Сравнение биметаллических радиаторов отопления разных фирм: Сравнение биметаллических радиаторов отопления разных фирм

Содержание

Радиаторы отопления, какие лучше выбрать, сравнение, таблица

Когда вы собираетесь покупать радиаторы отопления, необходимо заранее подготовиться. Одного желания приобрести приборы – мало. Нужно изучить технические характеристики и параметры радиаторов, чтобы узнать, радиаторы отопления какие лучше – именно для вашей отопительной системы.

Можно сравнивать совсем одинаковые модели батарей на вид, а вот по теплоотдаче, мощности – они могут различаться заметно. Здесь все буде зависеть от материала изготовления радиатора и его конструктивных особенностей, внутренней емкости батарей, способа их подключения. Именно поэтому, когда вы выбираете батареи отопления какие лучше – необходимо подготовиться и обладать некоторыми знаниями.

Радиатор отопления

Какие требования предъявляются к монтажу радиаторов?

Если верить стандартным расчетам, то указывается расход 90-125 Вт на 1 кв.м помещения, которое отапливается. В таком случае, учитывается еще наличие в комнате окна, двери, высоты потолков не больше 3-х метров, температуры теплоносителя 70 градусов по Цельсию.

Если такие стандарты нарушаются, к примеру, высота потолков больше, то и мощность радиаторов должна быть увеличена на столько же. А если у вас окна со стеклопакетами, то у них низкая теплоотдача, соответственно, как показывают отзывы, мощность можно уменьшить на 10 процентов.

Если температура теплоносителя понизится, то это потребует увеличения мощности батарей, или же можно увеличить количество секций. Каждый раз, когда температура понижается на 10 градусов, это компенсируют увеличением мощности на 15-18%.

Таблица подбора количества секций радиатора отопления

Когда проводятся расчеты, какие бы самые лучшие радиаторы отопления ни были, обязательно необходимо учитывать особенности конструкции вашей отопительной системы. И если подача носителя тепла будет производиться через нижнее отверстие, а обратный ход – через верхнее, то в таком случае каждый радиатор будет не додавать до 10 процентов своей мощности. Если теплоноситель будет подводиться только с одной стороны, то устанавливать больше 10-ти секций будет бессмысленной – ведь последние секции будут греть достаточно слабо.

Сравнение батарей отопления

Первым делом, заметим, что ответить на вопрос, какие батареи отопления лучше, довольно сложно, не обладая специальными знаниями. Отметим панельные стальные радиаторы. Такие отопительные приборы обладают высокой эффективностью – их рабочее давление составляет 9 атмосфер, они способны выдержать 13 атмосфер опрессовки. Как показывает рейтинг радиаторов отопления, они очень востребованы, когда ставится индивидуальная отопительная система и когда в многоэтажных домах есть свой тепловой пункт.

Рекомендуем к прочтению:

Стальной радиатор отопления

Такие качественные радиаторы отопления делают из стальных листов со специальными углублениями для прохода теплоносителя, а чтобы увеличить теплоотдачу приборов – на обратную сторону приваривают выступающие ребра, которые в дальнейшем увеличат конвекционный поток воздуха. Радиаторы делают из низкоуглеродистой стали, которая имеет повышенную коррозионную стойкость. Покрываются они порошковой эмалью.

Следующий вид, который мы рассмотрим, это чугунные радиаторы. Конечно, этот вариант не станет ответом на вопрос, какие самые лучшие радиаторы отопления.

Чугунные батареи – это классика, которую ранее советские потребители использовали за неимением ничего другого.

Это действительно качественные изделия, основным преимуществом которых является чугун. Этот материал имеет отличную теплопроводность, он стойкий к любому теплоносителю. Доля радиационного потока включает 70% тепла и 30% конвективного – это будет прогревать нижние и верхние зоны комнаты. Стоит отметить, что срок эксплуатации чугунного радиатора может составить до 50 лет. На сегодняшний день такие радиаторы можно купить относительно дешево, на рынке представлены разные модели, как видно на фото.

Чугунные радиаторы

При поверхностном сравнении алюминиевые радиаторы покажутся вам более легкими, элегантными. Но дальше вы узнаете, что такие лучшие батареи отопления еще и обладают улучшенной теплоотдачей. Производятся такие радиаторы литьем или экструдированием. Каждая секция обладает коллекторами, а также соединяющим вертикальным каналом, ребрами для ускорения потока воздуха и снятия тепла с плоскости, именно поэтому тепло в комнате будет распределяться оптимальным образом.

Собирают такие радиаторы ниппелями из стали, между секциями ставят специальные прокладки из водостойкого материала. На лицевой поверхности есть оребрения, это образует сплошную поверхность, а также – воздухоотводные окошки сверху. Подбирать тепловую мощность таких радиаторов нужно набором необходимого количества секций, также – и их высоты. Можно просто-напросто собрать радиатор с нужной высотой и длиной, чтобы хорошо его вписать в архитектурные особенности вашего помещения.

Алюминиевые радиаторы отопления

Что касается недостатков такого вида батарей, то это высокие требования к химическим параметрам воды. Помимо этого, в составе теплообменники, латунные и медные фитинги, соединительные трубы из стали – все это увеличивает процесс коррозии. И чем больше будет меди – тем сильнее будет этот процесс. Чтобы нивелировать этот недостаток, производители используют сплавы, которые будут защищать батареи изнутри.

Рекомендуем к прочтению:

Как отмечают специалисты, биметаллические радиаторы – это самые эффективные батареи отопления.

Стальные каналы, которые проводят теплоноситель, обеспечат прочность всей конструкции. Также они закрыты оребрением из алюминия, поэтому вода соприкасается только с металлом. Существует несколько разных вариантов исполнения таких батарей. Их могут делать, покрывая стальной каркас алюминием – так, вода будет контактировать только со сталью. Также сталью могут усиливать вертикальные каналы, чтобы толщина их могла выдерживать большое давление.

Биметаллические самые лучшие батареи отопления могут перенести высокое давление и длительную нагрузку, они стойкие к гидравлическим ударам и имеют высокий уровень теплоотдачи. Рабочее давление составляет 35 атмосфер, а опрессовочное – практически 52. А благодаря тому, что емкость биметаллических секций будет меньше, чем алюминиевых, это позитивно отражается на теплоинертности. Как показывает тест, радиаторы отопления самые эффективные надежны в многоэтажных домах. После сборки такие лучшие радиаторы отопления окрашиваются порошковой эмалью, для отвержения их нагревают и выдерживают 180 градусов по Цельсию. При максимальном показателе температуры теплоносителя в 110 градусов этого будет достаточно.

Предлагаем изучить сравнение радиаторов отопления, таблица (Таблица 1) покажет все самые сильные и слабые стороны различных видов радиаторов.

Сравнение различных видов радиаторов отопления

Ведь вопрос, какие лучше радиаторы отопления, может быть актуальным достаточно долго, а ответить на него в полной мере правильно сможет лишь специалист, который знаком именно с вашей отопительной системой.

Более подробно про выбор биметаллических радиаторов отопления в материале — Биметаллические радиаторы отопления, какие лучше?

Сравнение радиаторов отопления. Биметалл и другие модели

Чтобы из множества отопительных приборов этого вида выбрать необходимый, надо хорошо представлять плюсы и минусы каждого. Рассмотрим их подробнее в данной статье.

Сравнение радиаторов отопления: разновидности данного оборудования

Наиболее «ходовыми» являются следующие типы батарей:

  • Стальные (панельные), или конвекторы;
  • Радиаторы из чугуна;
  • Стальные, имеющие трубчатую «конфигурацию»;
  • Алюминиевые;
  • Биметаллические.

Наиболее оптимальный вариант подбирается индивидуально, в зависимости от характеристик отапливаемого помещения.

Радиаторы отопления: сравнение характеристик со знаком «плюс»

Среди основных преимуществ, в частности стальных батарей, следует назвать:

  • Высокую теплоотдачу;
  • Наличие большого количества типоразмеров, позволяющее подбирать требуемое число упомянутого строкой выше показателя;
  • Отличное дизайнерское оформление;
  • Сравнительно невысокая стоимость.

Чугунные отличаются высокими теплоемкостью и прочностью, а также устойчивостью к коррозии.

В алюминиевых преимуществом является небольшое количество нагретой воды в недрах самой отопительной конструкции и большая теплопроводность, тепло легко регулировать.

Сравнение радиаторов отопления: несколько слов о недостатках

  • И конвекторы, и чугунные, и алюминиевые батареи отличаются большой чувствительностью к гидроударам, что грозит вздутием и разрывами приборов. Именно поэтому они являются не лучшим вариантом для установки в системах центрального «обогрева».

В радиаторах отопления сравнение характеристик поможет разобраться в том, какой же более к месту в конкретном случае. Кого-то не устроит низкое рабочее давление, как у панельных. Кто-то будет недоволен высокой тепловой инертностью, не позволяющей быстро настроить нужную температуру конструкции из чугуна, а также ее несколько устаревшим дизайном и сложностью монтажа из-за большой массы.

Сравнение теплоотдачи радиаторов отопления: сталь или алюминий?

Одна секция трубчатых стальных теплообменников имеет теплоотдачу 80–100 ватт. У алюминиевых же она значительно выше и составляет от 100 до 200 Вт. Такие же параметры присущи и чугунным приборам – тоже на одну секцию, но это также может зависеть от типоразмера секции.

Наиболее конструктивно-оптимальными являются «агрегаты» биметаллические, сочетающие в себе наилучшие качества обоих металлов. Ремонт котла «Газлюкс» производить не придется, если в доме смонтированы именно такие радиаторные батареи, независимо от того, какой нагрев организован – центральный или автономный.

Такие конструкции весьма экономичны благодаря наличию небольшого количества воды в секции и очень прочны: показатель их рабочего давления – около 30 бар.

Сравнение биметаллических радиаторов отопления разных фирм

Рынок насыщен продукцией самых различных стран и фирм. Неплохо зарекомендовала себя продукция российской фирмы «Рифар», производства которой основаны на технологиях итальянской компании «Глобал». В зависимости от размеров ее теплоотдача варьируется от 104 до 204 Вт.

«Теплоприборы» различных итальянских компаний предлагаются с мощностью в «разбежке» 130 –190 ватт. Примерно такие же показатели у

немецкой Tenrad и китайской Gordi.

В ходе эксплуатации могла засориться газовая колонка «Нева». Почистить ее необходимо, чтобы избежать образования известкового налета и ржавчины.

Отопительная техника из биметалла буквально всех производителей благодаря алюминию обладает отличным дизайном и хорошей теплопроводностью. Специалисты отмечают в ней только один недостаток – она стоит дороже остальных.

См. также:

Ремонт радиатора газовой колонки

Как почистить радиатор от накипи

Теплоотдача радиаторов отопления – сравнение и расчет мощности

Реальная теплоотдача радиаторов отопления различных типов часто обсуждается на строительных форумах. Участники спорят, какие батареи лучше по тепловым характеристикам – чугунные, алюминиевые или стальные панели. Чтобы прояснить данный вопрос, предлагается выполнить расчет мощности разных отопительных приборов и провести сравнение радиаторов по теплоотдаче.

 Как правильно рассчитывается реальная теплоотдача батарей

Первым делом изучите технический паспорт батареи. В нем вы точно найдете интересующие параметры — тепловую мощность одной секции либо целого панельного радиатора определенного типоразмера. Не спешите восхищаться отличными показателями алюминиевых или биметаллических обогревателей, указанная в паспорте цифра — не окончательная и требует корректировки, для чего и нужно сделать расчет теплоотдачи.

Ошибочное суждение: мощность алюминиевых радиаторов самая высокая, ведь теплоотдача меди и алюминия – самая лучшая среди металлов. Теплопроводность алюминия действительно высока, но процесс теплообмена зависит от многих факторов. Нюанс второй: отопительные приборы делают из силумина – алюминиевого сплава с кремнием, чьи показатели заметно ниже.

Прописанная в паспорте отопительного прибора теплоотдача соответствует истине, когда разница между средней температурой теплоносителя (tподачи + tобратки)/2 и воздуха помещения равна 70 °С. Величина зовется температурным напором, обозначается Δt. Расчетная формула:

Подставим известное значение температурного напора и получим такое уравнение:

(tподачи + tобратки)/2 — tвоздуха = 70 °С

Справка. В документации изделий от различных фирм параметр Δt может обозначаться по-разному: dt, DT, а иногда просто пишется «при разнице температур 70 °С».

Какую теплоотдачу мы получим, если в документации на биметаллический радиатор написано: тепловая мощность одной секции равна 200 Вт при DT = 70 °С? Разобраться поможет та же формула, в нее подставляем значение комнатной температуры +22 °С и ведем расчет в обратном порядке:

(tподачи + tобратки) = (70 + 22) х 2 = 184 °С

Зная, что разность температур в подающем и обратном трубопроводах не должна превышать 20 °С, определяем их значения следующим образом:

  • tподачи = 184/2 + 10 = 102 °С;
  • tобратки = 184/2 – 10 = 82 °С.

Теперь видно, что 1 секция биметаллического радиатора из примера отдаст 200 Вт теплоты при условии, что вода в подающем трубопроводе нагреется до 102 °С, а температура воздуха в комнате – до +22 °С.

Первое условие невыполнимо, поскольку современные бытовые котлы нагреваются до 80 °С (максимум). Значит, радиаторная секция никогда не отдаст заявленные 200 Вт тепла. Да и температура теплоносителя в системе частного дома редко поднимается выше 70 °С, тогда DT = 38 °С, а не 70 градусов. То есть, реальная теплоотдача прибора вдвое ниже паспортной.

Порядок расчета теплоотдачи

Итак, реальная мощность батареи отопления гораздо меньше заявленной, но для ее подбора надо понимать, насколько. Для этого есть простой способ: применение понижающего коэффициента к паспортному значению тепловой мощности обогревателя. Ниже представлена таблица коэффициентов, на которые умножается заявленная теплоотдача радиатора в зависимости от настоящей величины DT:

Алгоритм расчета настоящей теплоотдачи отопительных приборов для ваших индивидуальных условий такой:

  1. Определить, какая должна быть температура в доме и воды в системе.
  2. Подставить эти значения в формулу и рассчитать свой температурный напор Δt.
  3. Найти в таблице коэффициент, соответствующий найденному DT.
  4. Умножить на него паспортную величину теплоотдачи батареи.
  5. Подсчитать число секций либо целых отопительных приборов для обогрева комнаты.

В приведенном примере тепловая мощность 1 секции биметаллического радиатора составит 200 Вт х 0.48 = 96 Вт. На обогрев помещения площадью 10 м² пойдет приблизительно 1000 Вт теплоты или 1000/96 = 10.4 ≈ 11 секций (округление делаем в большую сторону).

Представленная таблица и расчет теплоотдачи батарей надо использовать, когда в документации указана Δt, равная 70 °С. Но бывает, что фирмы–производители дают мощность радиатора для других условий, например, при Δt = 50 °С. Тогда пользоваться коэффициентами нельзя, проще набрать требуемое количество секций по паспортной характеристике, только взять их число с полуторным запасом.

Справка. Многие производители указывают значения теплоотдачи при таких условиях эксплуатации: tподачи = 90 °С, tобратки = 70 °С, tвоздуха = 20 °С, что как раз соответствует Δt = 50 °С.

Сравнение по тепловой мощности

Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти параметры мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, здесь конструкция и форма изделия играет большую роль. Четко сравнить стальной панельный обогреватель с чугунной батареей не выйдет, их поверхности слишком разные.

Трудновато сравнивать отдачу теплоты плоскими панелями и ребристыми поверхностями сложной конфигурации

Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдадут 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) на 5 секций такой же высоты передаст в комнату только 530 Вт при аналогичных условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.

Примечание. Мощностные характеристики алюминиевых и биметаллических обогревателей мало отличаются, сравнивать их нет смысла.

Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Длина батареи из 5 алюминиевых секций GLOBAL высотой 600 мм составит примерно 400 мм, что соответствует стальной панели KERMI 600 х 400.

В таблице указана тепловая производительность 1 секции из алюминия и биметалла в зависимости от размеров и разницы температур Δt

Если даже взять трехрядную стальную панель (тип 30), получим 572 Вт при Δt = 50 °С против 635 Вт у 5-секционного алюминия. Еще учтите, что радиатор GLOBAL VOX гораздо тоньше, глубина прибора составляет 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминиевых секций позволяет уменьшить габариты обогревателя.

В индивидуальной системе отопления частного дома батареи одинаковой мощности, сделанные из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:

  1. Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они сильнее охлаждают воду, возвращаемую в систему.
  2. Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
  3. Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего возникает небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.

Вывод простой: неважно, из какого материала изготовлен радиатор. Главное, правильно подобрать батарею по мощности и дизайну, который устроит пользователя. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой лучше устанавливать.

Сравнение по другим характеристикам

Об одной особенности работы батарей – инертности – уже упоминалось выше. Но чтобы сравнение радиаторов отопления выглядело объективным, кроме теплоотдачи следует учесть и другие важные параметры:

  • рабочее и максимальное давление теплоносителя;
  • количество вмещаемой воды;
  • масса.

Ограничение по рабочему давлению определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота подъема воды сетевыми насосами может достигать сотни метров. Параметр не играет роли для частных домов, где давление в системе невысокое, максимум 3 Бар.

Сравнение по вместительности радиаторов может дать представление об общем количестве воды в сети, которое придется нагревать. Ну а масса изделия важна при выборе места установки и способа крепления батареи.

В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:

Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.

Заключение

Если провести сравнение изделий широкого круга производителей, то все равно выяснится, что по теплоотдаче и другим характеристикам первое место прочно удерживают алюминиевые радиаторы. Биметаллические выигрывают по рабочему давлению, но стоят дороже, покупать их не всегда целесообразно. Стальные батареи – это скорее бюджетный вариант, а вот чугунные, наоборот, — для ценителей. Если не учитывать цену советских чугунных «гармошек» МС140, то ретро радиаторы – самые дорогие из всех существующих.

Какие биметаллические радиаторы отопления лучше подойдут для квартиры

Биметаллические радиаторы – прекрасный вариант для отопления квартиры, особенно в условиях высокого и непостоянного рабочего давления. Популярность этих отопительных приборов неслучайна – сочетание нержавеющей стали (реже меди) с алюминием обеспечивает быстрый и качественный прогрев помещений. Для того чтобы понять, какие биметаллические радиаторы отопления лучше для квартиры и правильно выбрать подходящий, нужно иметь представление о механизме действия этих приборов.

Их принцип работы основан на том, что циркулирующий по внутренней стальной или медной трубе горячий теплоноситель нагревает ее стенки, которые, в свою очередь, контактируют с алюминиевыми ребрами внешней части прибора. Алюминий характеризуется высоким коэффициентом теплопроводности, вследствие чего он гораздо лучше нагревается и стремительно отдает тепло окружающему воздуху.

Устройство биметаллического радиатора.

Виды биметаллических радиаторов

В зависимости от внутреннего устройства биметаллические отопительные приборы делятся на 2 категории:

  • Секционные. Внутреннее пространство таких приборов состоит из определённого (обычно чётного) числа горизонтальных участков трубы, соединенных друг с другом при помощи ниппелей. Эти стыки заведомо являются потенциально уязвимыми участками. Они часто повреждаются и подвержены протеканиям из-за низкокачественных теплоносителей. Но у этих устройств есть и сильная сторона: в случае повреждения какой-либо секции можно осуществить частичную замену или даже удаление этого элемента.

Секционные биметаллические радиаторы

Устройство секционного биметаллического радиатора отопления

  • Монолитные. Они появились позже устройств первой категории и превосходят их по многим параметрам. Лишены недостатков, какими наделены секционные варианты. Имеют почти вдвое больший срок службы и способны справиться со значительным давлением (вплоть до 100 атмосфер у отдельных моделей). Внутренняя стальная или медная часть этих радиаторов образована цельной металлической трубой, которая впоследствии заливается алюминием. Монолитный сердечник таких радиаторов значительно превышает по прочности секционный. Однако при всех этих достоинствах монолитные радиаторы отопления почти непригодны к ремонту. Если произошла протечка, придется осуществлять замену всей батареи. Эти приборы реже встречаются в магазинах и имеют высокую стоимость.

Устройство монолитного биметаллического радиатора отопления

Отопительные устройства можно классифицировать и по материалу, из которого изготовлен их каркас. Не всё, что называют биметаллическими радиаторами в магазине, в действительности ими является:

  1. Собственно биметаллические радиаторы имеют полностью стальной каркас. В число их особенностей входят повышенная устойчивость к коррозии и предельно высокая — к протечкам, длительность срока эксплуатации и большая цена.
  2. Полубиметаллические радиаторы оборудованы каркасом, лишь частично выполненным из стали. Из неё сделаны усиливающие трубы для вертикальных каналов, в то время как более толстые горизонтальные каналы целиком состоят из алюминиевого сплава. Из-за того, что в таких радиаторах вода вступает в контакт с алюминием, они могут сильнее страдать от коррозии. Это существенно сокращает средний срок службы приборов. Вследствие неоднородности состава сердечника, нарекания может вызвать и нестабильность работы радиаторов. С другой стороны, при большом давлении воды они порой оказываются предпочтительнее. Полубиметаллические устройства, как правило, бывают незначительно дешевле полностью биметаллических аналогов.

Внимание! Следует, помнить, что полубиметаллические батареи плохо совместимы со старыми трубами. Если в доме тубы не меняли больше 40 лет, лучше остановиться на радиаторе со стальным каркасом.

Какие радиаторы лучше

Несмотря на более привлекательную стоимость полубиметаллических аналогов, лучше выбрать настоящий биметаллический вариант. Также, существует некоторая вероятность спутать биметалл с алюминиевыми батареями. Во избежание ошибки при покупке стоит предварительно ознакомиться с топ-10 биметаллических радиаторов отопления, а также тщательно изучить прилагаемую к каждой модели техническую документацию.

Совет! Несмотря на внешнее сходство биметаллических и алюминиевых радиаторов, их можно отличить по весу. Первый будет примерно в 1,5 раза тяжелее, что позволит не ошибиться с покупкой.

Критерии сравнения

Среди основных эксплуатационных характеристик радиаторов выделяются:

  • срок службы;
  • рабочее давление;
  • тепловая мощность в расчете на 1 секцию.

По каждому из параметров монолитные биметаллические радиаторы отопления заметно опережают секционные. Особенно важным является устойчивость первых к внезапному повышению рабочего давления. Однако и среди секционных можно найти весьма надежные модели от производителей с хорошей репутацией, входящие в топ-10.

Внимание! Для отопления квартиры в высотном доме стоит выбрать один из монолитных вариантов, поскольку они не содержат дополнительных узлов, страдающих от перепадов давления, явления весьма нередкого для систем центрального отопления.

Крупные страны-производители

В топ-10 биметаллических радиаторов входит продукция как отечественного, так и иностранного производства. Основными зарубежными компаниями, поставляющими свои модели на российский рынок, являются китайские, итальянские и немецкие производители.

RIFAR, Радиатор биметаллический

Чтобы решить, какие биметаллические батареи отопления лучше подойдут для квартиры, нужно учитывать репутацию фирмы. С осторожностью стоит относиться к дешевому производству большинства китайских компаний (за исключением Gordi). Гораздо лучше отдать предпочтение радиаторам Monolit от отечественного бренда Rifar. Обойдется такая покупка незначительно дороже китайской, но прослужит заметно дольше. Качество некоторых изделий сравнимо с эталонным, при этом стоимость оказывается в 2-3 раза ниже по сравнению с продукцией зарубежных производителей.

При наличии финансовой возможности можно выбрать вариант от одного из европейских брендов, прошедших самые жесткие стандарты качества и входящих в топ-10 производителей батарей из биметалла.

Радиатор отопления Sira

Качество немецких биметаллических радиаторов отопления настолько строго контролируется разработчиками, что заслуженно славится далеко за пределами Германии. Еще более развитым является итальянское производство биметалла. Основными фирмами Италии, выпускающими биметаллические батареи, являются Sira Group (собственно, первый производитель подобной продукции в мире), Global Style и Radena. Многие из этих радиаторов входят в топ-10 благодаря надежности и долговечности. Сказать однозначно, какие именно итальянские биметаллические радиаторы отопления лучше выбрать, попросту невозможно. Правда, их стоимость значительно превышает среднюю, что обусловлено репутацией этих брендов и высокими затратами на изготовление качественной продукции.

Радиатор биметаллический Global Style

Лучшие модели

Существует ряд рейтинговых списков биметаллических отопительных приборов в зависимости от того, какие используются критерии сравнения. На основании нескольких различных оценок можно составить следующий топ-10 биметаллических радиаторов отопления:

Модель и страна-производитель Тип Причина вхождения в топ-10
Global Style Plus 500 (Италия) Секционный Улучшенные конструкции секций и повышенная теплоотдача.
Sira RS Bimetal 500 (Италия) Секционный Очень высокая теплоотдача, соответствие самым жестким стандартам качества и, как следствие, длительный гарантийный срок службы (вплоть до 20 лет).
Rifar Monolit 500 (Россия) Монолитный Самая современная разработка компании, производимая по специальному патенту. Радиатор лучше выдерживает гидроудары и заметные перепады давления.
Radena CS 500 (Италия-Китай) Секционный Высококачественная сборка. Также эти батареи характеризуются достаточно высокой теплоотдачей при низких температурах жидкости-теплоносителя.
Royal Thermo Revolution (Италия-Россия) Секционный Технологичность, повышенная теплоотдача и надежная семислойная покраска.
Rifar Monolit Ventil 500 (Россия) Монолитный Нетребовательность к качеству теплоносителя, улучшенный способ обогрева смешанного типа (конвективный теплообмен + тепловое излучение).
Rifar Base Ventil 350 Секционный Напольный радиатор, характеризующийся одним из самых высоких коэффициентов теплоотдачи и при этом недорогой.
TENRAD 350 (Германия) Секционный Соответствие стандартам качества (хотя производство осуществляется на территории Китая, а не Германии) в сочетании с низкой ценой, беспрецедентная даже для топа-10 гарантия от производителя (вплоть до 50 лет)
OASIS BSE 500/80 (Германия-Китай) Монолитный Оптимальное сочетание цены и качества, довольно невысокая для монолитной модели цена.
Gordi 500 (Китай) Секционный Низкая стоимость при приемлемом качестве.

Радиатор биметаллический Royal Thermo

Приобретая какую-либо из, приведенных в топе-10, моделей, можно не сомневаться в том, что она прослужит максимально долго. Но не только батареи, вошедшие в этот список, заслуживают внимания. Выпускается немалое количество других достойных и качественных приборов. Решить, какой именно биметаллический радиатор лучше выбрать, поможет тщательное изучение технической документации устройств.

Внешний вид радиаторов биметаллических BREEZE

В целом для квартир с центральным отоплением можно рекомендовать монолитные биметаллические батареи отопления от зарубежных производителей, но покупка конкретного изделия зависит как от особенности условий, в которые он будет установлен, так и от финансовых возможностей и некоторых индивидуальных пожеланий.

Радиатор FIRENZE FH GRAND

При любой покупке не следует забывать о главном. Даже самый качественный отопительный прибор из верхних строк топа-10 требует правильного ухода, поэтому важно, чтобы его монтаж был выполнен качественно и профессионально, а условия эксплуатации не выходили за границы нормированных.

Пресса — www.royal-thermo.ru

Радиатор отопления – важная деталь современной городской квартиры, загородного дома и офиса, без которого не обойтись в холодное время года. От того, насколько правильно он подобран, зависит не только тепло и уют в доме, но и спокойный сон его владельцев. В этой статье мы поговорим о типах радиаторов, разберемся, какие из них можно устанавливать в центральную систему отопления, а какие подходят только для загородного дома и, на примере, алюминиевых и биметаллических радиаторов, научимся выбирать их в магазине.

Радиаторы для центральной системы отопления

Выбор радиатора отопления напрямую зависит от места его установки. Центральная система отопления, несмотря на удобство для потребителя, таит в себе множество опасностей для отопительного прибора. В первую очередь, это – качество теплоносителя! Прежде, чем попасть в радиатор, теплоноситель проходит долгий путь по трубам, насчитывающий несколько десятков километров, где смешивается с множеством химически активных примесей, влияющих на его состав. У поступивший в прибор воды показатель pH может быть как менее 6-7, что соответствует кислым средам, так и более 7-8, соответствующим средам щелочным. Материал, из которого изготовлен радиатор – сталь, чугун, алюминий или медь, по-разному реагирует на pH теплоносителя. В некоторых случаях он может вступать с ним в химическую реакцию, что рано или поздно приведёт к возникновению коррозии и выводу радиатора из строя.

Вторая серьезная проблема, характерная для централизованного отопления, – внезапный гидроудар, который может произойти, если кто-то из соседей перекроет воду у себя в квартире или слесарь слишком резко закроет кран насосной станции. Поэтому для установки в центральную систему отопления нужен настоящий «внедорожник», который выстоит в любой ситуации: и давление высокое выдержит и коррозии даст отпор.

Из тех типов радиаторов, которые представлены на российском рынке, для установки в центральную систему отопления, пожалуй, можно выделить только два: старые добрые чугунные батареи и современные биметаллические радиаторы.

Давайте остановимся на каждом из них подробнее.

Чугунные радиаторы отлично зарекомендовали себя с конца XIX века, когда мир шагнул в эпоху водяного отопления. Благодаря особым свойствам чугуна, им не страшна ни высокая кислотность, ни наличие химических добавок в теплоносителе, ни скачок давления в трубе, что, на протяжении многих лет, позволяло им оставаться настоящими монополистами в центральной системе отопления. Однако на сегодняшний день они морально устарели. Если сравнивать чугунные батареи с другими отопительными приборами, они тяжелые, громоздкие, очень сильно нагреваются в процессе работы, из-за чего о них можно обжечься, а также требуют постоянного подкрашивания из-за быстро сходящей краски. К тому же, на них невозможно установить современные энергосберегающие термостатические головки, так как тяжелый и «неповоротливый» чугун не поддаётся регулированию с помощью современных технологий. Единственный способ регулировать температуру воздуха в помещении, где работают чугунные батареи, – открыть окно. 

Биметаллические радиаторы – самое передовое поколение современных отопительных приборов, которыми богат современный рынок. Они подходят как для автономного отопления, так и для установки в централизованную систему. Как следует из их названия, радиаторы производятся из двух металлов: алюминия и стали. Секции отливаются из алюминия, внутрь, где протекает теплоноситель, вставляется стальной коллектор. Благодаря такой конструкции теплоноситель не соприкасается с алюминием, что надежно защищает прибор от образования коррозии и гарантирует безопасное использование в течение длительного срока эксплуатации. Они отлично выдерживают высокое рабочее давление (от 30 до 50 бар) и не боятся коррозии.

Радиаторы для автономного обогрева

Для организации автономного отопления в частных домах, коттеджах и многоквартирных домах с собственной котельной, где можно контролировать качество теплоносителя и предотвращать гидроудары, подойдет любой тип радиаторов: алюминиевые, чугунные, стальные панельные, трубчатые и биметаллические.

Алюминиевые радиаторы производятся полностью из алюминия и обладают максимальной теплоотдачей (до 190 Ватт на секцию). Примерно половину тепла они отдают посредством лучистого обогрева, вторую половину – при помощи конвекции. Они легкие, прочные, надежные и недорогие. Легко поддаются регулировке при помощи современных термостатических головок и позволяют установить в помещении желаемую температуру. А благодаря, особой пластичности алюминия, могут принимать самые разные формы в процессе производства, что делает их весьма привлекательными для установки в любой интерьер. При наличии весомого количества плюсов, алюминиевые радиаторы чувствительны к pH теплоносителя и выдерживают давление до 16 бар, что позволяет устанавливать их только в автономную систему отопления, pH теплоносителя в которой не выходит за пределы диапазона от 7 до 8,5 единиц.

Стальные радиаторы в зависимости от типа изготовления бывают панельными, секционными и трубчатыми. Панельные радиаторы изготавливаются в виде прямоугольных панелей различных габаритов и толщины, выдерживают давление до 9 бар и имеют относительно невысокую стоимость, что делает их особенно привлекательными для покупателей. Секционные радиаторы представляют собой штампованные стальные листы и способны выдержать внутреннее давление сети в пределах 6 бар. Трубчатые радиаторы стоят значительно дороже панельных и секционных, в силу особых технологических нюансов при производстве. В основном их используют для украшения интерьера в частных домах. Устойчивость к рабочему давлению составляет 15 бар. Радиаторы данного типа имеют слабую сопротивляемость гидроударам, из-за чего их нежелательно использовать в системах центрального отопления.

Как рассчитать тепловую мощность радиатора?

После того, как выбран тип радиатора, самое время определиться с количеством секций для установки в помещение. Для того, чтобы рассчитать, сколько секций потребуется на одну комнату, нужно учитывать теплопотери помещения, которые зависят от ряда показателей: размер комнаты, количество внешних стен и окон, тип дома (кирпичный, панельный), тип окна (деревянные, пластиковые) и т.д. Также следует принять во внимание, что у разных типов радиаторов тепловая мощность существенно различается. Теплоотдача одной секции биметаллического радиатора составляет около 200 Вт, в то время как секция чугунного радиатора может выдавать от 80 до 150 Вт.

Для более точного расчета тепловой мощности радиатора вы можете воспользоваться этой таблицей, или обратиться к специалистам нашей компании.

Алюминий и биметалл: выбираем в магазине

Компания Royal Thermo специализируется на производстве алюминиевых и биметаллических радиаторов, поэтому далее в статье мы дадим конкретные рекомендации по выбору этих типов радиаторов. На какие нюансы стоит обращать внимание в магазине?

Как проверить теплоотдачу секции?

Один из самых главных критериев, по которому выбирается радиатор отопления, –теплооотдача секции. Для алюминиевого радиатора она может составлять – 170-190 Вт, для биметалличекого – 160-170 Вт. Этот показатель прописан в техническом паспорте изделия. Однако, в связи с тем, что в российском законодательстве на сегодняшний день не существует обязательной государственной сертификации радиаторов, эта цифра может существенно расходится с реальными показателями. Некоторые производители умышленно завышают теплоотдачу прибора, не подтверждая это никакими испытаниями. Проще всего проверить достоверность заявленных в техническом паспорте данных, посмотрев протокол испытаний. Его можно запросить у компании-производителя. На сегодняшний день существуют три независимые лаборатории для проверки качества радиаторов, протоколам испытаний которых можно доверять: НИИ Сантехники («Витатерм»), «Сантехпром» и «Данфос. Если сертификат на товар не подтвержден протоколом испытаний, он не действителен.

Вес и толщина секций

Следующий важный критерий при выборе радиатора отопления – вес секции. Это относится, как к алюминиевым, так и биметаллическим радиаторам. Чем он больше, тем выше теплоотдача прибора. Находясь в магазине, проще всего проверить вес радиатора, взяв секцию в руки. Примерно так же, как покупают арбузы и дыни. Та секция, которая окажется тяжелее, имеет больший вес и, соответственно, большую теплоотдачу. Вес алюминиевой секции радиатора, как правило, колеблется от 1000 до 1250 г. Секция биметаллического радиатора тяжелее и составляет 1800 – 2000 г.

Особенности алюминиевых радиаторов

Отличить алюминиевый радиатор от биметаллического по внешнему виду практически невозможно. Они имеют очень схожий дизайн. Однако, благодаря конструктивным особенностям алюминиевого радиатора, сделать это может каждый, кто придет за ним в магазин. В нижней части секции, где расположен вертикальный коллектор, у алюминиевого радиатора находится технологическое отверстие, которое формируется в процессе производства секции. Большинство производителей приваривают заглушку к коллектору при помощи сварки, что не очень хорошо сказывается на качестве прибора. Алюминий выгорает, становится хрупким, что увеличивает риски разрушения под высоким давлением. А на донышке крышки скапливается технологический шлам, что ведет к образованию коррозии. Такая заглушка выглядит неопрятно и имеет по бокам грубые сварные швы. Наиболее прогрессивным способом закрытия отверстия коллектора является метод вальцевания. Стальная заглушка с усиленной нанополимерной мембраной надевается на отверстие коллектора по принципу закатывания банок, примерно так же, как делаются консервы на зиму. Это обеспечивает абсолютную герметичность и надежность радиатора даже при работе в экстремальных условиях. Посмотрев на заглушку, вы сразу поймете, какой радиатор следует брать.

Другая особенность алюминиевых радиаторов – форма вертикального коллектора, на который приходится основная нагрузка при гидроударах. Он формируется в процессе производства секций методом литья под давлением. Большинство производителей  делают коллекторы по старой технологии, с сечением, стремящимся к овальной форме. При таком сечении давление на стенки коллектора распределяется неравномерно, что в некоторых ситуациях может привести к разрыву изделия. Максимальную надежность при гидроударах может обеспечить округлое сечение коллектора, которую имеют радиаторы Royal Thermo и продукция некоторых других производителей. Это очень легко проверить в магазине.

Особенности биметаллических радиаторов

Отправляясь в магазин за биметаллическим радиатором, не забудьте прихватить с собой магнит! Да-да, именно магнит поможет вам определить – полный ли перед вами биметалл или же производитель решил сэкономить, изготовив из стали только вертикальный коллектор. Некоторые производители изготавливают из стали только минимальную часть изделия, выдавая его за полный биметалл. Теплоноситель, контактируя в таком радиаторе с алюминием, существенно снижает коррозионную устойчивость прибора, что приводит к протечкам и авариям. Проверить такой прибор очень просто! Если приложить магнит к секции биметаллического радиатора, он обязательно к ней примагнитится.

Соответствие ГОСТ

И напоследок, перед тем, как купить радиатор, не лишним будет проверить, имеет ли он маркировку, соответствующую ГОСТ. Все отопительные приборы в России производятся по ГОСТ 31311-2005. Согласно этому стандарту, на каждой секции радиатора обязательно должны быть указаны название модели, год производства, страна и наименование производителя. Прибор, на котором отсутствуют эти данные, не соответствует ГОСТ и, соответственно, не может получить сертификат соответствия.

Теперь вы знаете все нюансы и технологические особенности, которые помогут при выборе надежного радиатора отопления, готового служить верой и правдой долгие годы. Удачного вам выбора!

Радиаторы Global | Батареи Глобал

В 1971 году братья Фарделли основали в Италии предприятие GLOBAL di Fardelli Ottorino & C. s.a.s. и организовали на нём производство радиаторов отопления. Компания довольно быстро превратилась в одно из ведущих предприятий по разработке и изготовлению надёжных и энергоэкономичных радиаторов. Более 45 лет работы на итальянском и мировом рынках отопительных конструкций позволили разработать собственные производственные схемы и методы контроля качества. На сегодняшний день продукция GLOBAL представлена в более чем 40 странах мира.

GLOBAL учитывает многообразие условий, в которых в России эксплуатируются радиаторы отопления, и предлагает разные типы этих приборов.

  • Алюминиевые модели серий Vox и Vox Extra, Iseo и Klass, VIP, GL и Oscar станут отличным выбором для автономной отопительной системы. Их главный плюс — высокая теплоотдача
  • Биметаллические модели серий Style, Style Extra, Style Plus и Sfera идеально впишутся в систему централизованного отопления. Они выдерживают большое давление и его резкие перепады, свойственные российскому жилищно-коммунальному хозяйству
  • Дизайн-радиаторы серий Ekos и Ekos Plus благодаря своему эффектному виду гармонично впишутся в изысканный интерьер и станут его завершающим штрихом. Элегантность линий удачно сочетается в них с эффективностью и долговечностью

Кроме радиаторов из разных материалов, GLOBAL предлагает алюминиевые полотенцесушители серий Vetta и Junior — модели с отличной теплоотдачей и продуманным дизайном, а также многочисленные комплектующие для отопительных приборов. У вас будет возможность выбора — какими бы ни были ваши потребности.

В России компания работает более 20 лет (с 1994 года). Ключевая особенность производимой продукции заключается в том, что она максимально адаптирована под использование в сетях отопления с нестабильными показателями давления и не самым высоким качеством теплоносителя. Продукция GLOBAL сертифицирована в соответствии со Стандартом системы менеджмента качества ISO 9001:2008, Стандартом системы управления окружающей средой ISO 14001:2004 и в системе ГОСТ России. На все радиаторы GLOBAL предоставляет гарантию 10 лет. Гарантия подтверждена страховым ведущей европейской страховой компании.

какие лучше для отопления, батареи биметалл российского производства, какой лучше выбрать, отечественные производители

Содержание:

Уже по названию, биметаллические радиаторы, можно понять, что для изготовления такого оборудования используется композиция двух металлов. Такое оборудование появилось в европейских странах более полувека назад и с тех пор пользуется огромной популярностью. Это объясняется надежностью и эффективностью использования в любой системе отопления.

Для тех, кто решается на замену элементов отопительной системы, актуальным является вопрос, какие биметаллические батареи лучше, и какими критериями руководствоваться при выборе оборудования.


Устройство биметаллических батарей

Батареи отопления биметаллические состоят из двух частей, каждая из которых изготовлена из разного металла. Внутренняя часть радиатора изготовлена из металлов, устойчивых в агрессивной среде нагретого теплоносителя, в большинстве случаев это нержавеющая сталь или медь. Трубки из этих материалов установлены в вертикальном и горизонтальном положении, по ним движется теплоноситель.

Наружной частью радиатора является алюминиевый кожух с ребрами. Использование алюминия для изготовления этой части позволяет обеспечить быстрый прогрев радиаторов и отдачу тепла в помещение. Выбор этого материала для внешней части конструкции объясняется отличной теплопроводностью.


Соединение внутренних и внешних частей каждой секции осуществляется посредством точечной сварки или литьем под давлением. Сборка секций в батарею выполняется стальными ниппелями с использованием термостойких резиновых прокладок, способных выдерживать температуру до 2000С. Помимо этого радиаторы могут быть монолитными, для их изготовления применяют аналогичные материалы.

Каждый производитель указывает в паспорте свое значение опрессовочного давления биметаллического радиатора, так как этот показатель определяется размером батареи и материалом изготовления ее внутренней части.

Высокая теплопроводность приборов делает их более эффективными по сравнению с чугунными батареями (подробнее: «Чугунные или биметаллические радиаторы – преимущества и недостатки, какие лучше выбрать»).

По внешнему виду российские биметаллические радиаторы отопления похожи на алюминиевые модели, но по массе имеются серьезные различия. Стальная трубная внутренняя часть делает биметаллические батареи тяжелее алюминиевых моделей почти на 50%. Не допустить ошибок при выборе радиаторов помогает сертификат соответствия и сопроводительная техническая документация, которая должна прилагаться производителем к каждой партии оборудования. В специализированном магазине такая документация хранится у продавца.

Основные отличия биметаллических приборов от полубиметаллических радиаторов

Параллельно с биметаллическими батареями в продаже имеются полубиметаллические радиаторы отопления российского производства. Прежде чем выбрать подходящее оборудование необходимо разобраться в их основных отличиях.

Биметаллические радиаторы

Батареи такого типа имеют алюминиевый внешний кожух. В процессе производства стальные сердечники укладывают в специальные формы, которые под давлением заполняют алюминием. Этот материал обладает хорошей теплопроводностью, но не способен противостоять агрессивной среде и сильному нагреванию. Алюминий в радиаторах отопления биметалл не контактирует с жидкостью, а выполняет функцию теплообменника. Конструкции такого типа могут быть установлены в центральной или автономной системе отопления. При этом для второго варианта производят модели с медным сердечником, а не из нержавеющей стали. Дело в том, что автономные системы используют в качестве теплоносителя особый антифриз, с которым «не дружат» даже нержавеющие стальные трубы.


Полубиметаллические радиаторы

Для такого оборудования характерно изготовление внутренних каналов из разных металлов. К примеру, вертикально расположенные трубы могут быть стальными, а горизонтальные – из алюминия. Возможна обратная комбинация, в любом случае полноценными биметаллическими радиаторами их назвать нельзя.

При решении вопроса, какой лучше выбрать радиатор биметаллический, следует помнить, что полубиметаллические батареи не рекомендуется монтировать в системах центрального отопления, которые не гарантируют высокое качество теплоносителя и допускают содержание достаточно высокой концентрации щелочей. В этом случае алюминиевые части легко подвергаются коррозии и могут «заразить» стальные элементы радиатора. Помимо этого не исключено смещение некоторых алюминиевых элементов в результате теплового расширения под воздействием высокой температуры. Это может стать причиной протечек и аварийных ситуаций.

По внешнему виду биметаллические радиаторы и полубиметаллические батареи отличить невозможно. Поэтому чаще всего потребитель делает выбор в пользу второго варианта, обращая внимание на более низкую стоимость. Однако следует помнить, что надежность первого варианта существенно выше.

Решая вопрос, какие лучше батареи отопления биметаллические для самостоятельного монтажа, рекомендуется отказаться от полубиметаллических радиаторов. Только так можно рассчитывать на надежность и эффективность системы отопления. Однако следует знать, что, в крайнем случае, допускается возможность установки полубиметаллического радиатора в автономной системе.

Секционные и неразборные радиаторы

Выше было отмечено, что радиаторы отопительные биметаллические могут состоять из нескольких секций или быть неразборного типа.

В первом случае каждая горизонтальная секция внутри имеет трубу, с двух сторон которой нарезана резьба. С ее помощью вкручиваются соединительные ниппеля с резиновыми прокладками для уплотнения. Именно места соединения являются самым слабым местом в секционных батареях, более всего склонных к повреждениям.  Кроме того высокая температура и высокое давление в системе также становятся причиной протечек в этих местах. В результате сокращается время между профилактическими работами. Однако положительный момент у секционных радиаторов все-таки имеется. В случае повреждения одной из секций заменяют или удаляют лишь элемент, вышедший из строя. Это следует учитывать при определении, какие лучше радиаторы биметалл.

Монолитное изготовление биметаллических радиаторов позволяет избежать множества неприятностей. Технологический процесс подразумевает изготовление цельного коллектора из нержавеющей стали или меди, его размещение в специальной форме, которая впоследствии заливается алюминием под давлением. На выходе получаются монолитные биметаллические батареи.


Недостатком монолитных радиаторов является отсутствие ремонтопригодности. Протечка в такой батарее требует ее полной замены.

Сравнивая характеристики радиаторов двух типов и определяя, какие лучше биметалл радиаторы отопления, можно отметить следующее:

  • Срок службы радиаторов секционного типа составляет 30 лет, монолитные изделия могут эксплуатироваться в течение полувека.
  • Рабочее давление секционных батарей не превышает 25 бар, монолитных – может достигать 100 бар.
  • Что касается стоимости, то монолитные радиаторы стоят почти на 20% дороже секционных батарей.
  • Секционные отечественные радиаторы отопления позволяют регулировать количество тепла в помещении путем установки или удаления определенного количества секций. В случае с монолитными батареями такая возможность отсутствует, поэтому перед их приобретением необходимо точно определить требуемую мощность.

Кроме того, выбирая секционные или монолитные батареи, во внимание принимаются особенности отопительной системы. К примеру, системы многоэтажных домов характеризуются высоким давлением и наличием гидроударов, в результате которых могут пострадать соединительные узлы секционных радиаторов. Чтобы решить, какой выбрать радиатор биметалл, не допускающий образования протечек, следует приобретать монолитные приборы.

Выбор биметаллических приборов отопления — какие лучше

Остановив выбор на конкретной модели, следует принимать во внимание не только перечисленные характеристики.

Существуют и другие критерии, от которых зависит качество и эффективность работы биметаллических радиаторов, а также срок их службы:

  • Радиатор должен иметь конструкцию, которая способна работать в режиме высокого давления и гидроударов. Этот фактор особенно важен для централизованной системы отопления, где рекомендуется использовать усиленные биметаллические радиаторы отопления. Следует обратить внимание на величину опрессовочного давления.
  • Материал, используемый для изготовления радиаторов, должен быть устойчивым к воздействию агрессивной среды теплоносителя низкого качества, для которого характерно высокое содержание щелочи или кислоты. Особенно это касается радиаторов, установленных в квартирах многоэтажных домов.
  • Также материал радиаторов должен быть устойчив к возникновению электрохимической коррозии.
  • Корпус батарей должен быть прочным, способным выдерживать механические воздействия различной степени. Качество алюминиевых радиаторов можно проверить, нажимая пальцами на ребра. Изделия низкого качества в этом случае сгибаются или трескаются.
  • Для изготовления внутренних рубчатых каналов должен использоваться один металл, причем лучше, если предпочтение отдано качественной нержавеющей стали.
  • Внутренняя труба должна иметь толщину стенок более 3-3,5 мм.
  • Качество прокладок, которые используются в секционных радиаторах, также имеет большое значение. Качественные и эластичные прокладки делают соединение герметичным и надежным, поэтому для изготовления этих элементов должна использоваться резина или силикон. Для проверки качества прокладку сгибают несколько раз. Следует помнить, что жесткий уплотнитель может через некоторое время потребовать замены.
  • Радиаторы секционного типа должны оснащаться высококачественными стальными ниппелями, чтобы в процессе соединения секций не произошло стирание резьбы или повреждения внутренних частей этого элемента.
  • Особое внимание при выборе, какие лучше биметаллические радиаторы отопления, уделяется размеру секций. Для высокой теплоотдачи сечение секции должно быть 8*8 см, при меньших параметрах эффективность радиатора становится значительно ниже. Иногда производители снижают стоимость изделий, делая меньше размер секций. В этом случае следует понимать, что тепловая мощность таких радиаторов будет несколько ниже.
  • Выступающие ребра качественного радиатора должны иметь толщину не меньше 1 мм. Меньший размер свидетельствует о пониженной прочности верхнего кожуха батареи и низкой теплоотдаче, так как теплообменные пластины в этом случае тонкие, следовательно, теплоемкость их также занижена.
  • Некоторые изготовители пытаются сэкономить на качестве ниппелей и прокладок, что также свидетельствует о низком качестве биметаллических радиаторов. Не рекомендуется делать выбор в пользу этих изделий.
  • Срок эксплуатации, указанный производителем, также говорит о качестве радиаторов. В среднем биметаллические секционные батареи безупречно служат до 30 лет, в то же время эксплуатационный срок монолитных изделий достигает полувека. Поэтому приборы с гарантированным сроком 1-2 года могут быть некачественными, а производитель, неуверенный в своей продукции, не может гарантировать более долгое использование. Это очень важно при определении, какие лучше производители биметаллических радиаторов отопления.

Положительные характеристики биметаллических батарей и их недостатки

Выбирая ту или иную марку биметаллических радиаторов отопления, следует обратить внимание на его преимущества и недостатки.

С положительной стороны биметаллические радиаторы характеризуют следующие качества:

  • Сочетание с любым современным интерьером жилого и офисного помещения.
  • Различное цветовое оформление. Биметаллические радиаторы имеют разную расцветку, но при необходимости можно покрасить прибор в нужный цвет. Для этого можно воспользоваться специальным термостойким составом, который выдерживает нагревание до 1500С.
  • Безопасность обеспечивается гладкой поверхностью и скругленными углами, следовательно, снижается риск получения травм. Это дает возможность устанавливать радиаторы в помещениях для детей.
  • Большой гарантийный срок эксплуатации радиаторов высокого качества от лучших производителей радиаторов отопления при условии правильного использования.
  • Совместимость с любой системой отопления и теплоносителем низкого качества.
  • Возможность работы радиаторов в системах, характеризующихся высоким давлением и температурой до 1300С.
  • Высокая теплоотдача биметаллических радиаторов.
  • Наличие термостата, который позволяет регулировать температуру нагревания прибора. Благодаря небольшому сечению каналов обеспечивается быстрое изменение температурных показателей.
  • Возможность установки определенного количества секций в зависимости от размеров обогреваемого помещения.


Однако биметаллические радиаторы не лишены недостатков, которые могут иметь большое значение при решении вопроса, какие батареи биметалл лучше выбрать:

  • Несмотря на возможность установки в любую систему, включая центральное отопление, следует учитывать, что в этом случае не исключено использование некачественного теплоносителя. Следовательно, срок службы биметаллических батарей может существенно измениться в меньшую сторону. В то же время центральное отопление характеризуется высокотемпературным режимом работы, что позволяет биметаллическим радиаторам показать все свои преимущества.
  • Разный коэффициент расширения стальных и алюминиевых элементов биметаллических радиаторов можно назвать существенным недостатком. Результатом этого становится появление посторонних шумов после нескольких лет эксплуатации, снижение прочностных характеристик радиаторов и меньшая теплоотдача, объясняющаяся нарушением прямой теплопередачи между металлами.
  • Небольшой диаметр теплопроводных труб биметаллических радиаторов очень часто становится причиной быстрого засорения. Особенно это касается работы батарей, установленных в системах центрального отопления. Решить проблему такого плана помогает установка фильтра грубой очистки.
  • Высокая стоимость биметаллических радиаторов многих потребителей заставляет отказаться от их покупки. Цена на такие приборы существенно превышает стоимость алюминиевых, чугунных и стальных батарей. Однако приобретая биметаллические радиаторы, потребитель получает взамен высококачественные и долговечные изделия.

Определение количества секций биметалла

Расчет необходимого количества секций и правильное определение, какие лучше радиаторы биметаллические, дает возможность создать комфортные условия проживания. Расчет выполняется по несложной формуле, для которой достаточно знать площадь отапливаемого помещения и мощность одной секции. Второй параметр всегда указывает производитель в паспорте прибора, также мощность одной секции можно узнать из прайс-листа магазина.

Для достижения максимального эффекта при обогреве помещения достаточно использовать тепловую энергию в количестве 100 Вт на 1 м2. На основании этого расчет количества секций биметаллических радиаторов выполняется по формуле:

N=S*100/P,

Где N – искомое число секций,

S – площадь помещения,

Р – мощность одной секции.

Например, требуется определить количество секций биметаллического радиатора, установленного в комнате площадью 20 м2, зная, что мощность одной секции равна 160 Вт. Подставляя указанные значения в известную формулу, получается следующее:

20*100/160=12,5.

Следовательно, для эффективного обогрева указанного помещения достаточно 13 секций.


Однако следует учитывать, что использование указанной формулы для определения количества секций не может дать точного результата. Для этого необходимо принимать во внимание множество других факторов, которые могут повлиять на требуемое количество тепловой энергии. К примеру, для обогрева комнаты с двумя внешними стенами требует большее количество тепла, чем для той, которая имеет одну внешнюю стену. Решить проблему в этой ситуации помогают поправочный коэффициент. Для расчета количества секций биметаллического радиатора в угловой комнате применяют коэффициент 1,2. Для помещения с двумя внешними стенами расчет будет следующим:

13*1,2=15,6.

То есть, потребуется 16 секций.

Количество тепла для комфортного проживания во многом зависит от следующих факторов:

  • Климатические условия местности.
  • Преобладающее направление ветра.
  • Расположение внешних стен.
  • Качество теплоизоляции всего дома.
  • Количество дверных и оконных проемов.
  • Место установки радиаторов.

Кроме этого существует множество других факторов, которые определяют необходимое количество тепла для определенного помещения.

Основные производители биметаллических радиаторов

На российский рынок приборы поставляют лучшие производители биметаллических радиаторов. Каждое изделие имеет свои особенности, качество и характеристики.  Поэтому перед тем, как отправиться в торговое предприятие за новыми батареями отопления, следует ознакомиться с основными производителями и марками.

Российские производители радиаторов представлены компанией RIFAR  и моделями Forza 350, Forza 500, MONOLIT 350 и MONOLIT 500.

Итальянские радиаторы от фирмы GLOBAL Radiatori представлены моделями STYLE 350, STYLE 500, STYLE PLUS 350, STYLE PLUS 500.

Еще один итальянский производитель ROYAL Thermo представляет модели BiLiner Inox 500, BiLiner 500.

Германский поставщик биметаллических радиаторов TENRAD представляет модели TENRAD 350 и TENRAD 500.

Решить вопрос, какого производителя лучше биметаллические радиаторы, очень сложно, так как необходимо учесть определенные условия и множество различных факторов.


различных типов термостатов | Cool Masters Отопление и Воздух

Опубликовано 6 июня 2018 г. в целом

Термостат необходим для любого дома с системой отопления, вентиляции и кондиционирования воздуха. С его помощью вы можете включить или выключить отопление или кондиционер, а также контролировать температуру. Термостаты могут стать отличным подспорьем для снижения вашего счета за электроэнергию и упростить регулировку температуры в вашем доме.

Как работают термостаты

По условиям эксплуатации существует два типа термостатов: линейные и низковольтные.

Термостаты линейного напряжения

Термостаты линейного напряжения используются в отдельных системах отопления, таких как радиаторные системы и плинтусы. Этот тип соединения протекает через термостат и попадает в нагреватель. Проблема с такими термостатами в том, что они иногда отключаются до того, как вся комната будет доведена до заданной температуры.

Термостаты низковольтные

Эти термостаты более эффективны для управления воздушным потоком. Из-за этого низковольтные термостаты используются в центральных системах отопления, вентиляции и кондиционирования воздуха, которые используют электричество, газ и масло, а также в системах водяного отопления.Низковольтные термостаты позволяют точно контролировать воздушный поток и упрощают использование программируемых элементов управления. Термостаты низкого напряжения работают от 24 В до 50 В, а термостаты сетевого напряжения работают от 240 В.

Типы настенных устройств управления

После того, как вы узнаете, какой тип термостата вам нужен, вы можете решить, какое настенное устройство вам нужно.

Программируемые термостаты

Программируемые термостаты позволяют регулировать температуру в соответствии с заданным временем.Наличие этой возможности упрощает ограничение энергопотребления, поскольку в вашем доме не нужно поддерживать желаемую температуру, когда вас нет рядом.

Существует множество различных моделей программируемых термостатов. Базовые модели позволяют запрограммировать дневные и ночные настройки температуры, в то время как более сложные модели могут быть запрограммированы на определенные дни недели и точное время суток.

Механические термостаты

Механические термостаты — самые дешевые и простые в установке, но они также имеют некоторые недостатки.Их самая большая проблема связана с тем, что они используют либо наполненные паром сильфоны, либо биметаллические полосы, чтобы реагировать на колебания температуры.

Те, которые используют биметаллические полоски, считаются особенно ненадежными из-за их медленной реакции на повышение и понижение температуры. Это означает, что может быть значительная разница между температурой, установленной на термостате, и фактической температурой внутри дома.

Электронные термостаты

Эти термостаты используют электронику для определения температуры, что делает их более чувствительными, чем механические.Электронные термостаты также бывают линейными или низковольтными. Вы также должны быть в состоянии найти такие с программируемыми и автоматическими функциями понижения.

Анализ характеристик биметаллических и полупроводниковых датчиков теплового потока для измерения теплового сопротивления элементов оболочки на месте

https://doi.org/10.1016/j.measurement.2021.109713Получить права и содержание

Основные моменты

Датчики для измерения теплового сопротивления элементов оболочки на месте.

Комплексный подход к определению характеристик датчиков теплового потока.

Учет излучательной способности и времени отклика датчиков повышает точность измерения.

Коэффициент преобразования датчика зависит от условий теплопередачи.

Реферат

Мониторинг теплового сопротивления ограждающих конструкций зданий для оценки их энергоэффективности осуществляется путем измерения теплового потока на месте.Поэтому необходимо учитывать не только условия теплопередачи исследуемого объекта, но и характеристики средств измерений, которые могут зависеть от этих условий. В данной статье представлены результаты исследования характеристик датчиков теплового потока двух типов — биметаллических и полупроводниковых, которые являются наиболее распространенными при контроле ограждающих конструкций зданий. Тематические исследования были сосредоточены на характеристиках датчиков, таких как коэффициент преобразования (обратно пропорциональный чувствительности к тепловому потоку), температурная зависимость коэффициента преобразования, время отклика датчиков и коэффициент излучения поверхности датчика. .Определен коэффициент преобразования биметаллического датчика в условиях теплопроводности и радиационного подвода тепловой энергии, что выявило зависимость коэффициента преобразования от условий теплоотдачи поверхности датчика. Величина излучательной способности поверхности полупроводникового сенсора ниже, чем у биметаллических сенсоров, а постоянная времени биметаллических сенсоров в два раза меньше, чем у полупроводниковых сенсоров. Проверка полученных результатов проводилась путем исследования метрологических характеристик многоканальной системы контроля теплового сопротивления, в которую в качестве чувствительных элементов входили биметаллические датчики теплового потока.Таким образом, мы предполагаем, что результаты нашего исследования могут быть использованы для повышения точности измерения термического сопротивления ограждающих конструкций здания путем правильного выбора датчиков теплового потока или внесения поправок в результаты измерений, учитывающих влияние экспериментальных условия на характеристики датчиков.

Ключевые слова

Датчик теплового потока

Метрологические характеристики

Метод на месте

Измерение термического сопротивления

Рекомендуемые статьиЦитирующие статьи (0)

© 2021 Автор (ы).Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Ссылки на статьи

Современные и будущие методы управления тепловым режимом космических аппаратов 1. Драйверы дизайна и современные технологии

Современные и будущие методы управления тепловым режимом космических аппаратов 1. Драйверы дизайна и современные технологии

Современные и будущие методы управления тепловым режимом космических аппаратов 1. Драйверы дизайна и современные технологии

М.Н. De Parolis & W. Pinter-Krainer

Терморегулятор и обогрев Отдел отказа, ESTEC, Нордвейк, Нидерланды

В первой части статьи рассматриваются драйверы дизайна. и технологии, используемые в настоящее время для тепловых контроль.Вторая часть посвящена технологиям будущего. разработки в области терморегулирования появятся в следующих выпусках Вестник.

Зачем нужен терморегулятор?

Потребность для системы терморегулирования (TCS) диктуется технологические / функциональные ограничения и требования к надежности всего оборудования, используемого на борту космического корабля, и, в случае пилотируемых полетов, необходимостью обеспечения экипажа подходящим жилая / рабочая среда. Практически все сложное оборудование имеет определенные температурные диапазоны, в которых он будет работать правильно.Таким образом, роль TCS заключается в поддержании температура и температурная стабильность каждого элемента на борту космический корабль в этих заранее определенных пределах во время всей миссии фаз и тем самым используя минимум ресурсов космического корабля.

общая функция терморегулирования может быть разделена на несколько различные подфункции (рис. 1).


Рисунок 1. Взаимодействие между подфункциями TCS.

Взаимодействие с окружающей средой
Внешнее поверхности космического корабля могут нуждаться в защите от локальная среда или улучшенное взаимодействие с ней, включая:

  • уменьшение или увеличение поглощенной окружающей среды флюсы
  • уменьшение или увеличение тепловых потерь в среда.

Теплообеспечение и хранение
В некоторых случаях или поддерживать желаемый уровень температуры, тепло должно быть и / или должна быть обеспечена подходящая способность аккумулировать тепло. предвиден.

Сбор тепла
Во многих случаях рассеиваемое тепло удаляться из оборудования, в котором он генерируется, чтобы избегать нежелательного увеличения мощности агрегата и / или температура космического корабля.

Теплопередача
Вообще говоря, это не можно отводить тепло прямо там, где оно генерируется, и должны использоваться соответствующие средства для транспортировки его из устройство сбора к излучающему устройству.

Отвод тепла
Тепло, собираемое и транспортируемое должен быть отклонен при соответствующей температуре в радиатор, которым обычно является окружающая космическая среда. Отказ температура зависит от количества задействованного тепла, контролируемая температура и температура среда, в которую устройство излучает тепло.

Конструкция драйверов
Основные параметры движущими силами конструкции TCS являются:

  • среда, в которой космический корабль должен работать
  • общее количество тепла рассеивается на борту космического корабля
  • распределение рассеяние тепла внутри космического корабля
  • температура потребности различного оборудования
  • конфигурация космического корабля и его надежность / проверка требования.

Об окружающей среде
Для всех космических аппаратов, поступающая энергия от Солнца и тепло, излучаемое глубоко Пространство обычно является основным взаимодействием с окружающей средой. Однако в зависимости от орбиты и положения космического корабля другие параметры могут иметь важное влияние на тепловые дизайн управления. Например, тип стабилизации отношения использование может повлиять на дизайн TCS. В целом стабилизация спина более мягкий, поскольку вращение вызывает усреднение вход экологического потока.Потребность в трехосном стабилизированном космическом аппарате повышенная защита от кратковременных колебаний потребляемой энергии от Солнца или Земли.

Низкая околоземная орбита (НОО)
Эта орбита часто используется космическими аппаратами, которые отслеживают или измеряют характеристики Земля и ее окружающая среда (наблюдение Земли, геодезия и др.), а также в беспилотных и пилотируемых космических лабораториях. (Эврика, Международная космическая станция и др.). Орбиты близость к Земле имеет большое влияние на потребности TCS, с инфракрасным излучением Земли и альбедо, играющим очень важную роль, а также относительно короткий орбитальный период (менее 2 ч) и большой продолжительности затмения (до трети время).Небольшие инструменты или придатки космических аппаратов, например, солнечные панели с низкой тепловой инерцией могут серьезно пострадать этой постоянно меняющейся средой и может потребовать очень конкретные решения теплового дизайна.

Подъем и возвращение в атмосферу
Для космических перевозок системы, подъем на рабочую орбиту и возвращение с нее (обычно LEO) может вводить дополнительные конструктивные ограничения TCS. Во время этих двух фаз окружающая среда часто слишком теплая, чтобы отводят тепло излучением, а радиаторы, используемые на орбите, часто закрытые или охраняемые.Следовательно, альтернативные радиаторы (например, мгновенные испарители) или специальные конструкции TCS, обеспечивающие высокую Для управления этими тепловыми нагрузками необходимо предусмотреть тепловую инерцию.

Геостационарная орбита (GEO)
На этой 24-часовой орбите Влияние Земли почти не заметно, за исключением затенения. во время затмений, продолжительность которых может меняться от нуля в день солнцестояния максимум 1,2 часа в день равноденствия. Длительные затмения влияют на проектирование систем теплоизоляции и обогрева космического корабля.Сезонные колебания направления и интенсивности солнечная энергия оказывает большое влияние на дизайн, усложняя перенос тепла из-за необходимости передавать большую часть рассеиваемого тепла к радиатору в тени и к системам отвода тепла через требуется увеличенная площадь радиатора. Почти все телекоммуникации и многие метеорологические спутники находятся на этой орбите.

Высокоэксцентрические орбиты (HEO)
Эти орбиты могут иметь широкий диапазон высот апогея и перигея в зависимости от конкретная миссия.Обычно они используются в астрономии. обсерватории (Exosat, IRAS, ISO и др.), а также дизайн TCS требования зависят от орбитального периода космического корабля, количество и продолжительность затмений, относительное положение Земля, Солнце и космические корабли, вид приборов на борту и их индивидуальные температурные требования и т. д.

Специальные орбиты
Миссии, рассчитанные на длительный срок наблюдение отдельных явлений требует постоянного, стабильного окружающей среде и поэтому склонны использовать стабильные орбиты требуется очень мало ресурсов для содержания станции, вдали от любых небесное тело, e.грамм. вокруг лагранжевой точки. Научный космический корабль, такой как SOHO и будущая научная миссия COBRAS- САМБА, типичны для этого класса миссий. Космический корабль Направлено на солнце и поэтому одна сторона постоянно светится и все другие лица, открытые для открытого космоса. Следовательно, TCS дизайн можно довольно легко оптимизировать, если только особые температурные требования или недостаточно электрическая мощность для обогревателей.

В частности, для космических аппаратов с криогенной нагрузкой низкотемпературная и стабильная по массе среда (если криостаты) или мощности и сложности (для спутников, использующих криоохладители).

Дальний космос и исследование планет
Этот класс миссия включает в себя множество различных подсценариев в зависимости от конкретное небесное тело или целевую зону исследования. В основном, общие черты — большая продолжительность миссии и необходимость справиться с экстремальными тепловыми условиями, такими как круизы близко или далеко от Солнца (от 1 до 4-5 а.е.), низкий вращение очень холодных или очень горячих небесных тел, спуски через враждебную атмосферу и выживание в экстремальных условиях (пыльная, ледяной) среды на поверхностях посещенных тел.В Задача TCS — обеспечить достаточный отвод тепла способность во время горячих фаз эксплуатации и при этом выжить холодные неактивные. Основной проблемой часто является предоставление мощности / энергии, необходимой для этой фазы выживания.

О тепловыделении и его распределение
При этом важны два фактора. в контексте проектирования TCS, абсолютное значение тепла, которое должно быть рассеивается и его распределение на борту космического корабля, т. е. удельная мощность.Первое значение имеет большое влияние на теплоотдачу. функция отбраковки (увеличиваются габариты площади радиатора с увеличением мощности), а плотность мощности определяет тепло функции сбора и транспортировки (вызовы с высокой плотностью мощности для высокоэффективного отвода тепла). Типичные установленные мощности для Сравнение различных типов космических аппаратов приведено в таблице 1.

Таблица 1

 
                                                         Установленная мощность (Вт)
 Миссия Орбита Отношение мин.Максимум.

Наука:
  - астрономия HEO, фиксированная точка наведения на Солнце (в основном)
  - дальний космос Различные переходные орбиты Солнце или наведение планеты 200 1 500

Телекоммуникации GEO Наведение на Землю 500 5 000
Наблюдение за Землей НОО Земля наведение 500 5 000
Метеорология ГЕО наведение на Землю 200 1 500
Перемещение пилотируемых транспортных средств + LEO Разное 1000 10 000
Пилотируемые станции LEO Солнце указывает 3000 30 000
 
 

Два противоречащих друг другу требования могут быть обнаружены с точки зрения мощности загрузка:

  • прирост установленной мощности на многоцелевые, многодиапазонные спутники связи и следовательно, потребность в более крупном и эффективном отводе тепла системы
  • уменьшение габаритов других классов космических аппаратов и оборудования за счет миниатюризации электроника.С одной стороны, это означает снижение общее количество энергии, потребляемой на борту, но с другой стороны существует риск увеличения плотности мощности, тем самым порождая другой класс проблем.

Еще одним очень важным фактором является рабочий цикл. Самый лучший решением будет рассеивание мощности, которое компенсирует изменение потоков окружающей среды (например, максимальная рассеиваемая мощность во время затмений!), чтобы иметь почти постоянную глобальную жару ввод в космический корабль.Учитывая настоящее, близкое и, вероятно, среднесрочные методы производства электроэнергии, реальность такова напротив: максимальная рассеиваемая мощность происходит вместе с максимальные потоки окружающей среды. Это вынуждает дизайн TCS к завышение размеров теплопередачи и отвода оборудование, чтобы справиться с одновременными пиками. В свою очередь, это пере- определение размеров вызывает увеличение сложности конструкции и потребность в дополнительных ресурсах во время холодных фаз миссия.

Это вводит третье взаимодействие между силовыми подсистемы и TCS, а именно наличие питания во время фазы холодного задания для функции теплоснабжения.Во время тех фаз, питание обычно обеспечивается батареями и, следовательно, ограничено. Это ограничение может еще больше усложнить TCS. дизайн.

О требованиях к температуре
Это фактор во многом связан с технологией космического корабля оборудование. Как уже упоминалось, задача TCS — сохранить все элементы оборудования, работающие в пределах допустимых температур диапазоны, которые, в свою очередь, зависят от внутренней конструкции, используемые компоненты и, наконец, что не менее важно, необходимые надежность.Это, в частности, относится к электронным и электромеханическое оборудование, конструкция которого зачастую слишком аналогичен таковому у своего «земного» аналога, который должен работать в гораздо более благоприятных условиях (воздух — дополнительная ценность для TCS!). Улучшенные тепловые конструкции в сочетании с лучшими определение допустимых температурных диапазонов, позволяющих сэкономить проекты и время, и деньги в долгосрочной перспективе.

Можно определить три соответствующих диапазона температур:

  • криогенный диапазон: все температуры ниже 120 K
  • обычный диапазон: температура от 120 до 420 K
  • высоко- температурный диапазон: все температуры выше 420 К.

Здесь мы сконцентрируемся на «обычном ассортименте», статьях относящиеся к двум другим диапазонам, уже опубликованным в прошлых выпусках Бюллетеня ЕКА (например, № 75, август 1993 г. и № 80, ноябрь 1994 г.).

В рамках нашего стандартного диапазона могут быть определены в соответствии с различными требованиями к оборудованию. К классическим примерам относятся:

  • батареи, которые являются «худшее» подсистемное оборудование, поскольку оно может иметь широкий спектр рассеиваемая мощность и, в то же время, всегда очень узкий рабочий (и нерабочий!) температурный диапазон (обычно от -5 до + 20 ° C)
  • движущая сила подсистемы, обычно ограниченные по соображениям безопасности диапазоном от 5 до 40 ° C, даже если, в зависимости от конкретной системы, более широкий диапазон может быть приемлемым
  • универсальная электроника, с средний рабочий диапазон от -20 до + 70 ° C.

Неэлектронные элементы могут иметь широкий диапазон температур требования, большинство из которых носит функциональный характер, например ограничение теплового шума в датчиках. Некоторые крайние примеры: показано в таблице 2.

Таблица 2

 
                      Операционная стабильность / стабильность при хранении
Позиция Температура (° C) Температура (° C) (° C / м) (° C / мин)

                         Мин. Максимум. Мин. Максимум.
Видеокамера CCD -150-100 - - - ± 0.5
Лазерный тепловой I / F 5 10 5 10 ± 0,5 ± 0,1
Образцы физики жидкости 5 90 5 40 ± 0,1 ± 0,01
Образцы биологических наук 4 38-80-80 ± 1,0
 
 

Температурная однородность и стабильность могут иметь еще большее значение. влияние на конструкцию ТКС, чем абсолютные значения температуры самих себя. Первое можно выразить как максимальное допустимая разница температур между двумя соседними частями, или как максимальный градиент температуры в сплошных телах.В температурная стабильность относится к максимально допустимому изменению изменения температуры конкретного предмета с течением времени. Способность к справиться с этими требованиями зависит от окружающей среды и драйверы конструкции рабочего цикла мощности и на самом космическом корабле конфигурация.

Следует проявлять особую осторожность, чтобы различать иметь ‘и действительно обязательные требования, а иногда даже несколько градусов (или несколько десятых для стабильности) могут сделать различие между выполнимой и невыполнимой системой или, при по крайней мере, между доступной и очень дорогой системой.

О конфигурации космического корабля, надежности и требования к проверке
Одна из основных проблем конструкции ТКС заключается в том, что конфигурация КА обычно определяется на основе физического размещения различных полезная нагрузка и базовая подсистема (двигательная установка, солнечные батареи и т. д.) элементы. Только когда физическая конфигурация виртуальная «заморожен» — приглашен дизайнер TCS, чтобы оценить, все ли требования к температуре могут быть выполнены. Если это не в этом случае нужно потратить много времени (и денег) на пытаясь переместить оборудование и находить специальные решения, которые никогда не бывают эффективными с точки зрения ресурсов.Параллельная разработка должна применяться чаще на всех уровнях, от оборудования до конструкции космического корабля, чтобы попытаться преодолеть эти нередкие проблемы.

Надежность влияет на TCS напрямую (функция TCS имеет собственное требование) и косвенно через оборудование температурные требования. Наибольшее влияние оказывает тепло- функции предоставления, транспортировки и отказа. Для пилотируемых автомобили, например, надежность, необходимая для охлаждения петли могут привести к огромному увеличению сложности и массы ТКС.

Требования к проверке и, в частности, испытаниям слишком часто был причиной того, что эффективный дизайн TCS отклоненный. Нежелание использовать тепловые трубки из-за усложнения, вносимые в испытания тепловой системы (см. раздел по теплопроводным системам) является классическим примером. В качестве уже продемонстрированный многими коммерческими космическими аппаратами, надлежащий сочетание тестирования на уровне компонентов и системы с методы аналитической корреляции могут решить такие проблемы, что приводит к более простому и эффективному регулированию температуры система.

Важность параметров
Различные драйверы дизайна по-разному влияют на различные TCS функций и по массе, сложности и стоимости их соответствующие дизайнерские решения. В таблице 3 приведены сведения о отношения между исследованными драйверами дизайна и каждым TCS функция (‘o’ означает незначительное влияние или его отсутствие, а ‘x’ означает растущий уровень важности; M = масса; CX = сложность; CT = Стоимость). Охрана окружающей среды Тепло Пров. и накопление тепла отвод тепла отвод тепла

Таблица 3

 

                   Окружающая среда Тепло Пров.Тепло Тепло Тепло
                   Защита и хранение Сбор отказ от транспортировки

Конструкция Драйверы M CX CT M CX CT M CX CT M CX CT M CX CT
Окружающая среда xx xx xx x xx x o o o o o o xxx xx xx
Рассеивание тепла
- абсолютное o o o o o o xx x xx xx x xx xxx xxx xxx
- плотность o o o o o o xx xxx xxx xx x xx x x x

Температура
- уровень x x x xx xx x x x x x x xx xx xxx x xx
- стабильность x x x xx xxx xx xx xx xx xx xx xx x x x
- однородность x x x xx xxx xx xx xx xx xx xx xx x x x

Надежность o o o x xxx xx xx xx xx xx xx xx xx xx xx

Конфигурация x x x x x x x xxx x xx xx xx xx xx xx

Сборка, x x x xx x x xx x x xx xx xx xx x x
 Интеграция
  
 

Современные методы

Взаимодействие с внешняя среда
Покрытия
Самые простые способ изменить поведение поверхности — покрыть ее краской или слой другого подходящего материала.Все космические корабли используют много разных покрытий, от относительно простых до наносить краски на более сложные химически или физически изготовлены конверсионные покрытия. Покрытия характеризуются своим термооптические свойства: поглощающая способность, излучательная способность, отражательная способность. и прозрачность.

Основным недостатком покрытий является их деградация. окружающей средой и загрязнением, вызванным наземное обслуживание или космические операции, поглощающая способность параметр больше всего пострадал.И управляемость на земле, и космическая среда, как правило, увеличивает первоначальную поглощающую способность покрытие, приближающееся к значению конца срока службы (EOL). Последнее зависит от времени, проведенного на орбите, соответствующая среда (частица потоки, УФ-поток и т. д.) и ориентация поверхности по отношению к по движению космического корабля.

Правильная конструкция TCS должна должным образом учитывать все эти факторы и используйте подходящие для начала жизни (BOL) и EOL ценности.

Многослойная изоляция (MLI)
При простом покрытии недостаточно, чтобы избежать больших тепловых потерь или выгод для поверхность, можно использовать многослойный утеплитель.Он состоит из определенное количество слоев пластикового материала (обычно майлара или Каптон), покрытый с одной или двух сторон слоем металлического материал для уменьшения излучения и разделен листами прокладочный материал (например, дакроновая сетка), чтобы избежать прямого контакта между соседние фольги. Внешнее покрытие фольгой зависит от конкретное применение: он может быть окрашен или металлизирован, или может даже состоят из другого материала (например, армированного стекловолокном ткань).

Эффективность MLI может быть определена либо в терминах линейного проводимость через одеяло или через так называемый «эффективный эмиссия ‘.В первом случае тепловой поток можно рассчитать как произведение заданного значения на температуру разница между внешним слоем и фурнитурой, покрытой одеялом. Во втором случае он рассчитывается как лучистый теплообмен с использованием эффективного эмиттанса (рис. 2). Этот параметр имеет очень простую математическую формулировку, но он может иметь совершенно разные физические значения и выбор определение зависит от используемой техники моделирования.


Фигура 2.Определение эффективного излучения для различных макетов MLI

Факторами, влияющими на эффективность, являются физические состав одеяла (количество слоев, тип покрытия, и т. д.), средняя температура одеяла (обычно арифметическая среднее значение между двумя крайними слоями), возможное присутствие воздух или влажность внутри слоев и давление между ними. Очень важный фактор — это то, как одеяло нанесенный на поверхность космического корабля: цельный кусок одеяла покрытие большой поверхности более эффективно, чем несколько небольших одеяла, покрывающие ту же поверхность.Одеяло, подвешенное над поверхность (случай 3 на рис. 2) более эффективна, чем в прямом контакт с поверхностью (случай 1 на рис. 2).

Вообще говоря, эффективность MLI измеряется на относительно небольшие выборки, в то время как реальная эффективность MLI Система известна только во время тепловых испытаний на уровне системы. Следовательно, во время этап проектирования.

На рисунке 3 показана зависимость теплопроводности от температуры для Образцы MLI, измеренные в ESTEC для некоторых недавних программ ESA.На рисунке 4 показана зависимость теплопроводности от среднего значения. температура для образцов и реальных (с нахлестом, швами, и т. д.) MLI (имеющий идентичный состав), измеренный для Spacelab.


Рис. 3. Теплопроводность нескольких образцов MLI как функция средней температуры


Рисунок 4. Влияние перекрытия и наличия пропусков на MLI. теплопроводность

Жалюзи / ставни
Поверхность может потребоваться только защищен во время определенных фаз миссии, в то время как в другое время он должен быть свободным, чтобы излучать в глубокий космос.Жалюзи можно использовать либо для обеспечения теплоотвода во время фаз с Sun освещение, или для уменьшения потерь тепла в холод (тень) фазы.

В решетчатом радиаторе, показанном на рис. 5а, каждая лопасть снабжен датчиком / исполнительным элементом (например, биметаллическим пружина), которая определяет температуру опорной плиты радиатора и соответственно вращает лезвие. Радиатор можно заблокировать полностью выключается, когда температура ниже (или выше для Солнца жалюзи), чем заданное значение, и подвержены разной степени в зависимости от преобладающего уровня температуры.Точность регулирование температуры зависит от физического характеристики механизма жалюзи и, как правило, ограничены до ± 5 ° C.


Рис. 5. Схема жалюзи (а) и заслонки (б).

Жалюзи для установки на радиаторы были разработаны в Европе. в начале 1970-х годов ERNO и SNIAS (сегодня DASA Aerospace и Aerospatiale соответственно), но применялись они нечасто на борту европейского космического корабля.

Затвор (рис. 5 б) состоит из тонкой металлической пластины (или одеяло), которое можно скользить по поверхности (обычно электродвигатель), чтобы изменить открытую площадь радиатора почти непрерывным образом от нулевой до максимальной экспозиции.Преимущества по сравнению с жалюзи более эффективный коэффициент излучения, когда заслонка полностью открыта (многоотражение отсутствует или очень ограничено) эффекты) и лучшая эффективность изоляции, когда полностью закрыто. Тепловой затвор этого типа использовался на Джотто ЕКА. космический корабль.

Преимущества жалюзи и жалюзи — большая адаптация к условиям окружающей среды и снижению мощности и энергия, необходимая для обогрева во время холодных фаз. Недостатки масса и наличие сопутствующих механизмов, которые могут снизить надежность ТКС.

Теплоснабжение
Электрооборудование обогреватели
Нагреватели электрические сопротивления самые простые средства обеспечения теплом оборудования космических аппаратов. Обеспечение и функции хранения разделены тем, что первый осуществляется TCS, а последний обеспечивается за счет мощности подсистема.

Нагреватели могут иметь постоянное питание или, как правило, включаться и выключаться в зависимости от температуры контролируемый элемент. В последнем случае возможно наличие местное управление с помощью термостатов или центральное управление через специальный коммутационный блок (так называемый терморегулятор) или через Система обработки данных космического корабля (DHS).Это подразумевает использование датчики температуры и данные и командные строки. В зависимости от особая конфигурация космического корабля и требования к температуре, эта система контроля и управления нагревателем может стать весьма сложный. Поэтому основными недостатками обогревателей являются необходимость для электроэнергии и сложности DHS или снижение надежности при использовании термостатов.

На всех космических аппаратах используются электронагреватели. В последнее время лет европейские обогреватели были аттестованы в соответствии с строгие спецификации ESA как для одинарной, так и для двойной плотности конструкции (до 200 Ом / см²).

Радиоизотопные нагреватели
Некоторые планетарные и исследовательские миссии к периферии Солнечной системы не могут полагаться на Солнце и батареи для производства и хранения электроэнергии мощность для целей TCS. Радиоизотопные нагревательные блоки (РУ) на базе на плутонии, затем использовались либо для обогрева космического корабля напрямую или для производства электроэнергии с помощью радиоизотопа Термоэлектрические генераторы (РИТЭГи) для питания нагревателей. Есть в настоящее время нет европейских производителей RHU или RTG, но как США и Россия разработали и использовали эти устройства для своих миссии в дальний космос.Политические проблемы, а также проблемы с закупками сделает использование этого типа RHU все менее и менее приемлемым в будущем.

Теплоаккумулятор
Материалы с фазовым переходом (PCM) предлагают возможность накапливать тепловую энергию непосредственно как скрытую тепло плавления или сублимации. Контролируемый элемент связан с сосудом, заполненным ПКМ. Когда элемент активен, PCM поглощает тепло и плавится или сублимирует при стабильной температура; когда оборудование неактивно, PCM может затвердеть, выпуская соответствующее количество тепла.Обычно плавильные ПКМ могут быть легко использованы в обратимых, закрытых системах, в то время как сублимирующие ПКМ используются в открытых, необратимых системы (т.е. газ выходит после фазового перехода, чтобы избежать избыточное давление).

Наиболее важными параметрами являются температура, при которой происходит фазовый переход, и количество поглощенного тепла или выпущен во время изменения. Диапазон температур обычно составляет интерес представляет диапазон, близкий к нулю (от 5 до + 10 ° C), или конкретные диапазоны для конкретных экспериментов, e.грамм. 80 ° C для медико-биологические эксперименты. Другими важными параметрами являются теплопроводность и плотность двух фаз; в бывший из-за необходимости передачи тепла эффективно внутри PCM, а последний, потому что содержащий конструкции должны выдерживать объемное изменение ПКМ.

Два преимущества устройства PCM — это стабильность контроль температуры и отсутствие движущихся частей. Жара- потребность в хранении определяется продолжительностью включения обратимого систем, а также по общему времени работы для нереверсивных (т.е.грамм. сублимационные, кипящие ПКМ) системы. Поскольку масса устройства прямо пропорциональна способности аккумулировать тепло, это сложно использовать устройство PCM без серьезного удара на общий массовый бюджет. Более того, проблемы, связанные с ограниченная теплопроводность многих ПКМ делает необходимым использовать оребренные емкости, которые снова увеличивают массу и объем устройств. Еще один повод для беспокойства — дизайн контейнер от утечки, для безопасности (PCM могут быть довольно коррозионные) и функциональные причины.

устройства на базе ПКМ использовались на космических кораблях США, в том числе несколько миссий, запускаемых шаттлами. Различные макеты были разработан в Европе в 1970-х годах, но, помимо приложения на Spacelab нет упоминаний об их использовании на других Европейский космический корабль.

Сбор и транспортировка тепла
выбор наиболее подходящей системы и компонентов зависит от общего уровня мощности, удельной мощности и температуры требования.

Механические элементы
Обычный способ сбора тепло, рассеиваемое любым элементом оборудования, проходит через его опорную плиту и элементы фиксации (монтажные ножки).С увеличением мощности рассеивания, вся опорная плита должна соприкасаться с панель космического корабля. Передаваемое тепло зависит от такого параметры как межфазное давление, чистота поверхности, типы задействованных материалов и т. д., что иногда бывает сложно для количественной оценки (на уровне проектирования) и контроля (во время производства и интеграция). Способы увеличения проводимости за счет поверхности раздела включают использование металлических или синтетических матов, или нанесение термопасты.Это последнее решение должно использовать с осторожностью из-за очевидного потенциального загрязнения проблемы.

В некоторых случаях несколько блоков подключаются вместе к одному промежуточная сплошная панель, называемая дублером, обычно из алюминия. Этот удвоитель распределяет тепловыделение по большую площадь, тем самым обеспечивая улучшение равномерность температуры и увеличение эффективного контакта область к теплопередающему или теплоотводящему устройству. это удобно размещать резервные блоки или блоки, работающие с разные рабочие циклы на одном удвоителе, чтобы использовать тепло, рассеиваемое рабочими блоками для поддержания других в установленных пределах без необходимости в дополнительной мощности нагрева.В Недостатком такого простого решения является масса дублера, которые должны быть достаточно толстыми для достижения хорошего КПД.

Иногда используются оплетки из проводящего материала (например, меди) для подключения теплоотводящего оборудования к «выносному» радиатору. В качестве общая проводимость пропорциональна поперечной сечение и обратно пропорционально его длине, этот метод может очевидно, что его можно использовать только на короткие расстояния и очень низкие тепловые нагрузки. Например, потребуется медный стержень весом около 22 кг. для транспортировки 10 Вт на расстояние 1 м с температурой разница 10 °.Для сравнения простая тепловая трубка (например, тепловая трубка из нержавеющей стали / аммиака диаметром 9,5 мм) обеспечивает лучшую производительность (меньший перепад температур) для масса 0,25 кг / м, т.е. примерно в 100 раз меньше. Одно преимущество коса — это ее гибкость, которая обеспечивает определенную степень изоляция от вибрации и помогает избежать конфигурации проблемы.

Тепловые трубки
Тепловые трубки — это устройство, позволяющее эффективный транспорт тепловой энергии. Обычно он состоит из герметичная металлическая трубка с капиллярной структурой внутри, заполнен подходящей рабочей жидкостью.Тепло поглощается одним концом за счет испарения жидкости и высвобождается с другой стороны конденсация пара. Жидкость возвращается в испаритель капиллярными силами.

На космических кораблях чаще всего используются тепловые трубки. тип алюминия / аммиака, обеспечивающий оптимальный контроль температуры в диапазоне 0-40 ° C. Поскольку количество переносимого тепла по трубе определяется ее конструкцией и размерами, эквивалентная теплопроводность фиксирована, что приводит к постоянному Теплопроводная трубка (CCHP на рис.6а).


Рисунок 6. Схемы ЦТЭУ (а) и ВТЭУ (б).

Существует также специальный тип тепловой трубки, известный как переменная Теплопроводная трубка (ВЧП, рис. 6б). Это устройство обеспечивает лучший контроль температуры, когда оборудование может рассеиваются на разных уровнях мощности, или конденсатор подвергается воздействию к изменяющейся среде. Количество передаваемого тепла составляет обычно контролируется путем блокировки части области конденсатора с помощью инертный газ.

Поскольку капиллярные силы слабее гравитационных, тепловые трубки могут работать только в поле силы тяжести, если испаритель и конденсатора на одном уровне, или если испаритель ниже конденсатор (так называемый «режим рефлюкса»).Следовательно, если у космического корабля есть тепловые трубки, расположенные в разных плоскостях, это не всегда можно полностью проверить полную тепловую схему с только тестирование на уровне системы. Однако, как уже было сказано, это ограничение может быть преодолено и поэтому не должно ограничивать использование тепловых трубок, дающих большие преимущества.

Контуры охлаждения
Для большего или большего рассеивания мощности строгие требования к температуре, другой сбор тепла и могут использоваться транспортные системы.Различные виды жидких петель были предложены и применены, чтобы справиться с этими ситуациями.

В однофазных контурах охлаждающая жидкость поглощает тепло от рассеивающих тепло предметов (например, через холодную пластину или теплообменник), увеличивая его температуру, и транспортирует к теплоотводящему устройству (теплообменнику или напрямую через радиатор), где жидкость охлаждается. Механический насос — это необходим для обеспечения гидравлической энергии, необходимой для этой задачи (Рис. 7а).


Рисунок 7.Схема контуров охлаждения: (а) Однофазный контур. (б) Двухфазная петля с механическим приводом. (c) Двухфазный капилляр петля. (d) Двухфазный гибридный контур

Преимущества этих систем заключаются в их гибкости и отсутствие чувствительности к их ориентации и механическим среда. Скорость потока жидкости можно легко регулировать (например, через насос с регулируемой скоростью), что позволяет использовать любой из вариантов мощности рабочие циклы (возможно соотношение от 1 до 10) и / или разные уровни точности, стабильности и однородности температуры.В диапазон температур может быть адаптирован к конкретному применению выбрав подходящую жидкость. Поскольку жидкость циркулирует за счет механического воздействия насоса система работает с одинаковая эффективность на земле, на борту космического корабля или во время спуска на небесное тело. Недостатки — мощность необходим для привода насоса и возможных вибраций, вызванных насос и потоки жидкости.

Однофазные контуры жидкости широко используются с самого начала дней пилотируемых космических полетов.В России их тоже использовали часто для беспилотных космических аппаратов; например были использованы воздушные петли на Протоне, жидкостные петли на мощных телекоммуникациях космический корабль (в сочетании с развертываемыми радиаторами), и комбинированные жидкостно-воздушные петли на извлекаемых низкоорбитальных космических аппаратах (например, Foton). В Европе они использовались на Spacelab и Eureca, и в будущем будет использоваться на орбитальной орбите Колумбуса. Помещение, а также миниатюрный логистический модуль под давлением.

Двухфазные контуры с механической накачкой (ПДК, рис.7b) являются аналогичен однофазным петлям, за исключением того, что жидкость меняет состояние (испаряется при поглощении тепла и конденсируется в устройства для отвода тепла) вместо того, чтобы просто изменять температуру. В Преимущество по сравнению с однофазным типом состоит в том, что меньшая скорость потока жидкости, необходимая для управления тем же количеством тепла (за счет использования скрытой теплоты испарения) и связанное снижение уровня ресурсов, необходимых для TCS (меньшее потребление электроэнергии насоса, меньшая масса за счет более мелкие трубопроводы для жидкости и запас жидкости и т. д.).

В контурах с капиллярной накачкой (CPL: рис. 7c) движущая сила обеспечивается капиллярным действием материала фитиля внутри испарители и отдельный механический насос не нужны. Однако есть определенные операции или этапы миссии для какая помощь капиллярному действию может быть желательной (например, запуск контура, пиковые нагрузки, высокие механические нагрузки или заземление тестирование).

Гибридные петли (рис. 7d), состоящие из CPL с механической насос сейчас предлагаются.При номинальных режимах работы насос обходится, и поток жидкости обеспечивается капилляром действия. Только во время критических фаз насос вставляется в петля для обеспечения дополнительной энергии, необходимой для жидкости. Много экспериментальные CPL летали или летят, чтобы продемонстрировать технология, которая в настоящее время используется в нескольких земных наблюдательные эксперименты, например европейский ATLID и американский EOS-AM.

Тепловые соединения
Используются для передачи тепла от фиксированный элемент космического корабля к любому развертываемому / подвижному / вращающемуся элемент (e.грамм. радиатор). В зависимости от характера и степени допустимое движение (однократное развертывание, непрерывное вращение, и т. д.), соединение может быть очень простым (упомянутая тесьма выше для малых тепловых нагрузок) или значительно более сложный.

Гибкие тепловые трубы были предложены для одиночного развертывания, и вращающиеся термические соединения (на основе сплавов с памятью формы или газа давление) для периодического вращения. Их еще предстоит летать на Европейский космический корабль.

Отвод тепла
Радиаторы
A радиатор — это просто (высокопроводящая) панель, подвергающаяся глубокому пространство и (обычно) покрытые покрытием с высокой излучательной способностью.В зависимости от размеров и конфигурации космического корабля возможны быть центральными радиаторами, к которым отводится все тепло на борту передается, или несколько радиаторов, каждый из которых предназначен для полезной нагрузки блок или группа полезных нагрузок и / или подсистем.

Рассеивающее оборудование может быть установлено непосредственно на радиатора или подключенных к нему с помощью тепловых трубок или контуров жидкости. В последнем случае тепловые трубы или жидкостные трубопроводы могут быть крепится к наружным граням радиатора или прямо встраивается в его структуру.Второе решение более эффективно из структурная (экономия массы) и тепловая точки зрения, но также может быть менее надежным из-за вероятности микрометеороидов воздействия на радиатор, и более критично в отношении деятельность по интеграции космических аппаратов.

Размер радиатора зависит от рассеиваемой мощности, температура брака (определяется контролируемыми объектами) и температура окружающей среды (рис. 8). В в большинстве случаев радиатор устанавливается на панели космического корабля и поэтому излучает только с одной стороны.В случае высокого и / или меняющиеся мощности или меняющиеся условия окружающей среды, это конфигурация не очень производительная. Лучшее решение — использовать обе стороны радиатора, но это подразумевает необходимость развертывание радиатора.


Рисунок 8. Влияние на радиатор площади окружающей среды (раковина) и температура радиатора

Один из способов справиться с изменяющейся тепловой нагрузкой — использовать жалюзи. или жалюзи на радиаторе, как обсуждалось ранее.

Тепловые насосы термоэлектрические
Тепловые насосы обратимые машины, способные передавать тепловую энергию от нижних от температуры к телам с более высокой температурой с помощью дополнительного источник энергии.Использовались только термоэлектрические тепловые насосы. в космосе до сих пор, основной особенностью которого является Пельтье элемент, который получается в результате соединения через металлический язычок полупроводниковых материалов типа n и типа p.

Эффективность элемента Пельтье зависит от его внутренней характеристики (термоэлектрический эффект, тепловой и электрический проводимость), электрический ток, температура должна быть контролируется и температура радиатора. Общий производительность термоэлектрического теплового насоса строго связана к эффективности тепловой связи между Пельтье выступы элементов и охлаждаемые или нагреваемые поверхности.

Для низких нагрузок охлаждения / нагрева элементы привинчиваются между опорной плитой управляемого элемента и нагревателем раковина. Термопаста обычно наносится на поверхность раздела с повысить термический КПД соединения. Однако, как давление на границе раздела не может быть высоким по механическим причинам, это метод не подходит, когда требуются высокие тепловые характеристики (очень строгий контроль температуры и / или сильное охлаждение / нагрев нагрузки). В этом случае предпочтительным решением является пайка элементы к радиатору.

Самыми эффективными радиаторами в настоящее время являются водяные. обменники. Хорошая производительность также может быть получена при воздушном нагреве. обменники, за счет большего объема и большей мощности расход (нужен для привода вентиляторов). Во всех остальных случаях нагрузки охлаждения / нагрева, а также разница температур между холодной и горячей стороной должно быть очень мало, иначе требуемая электрическая мощность становится недопустимой.

Термоэлектрические тепловые насосы обычно используются для герметичных контроль температуры маломощных приборов (преимущества отсутствие вибрации и простота монтажа) и оборудование, используемое для экспериментов в условиях микрогравитации.Многие системы имеют были разработаны и используются как для пилотируемых (например, ESA’s Biorack), так и для беспилотный космический корабль (например, Biobox на борту Foton).


О нас | Поиск | Обратная связь
Бюллетень ESA Nr. 87.
Опубликовано в августе 1996 г.
Разработано ESA-ESRIN ID / D.

Особенности и характеристики биметаллических радиаторов

О биметаллических радиаторах мы узнали давно — в начале этого века, набирали обороты.И они уже полюбились нашим землякам более традиционные чугунные батареи. Мало того — сейчас популярны и алюминиевые радиаторы, и стальные. А все благодаря тому, что прочные биметаллические радиаторы имеют отличные характеристики. Хотите узнать что — читайте дальше. .

Содержание:

  1. Характеристики и разновидности биметаллических радиаторов
  2. Подробнее о характеристиках биметаллических радиаторов
  3. Теперь о недостатках биметаллического радиатора
  4. Как производители биметаллических радиаторов могут доверять таблице
  5. Сравнительная таблица
  6. : разные производители и модели биметаллических радиаторов
  7. Как рассчитать необходимое количество секций батареи
  8. Видео: Технические характеристики биметаллических радиаторов

Характеристики и разновидности биметаллических радиаторов

Каждая биметаллическая батарея отопления состоит из трубчатых стальных и алюминиевых панелей.При этом он

at передается очень эффективно, не теряясь напрасно. Горячая вода, проходя через сердечник, состоящий из стальной трубы, быстро нагревает алюминиевую оболочку и, соответственно, воздушные массы в помещении. Фигурная алюминиевая оболочка

этого сердечника не только элегантно и стильно выглядит, но и помогает лучше распределять тепло. Кроме того, за счет использования алюминиевой батареи становится очень легко (особенно по сравнению с тяжелыми железными аналогами). Это дает дополнительные преимущества. комфорт при установке.А замысловатая форма корпуса отлично смотрится, и значительно увеличивает теплоотдачу. Стальные трубы


, составляющие сердечник, очень прочные — они спокойно выдерживают давление от 20 до 40 атмосфер, а температуру горячей воды — и 110, и даже 130 градусов по Цельсию.

Конкретные пределы рабочего давления и температуры можно узнать, посмотрев паспорт прибора. Ведь все зависит от модели, и от того, кто эту модель изготовил.

Сегодня в магазине можно купить батареи биметаллические двух разновидностей:

1.радиаторы, которые полностью биметаллические. Это означает, что они имеют сердечник из стальной трубы, окруженной алюминиевой оболочкой. Они отличаются высокой прочностью, исключаются протечки. Эти батареи производятся итальянскими компаниями:

  • Global Style;
  • Royal Thermo BiLiner.
  • ,
,

своих заводов и российских производителей — например, фирмы Сантехпром БМ.

2. Полубиметаллические — радиаторы, у которых только половина биметаллические.Формируются только из стальных труб, вертикальные армирующие каналы. Там, где алюминий частично контактирует с водой. Такие половинные биметаллические радиаторы отдают тепло на 10 процентов лучше, чем предыдущая модель, и стоят на 20 процентов меньше.

их выпуск:

  • российский производитель Rifar,
  • китайский — Gordi,
  • итальянский — Sira.

Специалисты еще не пришли к единому мнению, какой из двух типов радиаторов для центрального отопления лучше, а какой — для индивидуального отопления.Таким образом, технические характеристики биметаллического радиатора позволяют ему не бояться «химии» в городской воде. Но при повышенном давлении вода будет вести себя лучше, чем алюминий. В одном специалисте сошлись во мнении, что если у вас дома старые трубы отопления ( им более 40 лет) лучше всего брать биметаллический аккумулятор.

Разъемное или неразъемное?

Основная часть такого радиатора

состоит из ряда секций. То есть сначала делается каждая из секций целиком, а затем соединяется их патрубками.Это делается на заводе, общее количество секций — четное.


достаточно силен, чтобы убрать лишнее или добавить недостающий участок.

Однако, кроме секционного, в продаже есть и целые батареи из биметалла. Сердечник сделан из стальных труб сразу нужного размера. Потом его «обернули» декоративным покрытием из алюминия. Этот аккумулятор не лопнет даже если давление достигнет ста атмосфер.

Подробно о характеристиках биметаллических радиаторов

Выбирая радиатор, необходимо изучить заветную паспортную модель.А теперь о том, какие важные параметры там перечислены.

теплоотдача

количества тепла, отдаваемого радиатором при температуре воды плюс 70 градусов Цельсия, измеряется в ваттах. Среднее значение теплоотдачи от биметаллической батареи — от 170 до 190 Вт. Это просто великолепно.


Теплоотдача происходит как за счет нагрева воздуха, так и благодаря особой конструкции радиатора — за счет конвекции.

выдерживают рабочее давление

Оно составляет от 16 до 35 атмосфер в зависимости от модели и производителя.Если в системе центрального отопления стандартное давление не более 14 атмосфер, а в автономной системе — не более примерно 10 атмосфер. Чтобы аккумулятор не лопнул при повышении давления, обычно производитель указывает эту опцию со штоком.

Колесная база

Это расстояние (в миллиметрах), которое отнесено к верхнему резервуару радиатора снизу. Типичные значения: 800, 500, 350, 300 и 200 миллиметров. Это разнообразие позволяет вам выбрать аккумулятор, который хорошо впишется в существующую разводку труб отопления.


Чаще всего востребованы радиаторы с 50, 35 и 20 сантиметрами между осями коллектора.

предельная температура охлаждающей жидкости

В основном биметаллические радиаторы выдерживают горячую воду до 90 градусов. Иногда производитель немного лукавит, обещая, что кипяток 95 градусов выйдет за пределы батарей. Не надо верить — больше 90 0C нет производителей не выдаются. На этот показатель стоит присмотреться — он зависит от коэффициента теплопередачи.

надежность и ресурс

Учитывая характеристики биметаллических радиаторов, в течение двадцати лет вы можете спокойно ими пользоваться. Никакого обслуживания не требуется. Это довольно хорошее время.

Простая установка

Секционные данные радиаторов абсолютно идентичны. Это позволяет устанавливать их даже слева от подходящих труб отопления, по крайней мере, справа. Где соответствующая трубка присоединяется к трубе радиатора. С противоположного конца установленного. колпачок, который завершает спускной винт (сбоку) и еще одну пробку (внизу).

Кран, названный в честь его изобретателя — Маевского — очень удобное устройство. В начале отопительного сезона часто возникает проблема с «проветриванием» системы — из-за воздуха, оставшегося в трубах, батареи холодные. Отводной винт позволяет один раз спустить воздух из радиатора, не отключая весь стояк. Что хорошо — это можно сделать самостоятельно, без помощи наведенных мастеров.

в дополнение к вышеперечисленному, также выпускается с трубами и радиаторами, расположенными на нижней стороне.К этим клапанам подключается термостат, контролирующий температуру воздуха в помещении. Розетки, заглушки и спускной винт поставляются на каждый биметаллический радиатор. На него также полагается и набор скоб для установки панелей на стену.

Теперь о недостатках биметаллических радиаторов

Самым существенным недостатком этих аккумуляторов можно назвать их дороговизну. Они намного дороже обычных чугунных радиаторов. Однако изделия из биметалла намного аккуратнее выглядят, хорошо вписываются в современный интерьер.И по продолжительности жизни они превосходят другие типы батарей.

Не годится

и то, что при воздействии воды и воздуха одновременно сердечник стальных труб может начать «съедать» коррозию. А это происходит, когда при ремонте или аварии сливается вода из системы отопления. А ржавчина с труб и антифриз, который часто присутствует в системах отопления небольших домов. В этом случае от биметаллических батарей следует отказаться — лучше брать неразъемные, либо полностью алюминиевые.

приемлем и этот вариант — радиаторы с медной сердцевиной и алюминиевым корпусом. Оксидная пленка на медных трубках достаточно прочная — это убережет их от коррозии. Можно вместо медной сердцевины и нержавеющей стали использовать — тоже неплохой вариант.

Технические характеристики биметаллических радиаторов некоторых производителей

1. Надежные и качественные, но дорогие аккумуляторы производства итальянской компании Global Style. К тому же технические характеристики биметаллических радиаторов, выпускаемых этой компанией, можно назвать безупречными.Российские покупатели давно оценили аккумуляторы, зная, что они одобрены специалистами Института сантехники и рассчитаны на российские условия. На вторую линейку из трех моделей увидели свет. Десять-двадцатилетняя гарантия от производителя.

с большим коэффициентом теплопередачи (не хуже моделей из полубиметалла) славятся аккумуляторами Global Style Extra и Global Style Plus. Они красивые и прочные, но дорогие. Модели попроще и дешевле, немного хуже передают тепло и менее элегантны. но и хорошо выглядеть.Они аккуратные и маленькие, и имеют очень приличные характеристики. Четное количество секций, окрашенных в теплые оттенки белого, от 6 до 14.

2. Итальянская компания Sira производит аккумуляторы более полувека. Ее «конь». »- напольные биметаллические изделия с высоким коэффициентом излучения. Компания« Радиаторы »выпускает три разновидности. Достаточно скучные изделия квадратной формы, аккумуляторы с красиво очерченными плавно закругленными углами и модель под названием« Гладиатор ».


Последняя форма довольно необычная и креативная.

Аккумуляторы нечетного сечения (может быть от 4 до 10) окрашены в теплые оттенки белого цвета. Гарантия — 20 лет. Заводы компании находятся не только в Италии. Некоторые из них находятся в Китае :).

3. Российская компания Рифар (Оренбургская область) производит аккумулятор сравнительно недавно — с 2002 года. Но на отечественном рынке она уже завоевала симпатию и успешно вышла на уровень СНГ. Ее продукция — семь видов радиаторов полубиметалла. Особенно популярны модели. «Монолит» (новая разработка, на которую есть патент) и «Рифар Флекс» (имеет возможность загибаться под эркеры).

Ярко-белые секции этих радиаторов поставляются партиями от 4 до 14 штук. Рифар гарантирует безотказный срок службы продукции в течение 10-25 лет. На складе обычно имеется три основные модели. Остальной ассортимент доступен под заказ.

Таблица: Сравнительные характеристики различных производителей и моделей биметаллических радиаторов

350 9 0600
Страна производитель. Модель -е Расстояние между осями, мм Размеры В / Ш / Г (сечение) Максим.Рабочее давление бар. Тепловая мощность, В объем воды в секции,
л
Вес Макс. Температура, комплект удлинителя

Италия

STYLE 350STYLE 500STYLE PLUS 350STYLE PLUS 50025 350500 350 500 500 500STYLE PLUS 350STYLE PLUS 50025 350500 350 500 500 425/80/80575/80/80425/80/95575/80/95 35 125168140185 0,160,20,170,19 1,561,971,51,94 110
BiLiner Inox 500BiLiner 500 500 574/80/87 20 171 0,2 ​​ 2,01 90

Германия

25 90EN625 500

400/80/77550/80/77 24 120161 0,150,22 1,221,44 120

Россия

RIFAR Forza 350RIFAR Forza 500RIFAR MONOLIT 350RIFAR MONOLIT 500350500350500 415/90/80570/100/80415/100/80577/100/80 2020,100610022 2020,16196136202 , 20 1,361,841,52,0 135

Китай

Горди 350 Горди 500 350500 412/80/80572/80/80 30 160181 0,210,3 1,41,7 110

Италия

Гладиатор 200 Гладиатор 350 Гладиатор 500200350500 275/80/80423/806/80 306 185 0,10,130,42 0,650,851,6 110

Как рассчитать необходимое количество секций батареи

Для примера рассмотрим Россию и ее среднюю полосу и обычную панель высокой- высотное здание.Умножьте площадь комнаты на 100 Вт, а затем разделите это число на количество выделяемого тепла на одну секцию.

Если межосевое расстояние 500 мм, расчет будет несложным. Разделите пополам площадь комнаты — и все. Например, комнату 12 квадратных метров. У нас есть 6 секций с теплопроизводительностью 180 до 190 Вт. 10 процентов приходится перебрасывать на последний или первый этаж, угловые комнаты с большими окнами (более двух квадратных метров) и тонкими стенами (менее 250 миллиметров).

Коттедж, построенный на даче, придется повозиться с расчетами. Сначала выясняем коэффициенты теплопроводности каждого материала, из которого построен дом. Это не только стена, но и крыша, и пол. Для этого предпочли пригласить профессионала из надежной компании. Квалифицированный мастер все точно рассчитает, а аккумулятор посоветует, подходит для вашего дома и не требует лишних денег.

Видео: Технические характеристики биметаллических радиаторов

Дополнения

  • отзывы о биметаллических радиаторах отопления и их применении

Не получил ответа на свой вопрос? Неужели непонятные моменты?
Задайте вопрос нашим экспертам и посетителям:

+ Добавить новый вопрос


Разница между механическим и электронным термостатом?

Вы не поверите, но электронный термостат — это нечто большее, чем цифровой дисплей.Эти статистические данные имеют другое внутреннее устройство, что делает их более точными и отзывчивыми, чем нецифровые термостаты. Чтобы понять, почему это так, давайте поговорим о том, как работают эти базовые механические (также известные как биметаллические) термостаты.

Датчик температуры в механическом термостате состоит из двух металлических пластин, соединенных вместе. Каждый тип металла имеет разную скорость расширения при нагревании и охлаждении, что и контролирует температуру термостата. При работе с механическими термостатами следует помнить, что вы устанавливаете не фактическую температуру, а скорее диапазон температур.Производитель термостата калибрует термостаты так, чтобы в испытательной лаборатории числа на термостате точно соответствовали фактической температуре в помещении. Это означает, что температура в вашей комнате будет оставаться в пределах установленного вами значения, но в любой момент времени может быть примерно на 5 градусов выше или ниже нее. Напротив, электронные термостаты имеют цифровые датчики для считывания температуры в помещении. Они намного более точны и отзывчивы, что означает, что температура в вашей комнате должна оставаться в пределах 1 градуса от температуры, установленной на термостате.Помимо повышения комфорта, меньшие колебания температуры электронных термостатов могут привести к экономии энергии. Хотя механические термостаты не так отзывчивы, как электронные, все же есть несколько сценариев, в которых они могут быть хорошим выбором. Крейг Петерсон, наш вице-президент по техническим вопросам, говорит, что некоторые люди хотят использовать термостат как выключатель. В этом случае он сказал, что механические — отличный выбор. Кроме того, они более доступны по цене, чем их электронные аналоги.

Механическая статистика с «грязным» питанием

Другой сценарий, при котором они могут быть хорошим выбором, — это работа с генератором или солнечной энергией или в местах, подверженных скачкам напряжения. Мы традиционно имели дело с людьми, которые используют наши продукты с питанием от электросети, что в целом очень надежно и стабильно. Поскольку электронные термостаты имеют электронные компоненты, скачки напряжения или «шум» в линии электропередач потенциально могут их поджечь. Это не проблема механических термостатов, потому что в них нет электронных компонентов.Это не означает, что электронная статистика не предназначена для выдерживания определенного количества непостоянства мощности, но это никогда не будет проблемой для механических термостатов, сказал Крейг. Если вы все еще не знаете, какой термостат вам подходит, ознакомьтесь с историей о покупателе из Айдахо, который перешел с механических термостатов на электронные. Он сказал, что окупаемость за счет экономии энергии сделала это изменение «легкой задачей».

Обзор различных типов радиаторов отопления

Радиаторы отопления знакомы всем батареям центрального отопления.Раньше с выбором такой не мучился, так как тип был только один — чугунный. Позже стали появляться секционные варианты. Сегодня разнообразие вариантов просто поражает. И у каждого типа радиатора есть свои плюсы и минусы. Прежде чем выбрать подходящий, следует внимательно изучить характеристики каждого из них.

Сегодня на рынке представлено 4 основных типа радиаторов отопления. Они востребованы, хорошо подходят для современной системы централизованного теплоснабжения и имеют современный дизайн.Если есть возможность, лучше воспользоваться услугами профессионала, чтобы подобрать подходящий аккумулятор. Если у вас нет такого профессионала, будьте внимательны при выборе радиатора самостоятельно. Сравнительный анализ аккумуляторов разных типов помогает выбрать лучший вариант.

Виды современных радиаторов отопления

Сегодня на рынке широко представлены следующие типы аккумуляторов:

— панель стальная;

— чугун;

— биметаллический;

— алюминий.

Кроме того, свою популярность уже заслужили конвекторы.

Первый вариант — это обогреватель, передающий тепло за счет конвекции. Если смотреть широко, все панельные радиаторы имеют одинаковые технические характеристики. Вариации здесь крайне незначительны. Среди характеристик можно отметить высокий уровень теплоотдачи, простоту монтажа, а также доступную стоимость. В связи с этим такие радиаторы активно применяют для обогрева коттеджей и даже многоэтажных домов (но только тех, у которых есть автономная котельная).Огромный минус таких радиаторов в том, что они не работают от системы центрального отопления.

Чугунные варианты обладают высокой и хорошей теплопроводностью. При этом отлично выдерживают высокое давление, в результате чего особо не зависят от выбора теплоносителя. Значит, они хорошо взаимодействуют с системой центрального отопления. Чугунные радиаторы часто используются в системах, где теплоносители плохо подготовлены — загрязненность, агрессивность и т. Д. Кроме того, российский потребитель привык к таким радиаторам и доверяет им.

Следует иметь в виду, что сегодня на рынке представлены не только чугунные радиаторы отечественного производства, но и зарубежного производства. Их отличает достаточно качественное литье и привлекательный дизайн.

Алюминиевые радиаторы — это легкий и красивый дизайн, который отличается секционной структурой и высоким тепловыделением. Благодаря всем своим привлекательным качествам алюминиевые радиаторы отопления завоевали популярность у населения.Однако не все с ними так гладко. При эксплуатации такого радиатора необходимо следить за уровнем кислотности теплоносителя. Он всегда должен оставаться в определенных, довольно узких рамках. В результате алюминиевые радиаторы идеально подходят для индивидуального строительства, а в многоквартирных домах не очень хороши.

Биметаллические варианты выдерживают достаточно высокое давление в системе, выдерживают гидроудары. В этом случае выбор основного теплоносителя не так важен.Но специалисты уверяют, что существует ряд факторов, из-за которых биметалл значительно проигрывает стали. Одним из таких факторов является меньший объем циркулирующей воды. В результате такой радиатор работает не особо эффективно. Лучше всего он подходит для тех помещений, в которых отмечается повышенное рабочее давление или плохое качество воды в системах отопления.

Конвекторы — это то, что встроено в радиатор. Современный дизайн и архитектура стараются максимально скрыть и скрыть все, в том числе и батарейки.Однако полностью избавиться от них невозможно, так как без отопления невозможно жить. Конвекторы помогают значительно сэкономить пространство без ущерба для отопления помещения.

Если вы посмотрите в сравнении, вы легко сможете определить, какой тип радиатора подходит для вашего дома.

Известные модели радиаторов отопления

Сегодня большой популярностью пользуются радиаторы отопления зарубежных производителей. Среди сталей особенно уважаемы немецкие керми (kermi). Судя по отзывам в Интернете, это идеальная модель, которая обладает высокой теплоотдачей, имеет стильный дизайн и во всем цивилизованном мире называют идеальным устройством.Эти радиаторы достаточно мощные и отлично согревают даже в сильные морозы.

Еще одна популярная компания по производству качественных и популярных радиаторов отопления — отечественные. Это называется коннер. Главный плюс этого производителя в том, что он выпускает радиаторы всех 4-х типов. Так что вы сможете выбрать любую, подходящую вам по внешнему виду, качеству и цене.

Кроме выбора радиатора по внешнему виду и цене, не забудьте все тщательно замерить. Ведь новый радиатор вполне может оказаться больше предыдущего и тогда он вам просто не подойдет.

На что обращать внимание при выборе радиатора

Прежде всего, необходимо выбрать радиатор отопления по типу вашего дома. Так, например, любой, у кого есть дом или квартира с автономным источником тепла, может купить любой тип радиатора отопления. Это связано с тем, что в этом случае практически отсутствуют удары воды, а значит, аккумуляторы надежно защищены от разрывов и протечек.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *