивидуально.Производители систем испарительного охлаждения предлагают покупателям такие расчеты рентабельности. Тем не менее, возможные вариации в конструкции также могут быть заранее проанализированы и рассчитаны с точки зрения энергии с помощью приложения для моделирования.

Резюме
Технология испарительного охлаждения предлагает значительный потенциал для снижения производительности электрических блоков холодной воды, которые во многих областях до настоящего времени использовались почти исключительно для воздушного охлаждения. Испарение воды в потоке отработанного воздуха системы HVAC означает, что охлаждение достигается практически без электричества.С точки зрения энергетики косвенное испарительное охлаждение может особенно хорошо продемонстрировать свой потенциал, если выполняются следующие условия:

• высокоэффективное увлажнение испарительного охлаждения;
• высокая степень рекуперации тепла при рекуперации тепла;
• низкая влажность вытяжного воздуха;
• сухие участки с теплым летом.

Однако испарительное охлаждение не предназначено для самостоятельного решения задач охлаждения здания. Только в очень немногих проектах, например на объектах, где летом прохладно, сможет ли он полностью заменить чиллер.Следовательно, испарительное охлаждение следует рассматривать в основном как базовую экологическую систему для предварительного охлаждения наружного воздуха.

Блок холодной воды, из которого можно выбрать более низкую производительность и, следовательно, более дешевую модель, берет на себя остаточную или пиковую нагрузку. Испарительное охлаждение означает, что почти во всех проектах можно значительно сэкономить на холодных работах, выполняемых обычным способом.

В некоторых случаях, с учетом физических ограничений, может даже использоваться простое испарительное охлаждение, что делает совершенно ненужными механические системы охлаждения.


Франк Бенндорф, отдел продаж, Condair GmbH

Коэффициенты смешивания и концентрации рабочих жидкостей с помощью смесителей Вентури и дозирующих насосов.

Смешивание охлаждающей жидкости для металлообработки

1) При какой концентрации BRIX мне следует работать?

Химические концентраты для металлообработки специально разработаны для использования в различных концентрациях. Каждый продукт и приложение будут иметь идеальное соотношение концентраций жидкости для металлообработки.Концентрация влияет на срок службы поддона, стойкость инструмента и качество поверхности. Данные и информационные листы ваших поставщиков химических концентратов содержат примеры применения и соответствующие концентрации.

Поддержание надлежащей концентрации необходимо для эффективных и безотказных результатов водосмешиваемых смазочно-охлаждающих и шлифовальных жидкостей. Мы видели, что более 80% «проблемных сообщений» отстойника прямо или косвенно связаны с плохим контролем концентрации. Контролировать концентрацию трудно, когда хладагент смешивается вручную небольшими партиями, и его практически невозможно поддерживать, когда нетренированный оператор смешивает хладагент.

Zebra Skimmers имеет полную линейку оборудования для автоматического дозирования, обеспечивающего точный контроль концентрации охлаждающей жидкости. (Смесители жидкости)

2) Что такое «макияжная» концентрация?

При использовании водосмешиваемых охлаждающих жидкостей в операциях механической обработки и шлифования объем жидкости в поддоне охлаждающей жидкости уменьшается из-за физических потерь жидкости (жидкость уносится на стружку и детали), а вода испаряется, поскольку поглощает тепло, выделяемое при обработке. или шлифовальная операция.Для правильной работы требуется, чтобы уровень жидкости поддерживался на некотором минимальном уровне, и поэтому должна быть добавлена ​​«подпиточная жидкость» для пополнения охлаждающей жидкости на стружках и деталях. Поскольку потеря воды за счет испарения приводит к увеличению концентрации жидкости в отстойнике, «подпиточная жидкость» всегда будет смешиваться с той же концентрацией, которая меньше рекомендованной рабочей концентрации. Например, если охлаждающая жидкость эмульсии должна работать при 5% объема по отношению к воде, то «подпиточная» концентрация для этой жидкости обычно будет 1-2.0%. Проверьте данные о вашем продукте и информационные листы на предмет рекомендуемых рабочих и «подпиточных» концентраций.

3) Что такое коэффициент рефрактометра?

Коэффициент рефрактометра используется для определения концентрации жидкости для металлообработки. Каждый химический концентрат имеет коэффициент преломления для определения концентрации. Информацию о коэффициентах преломления конкретных продуктов можно найти в листе данных и информации. Умножьте показатель преломления (показания рефрактометра) на коэффициент рефрактометра и получите концентрацию рабочего раствора в процентах.(Коэффициент для большинства эмульсионных жидкостей равен 1,0, так что показания рефрактометра BRIX являются концентрацией жидкости.)

4) Почему у моей охлаждающей жидкости неприятный запах?

Неприятный запах охлаждающей жидкости, скорее всего, связан с анаэробными бактериями. Бактерии производят продукты жизнедеятельности, которые часто содержат серу и источают запах «тухлых яиц». Бактерии являются основными причинами выхода охлаждающей жидкости из строя. Они химически изменяют охлаждающие жидкости и разрушают смазочные материалы и ингибиторы коррозии в процессе.Они также выделяют в охлаждающую жидкость агрессивные кислоты и соли, что может привести к снижению pH и проблемам с коррозией. Рост бактерий можно минимизировать с помощью:

  • Поддержание надлежащей концентрации охлаждающей жидкости.
  • Надлежащие методы ведения домашнего хозяйства (чистота).
  • Предотвращение или минимизация загрязнения.
  • Хорошая фильтрация охлаждающей жидкости и постоянное удаление стружки.
  • Тщательная периодическая чистка поддона.

Если из отстойника пахнет тухлым яйцом, воспользуйтесь таблетками для контроля запаха XOCT25, чтобы отрегулировать pH.

5) Почему охлаждающая жидкость бывает разного цвета?

Большинство охлаждающих жидкостей имеют цвет и запах, вызванные химическими веществами, из которых они смешаны. Но иногда производители смазочно-охлаждающей жидкости для металла используют красители и красители, чтобы придать им эстетический вид. Они также полезны при идентификации продуктов для компаний, которые используют ряд различных продуктов. Операторы станков иногда используют интенсивность цвета как показатель концентрации охлаждающей жидкости. Интенсивность цвета не является хорошим показателем концентрации, так как масло может впитывать используемые красители, а некоторые рабочие материалы (например, чугун) могут «замаскировать» краситель.Даже с окрашенными охлаждающими жидкостями необходимо периодически проверять концентрацию жидкости должным образом.

6) Какие остатки остались в поддоне или станке?

Остаток — это материал, который остается на станке и деталях после испарения воды из раствора охлаждающей жидкости. Остатки никогда не должны мешать бесперебойной и правильной работе станка, но, что более важно, остатки должны улучшать работу станка. Остатки можно классифицировать как:

  • Жидкость
  • Мягкий
  • Жесткий
  • Мармелад
  • Кристаллический

Для оптимальной работы станка предпочтительны маслянистые, не липкие остатки.Если остаток твердый, липкий или кристаллический, он может вызвать «заедание» или «замерзание» движущихся частей машины и может вызвать неисправность машины. Умеренная кристаллическая пленка может быть допустима на некоторых типах плоскошлифовальных станков, но такой остаток может вызвать серьезные проблемы на 5-осевом обрабатывающем центре. Другими словами, при выборе жидкости необходимо учитывать тип машины, поскольку тип остатков может существенно повлиять на работу машины.

7) Как смешивать водорастворимые охлаждающие жидкости?

Смешивание имеет решающее значение для поддержания стабильности СОЖ и шлифовальных жидкостей.Соответствующие инструкции по смешиванию доступны во всех технических и информационных листах по химическим концентратам. Для оптимальной производительности и максимального срока службы концентраты охлаждающей жидкости следует смешивать с химически чистой водой, полученной путем деионизации или обратного осмоса. Как правило, концентраты следует добавлять в воду в последнюю очередь и тщательно перемешивать. Один из способов запомнить правильную последовательность добавления — это запомнить «O.I.L.», что означает «масло в последнюю очередь».

Для смешивания охлаждающей жидкости для металлообработки Zebra производит как смеситель Вентури Machinist Mixer, так и дозаторы — дозирующие насосы — такие как MIXPP518, которые могут автоматизировать процесс смешивания (управление концентрацией) и подачу жидкости, минимизировать потери охлаждающей жидкости и снизить затраты на удаление опасных материалов.

Ищете автоматизированное смешивание охлаждающей жидкости, которое может сэкономить до 50% затрат на охлаждающую жидкость (ваш пробег может отличаться) и окупится за год или меньше? Взгляните на наши системы автоматизации смешивания, подачи и концентрирования охлаждающей жидкости Dazzle: бюджетный Dazzle1 и IoT, Dazzle2 с поддержкой Industry 4.0.

Для получения дополнительной информации позвоните по горячей линии автоматизации жидкостного поддона 440-528-0695 .


Объяснение соотношений охлаждающей жидкости для металлообработки

Химические концентраты для металлообработки необходимо смешивать с водой (помните, масло в последнюю очередь!), Чтобы эффективно обеспечить смазочные свойства и отвод тепла.Смешивание химического концентрата (охлаждающей жидкости) с водой обычно осуществляется с помощью пропорциональных смесителей, например насосы-дозаторы или смесители Вентури. В этих смесителях охлаждающей жидкости используются соотношения для смешивания химического концентрата и воды. Ниже описано, как понять отношение отношения к концентрации.

Жидкости для отстойников для металлообработки могут находиться в диапазоне +/- 2% от заданной концентрации. Однако чем точнее вы будете поддерживать концентрацию отстойника до целевой концентрации производителей химического концентрата, тем лучше будет работать охлаждающая жидкость, чтобы помочь вам достичь целевых допусков в готовых заготовках.

КАК РАССЧИТАТЬ ПРОЦЕНТ, ЕСЛИ СОСТОЯНИЕ СМЕШИВАНИЯ ИЗВЕСТНО

Разделите 1 на общее количество частей (вода + раствор).

Например, если ваше соотношение смешивания составляет 8: 1 или 8 частей воды на 1 часть раствора, имеется (8 + 1) или 9 частей. Процент смешивания составляет 11,1% (1 разделить на 9).

КАК РАССЧИТАТЬ СООТНОШЕНИЕ СМЕШИВАНИЯ, ЕСЛИ В ПРОЦЕНТЕ ЗНАЕТ

(100 — процентное соотношение): процентное

Например, если ваш процент составляет 4%, возьмите 100-4 (что составляет 96), так что ваше соотношение смешивания будет 96: 4, а — это , уменьшенное до 24: 1.

Ниже приводится список стандартных концентраций и соотношений СОЖ для металлообработки

Процент Передаточное отношение
2% 49: 1
3% 32,3: 1
4% 24: 1
5% 19: 1
6% 15,6: 1
7% 13,3: 1
8% 11.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *