СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ
СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ
Энергосберегающие лампы с цоколем, аналогичным обычной лампе накаливания, успели стать довольно популярными. Но несмотря на рекламные характеристики долговечности, выходы из строя этих ламп происходят часто. Разборка корпуса КЛЛ проводится с помощью плоской отвертки, которой проводят постепенно отжимая защелки по периметру. В цоколе лампы установлена плата электронного блока, которая соединена проводами с баллоном лампы с одной стороны и двумя проводами с цоколем с дрогой стороны.
Прежде всего при ремонте необходимо проверить целостность нитей лампы, сопротивление нитей должно быть 10-15 Ом. Ещё одной типичиной неисправностью является выход из строя транзисторов генератора ИП. Если наблюдается мерцание лампы, скорее всего имеется пробой высоковольтного конденсатора, включенного между нитями накала лампы.
Здесь приводится сборник схем энергосберегающих ламп различных моделей и производителей. В принципе все эти схемы не сильно отличаются друг от друга и подходят к абсолютному большинству энергосберегающих ламп.
В архиве представлен сборник схем энергосберегающих ламп таких моделей:
- — Схема энергосберегающей лампы LUXAR;
- — Схема энергосберегающей лампы Bigluz;
- — Схема энергосберегающей лампы Luxtek;
- — Схема энергосберегающей лампы BrownieX;
- — Схема энергосберегающей лампы Isotronic;
- — Схема энергосберегающей лампы Polaris;
- — Схема энергосберегающей лампы Maway;
- — Схема энергосберегающей лампы Philips.
Если причиной выхода из строя лампы является перегорание нитей подогрева стеклянной колбы, такую люминецентную лампу можно питать постоянным током, а рабочий преобразователь стоит использовать для питания обычных длинных ламп дневного света. Если причиной отказа энергосберегающей лампы является именно плата – с помощью данных схем починить её будет не проблема. Ну а когда от лампы остался только корпус с патроном — остаётся лишь переделать её в светодиодную.
ФОРУМ по энергосберегающим люминесцентным лампам.
Бытовая техникаelwo.ru
Устройство светодиодной лампы — конструкция и принцип работы
Прежде чем понять, как устроена светодиодная лампа на 220 вольт, нужно разобраться, что она собой представляет и в чем ее преимущество перед лампами накаливания или люминесцентными светильниками. Конечно же, основной их плюс – это долговечность в работе и минимальное потребление электроэнергии. Почему так недолго работают обычные лампы, объяснять не приходится. И так понятно, что вольфрамовая нить – не слишком надежный материал. Но все же до недавнего времени лампы на основе этого материала практически не имели конкуренции. Сейчас же, хотя цена светодиодных ламп выше, чем у их предшественников, они быстро завоевывают рынок, пользуясь у потребителя все большим спросом.
Что же такое светодиод?
По своему строению это многослойный полупроводниковый кристалл, который преобразует электроэнергию в обычный свет. А как это происходит, нужно разобрать более детально.
При различных вариациях компоновки чипов можно создать четыре варианта светодиодов:
Схема светодиодной лампы
Поняв суть устройства светодиодной лампы, легко разобраться в особенностях работы и даже изготовить ее самому (схема светодиодной лампы на 220 вольт представлена на рисунке ниже). Естественно, в любом из магазинов можно приобрести такой светильник, но иногда бывает трудно подобрать таковой именно с необходимыми параметрами. А кому-то просто не интересно покупать, а куда более привлекательно изготовить самому. Главное – решить вопросы расположения схемы и светодиодов, изолирования системы, а также обеспечения теплообмена.
Итак, с чего следует начать сборку? Есть множество систем, позволяющих этим осветительным приборам функционировать от сети 220 V. У всех них существует 3 главные цели:
- Получение пульсирующего тока из сети 220 V.
- Выравнивание тока до постоянного.
- Трансформирование тока до 12 V.
Для этого можно воспользоваться 2 вариантами – изготовить либо плату с диодным мостом, либо резисторную схему. При втором варианте необходимо использование четко определенного количества светодиодов. Нужно понять, какие плюсы и минусы есть у каждого из этих вариантов.
Схема с диодным мостом

Устройство этой схемы включает в себя четыре диода, подключенных разнонаправлено. По своему принципу диодный мост должен ток из сети 220 V трансформировать в пульсирующий. Суть действия в следующем: синусоидальные полуволны при проходе по двум диодам изменяются, в результате минус теряет полярность. При сборке нужно подключить к плюсовому выходу конденсатор до моста в месте подачи переменного тока. Сопротивление в 100 Ом присоединяется перед минусом. Для сглаживания перепадов напряжения сзади моста нужен еще один конденсатор.
Такую схему несложно собрать, даже любитель при минимальных навыках справится с этой работой. Саму плату лучше позаимствовать от отработавшего свое светильника. Главное запомнить – светодиоды нужно соединять по 10 шт. последовательно, после получившиеся несколько цепей соединить параллельно.
Резисторная схема
Ее тоже совершенно несложно изготовить. При даже небольших навыках вполне по силам собрать подобную лампу даже новичку. Собирается эта схема из 2 резисторов и 2 цепочек светодиодов, состоящих из одинакового числа элементов, соединенных последовательно, но имеющих разную направленность. От первого резистора соединение идет от одной полосы светодиодов к катоду, от другой – к аноду. От второго резистора – наоборот. Оптимальное число диодов в полосе – 10-20. Вывод: изготовить самодельный драйвер и в последующем лампу на светодиодах – совершенно несложная задача.

Устройство LED-ламп
Основные 6 частей LED-лампы – это корпус, цоколь, рассеиватель, радиатор, блок светодиодов LED и бестрансформаторный драйвер (на картинке представлено устройство светодиодной лампы на 220 V). Эти лампы вполне подлежат ремонту, если один или несколько кристаллов прогорели. Вообще в LED-светильниках обычно горит драйвер, для которого чаще всего используются такие микросхемы, как bp 3122, bp 2832а или bp 2831а. Помимо прочего, драйвер стабилизирует скачки напряжения.
На рисунке сверху изображена лампа варианта СОВ. Ее светодиод представляет собой единую пластину, в которую включено множество чипов. Если у такой лампы перегорает светодиод, то он меняется целиком, т. к. отдельные чипы невозможно поменять.
Схема светодиодного драйвера
Схема драйвера светодиодной лампы (можно понять на примере MR-16) настолько проста, насколько это возможно (драйвер LED-лампы ничем от него не отличается). Она работает так: переменный ток в 220 V проходит на мост (диодный) через конденсатор С1. Далее уже прямой ток идет на светодиоды НL1–НL27, которые подключены последовательно. Число их может достигать 80 шт. Ну а более ровного света, без мерцания, добиваются как раз при помощи конденсатора С2. Желательно, чтобы он был как можно большей емкости. Схема драйвера для светодиодов от сети 220 V представлена на рисунке.

Ремонт LED–лампы
Устройство светодиодного светильника представляет собой обычную LED-лампу, и если светодиоды в ней отдельные, а не единой пластиной с кристаллами, то ее возможно отремонтировать, заменив сгоревшие (прогоревшие) элементы. Ее с легкостью можно разобрать. Нужно разделить корпус с цоколем. Если для примера взять лампу МR-16, то как раз внутри будет находиться 27 светодиодов. Подобраться к плате с элементами можно путем снятия защитного стекла. Делается это при помощи обычной отвертки.
Иногда именно этот этап становится самым трудным. Если светодиод прогорел, то это сразу видно. Сгоревшие элементы придется поискать при помощи тестера, либо подавая на них по 1.5 V. Неисправные светодиоды необходимо заменить. Причиной мигания лампы может быть поломка конденсатора С1. При этом нужно поставить другой, с напряжением 400 V.
Особенности ламп со штыревым цоколем
По сути, лампа со штыревым цоколем практически ничем не отличается. Единственное, что необходимо знать, это маркировку, которая наносится на корпус. Относится она именно к особенностям цоколя.
- G – это как раз указывает на то, что у лампы штыревой цоколь.
- U – маркер того, что лампа энергосберегающая.
- 10 – расстояние от одного до другого штыря в миллиметрах.
Как проверить светодиодную лампу при покупке?
Светодиодная лампа с цоколем Е-27Примером послужит лампа с цоколем Е-27 и питанием в 220 V. Как при покупке не ошибиться, выбрав качественный товар? Необходимо внимательно осмотреть всю конструкцию светодиодной лампы. Изначально нужно посмотреть на радиатор. Он должен быть литым, а не наборным, т. к. в том числе и от него зависит долговечность работы выбранной лампы. Радиатор стоит в прямой зависимости от мощности, следовательно, чем мощнее лампочка, тем больше охладитель. Очень хорошо себя показывают алюминиевые, керамические либо графитовые.
Наилучший вариант – термопластиковое покрытие радиатора. После необходимо убедиться в отсутствии люфтов в цоколе, а также видимых механических повреждений. В любом магазине электротоваров имеется возможность включения лампы в сеть для проверки. При подаче питания на лампу нужно обратить внимание на исходящий от нее свет. Даже если мерцания не видно, необходимо посмотреть на прибор через камеру сотового телефона. На экране будет четко видно наличие или отсутствие мерцания. Если же имеется пульсация, такую лампу покупать не стоит. Что касается маркировки, то она должна быть четкой и хорошо читаемой, т. к. именно на основе этой информации выбирается тип светодиодной лампы.
Общие сведения
Применение светодиодных ламп необычайно широко. Это и бытовое освещение, и промышленное, и даже уличное. По своей сути такие световые приборы являются самыми экологически чистыми, т. к. не содержат опасных веществ (таких, как ртуть и т. п.) в отличие от люминесцентных или ртутных (ДРЛ) ламп. Световые приборы, имеющие в основе нить из вольфрама, дают много света, но их эффективность весьма сомнительна, т. к. 95 процентов уходит на выработку тепла, в чем и состоит отличие от принципа работы светодиодной лампы. Очень интересно, что после того, как было запрещено продавать лампы мощностью свыше 100 Ватт, их все равно не перестали выпускать. Только теперь они называются не лампочки, а «теплоизлучатели», что по своей сути правильно. Есть различные корпуса светодиодных ламп, а также различные типы цоколя. На картинке указаны маркировки, по которым можно определить, какая именно лампа нужна для того или иного прибора. Интересен также и цвет таких ламп. С первого взгляда может показаться, что он просто белый, однако это не так. Есть специальный индекс цветопередачи – CRI. Если он низок, то освещение будет казаться неприятным, хотя будет непонятно почему, ведь оно визуально не отличается. Если брать за пример солнце или обычную лампочку, то их CRI будет равен 100. Качественная светодиодная лампа имеет CRI 90. Ну а если CRI менее 80, то такие световые приборы не рекомендуется использовать в местах проживания.

Так что же в итоге? Конечно, личное дело каждого, какие осветительные приборы использовать, но то, что светодиодные лампы помимо своей экологичности еще и очень экономичны – это неоспоримый факт, а значит, они будут продолжать завоевывать рынок электротехники до тех пор, пока не появится что-то новое.
lampagid.ru
Содержание:
Традиционные лампы накаливания, широко применяемые во всех областях жизни и деятельности людей, постепенно заменяются другими источниками света, в том числе и светодиодными энергосберегающими лампами. Они не только отличаются высокой экономичностью, но и абсолютно новым интеллектуальным уровнем. Схема светодиодной лампы включает в свой состав специальный электронный блок, управляющий данным источником света. В обычных лампочках накаливания такое управление не нужно. Здесь нить накаливания напрямую подключена к выводам напряжения сети. При прохождении через вольфрамовую нить, электрический ток разогревает ее до высоких температур. В результате, металл раскаляется и производит световой поток. Светодиодные лампы работают совершенно по другому принципу. Общие принципы работы светодиодных лампСвечение, производимое светодиодными лампами, создается полупроводниковым кристаллом, покрытым люминофором. Управление всеми процессами осуществляется с помощью сложного электронного блока. Его основной задачей является обеспечение строго заданных режимов работы лампы. Если же определенные режимы не будут соблюдаться, то светодиоды очень быстро выйдут из строя, а сама лампа перегорит. С помощью электронных регулировок больший расход электрической энергии на световое излучение, а не на выделение тепла. Таким образом, коэффициент полезного действия данного типа ламп поддерживается на высоком уровне. Электронное управление создает безопасные условия при эксплуатации светодиодных ламп, предотвращает поражение электротоком. Еще одной важной задачей устройства является поддержание яркости на одном и том же уровне при работе в различных условиях. На качество свечения не должны влиять ни жара, ни холод, ни какие-либо сетевые помехи. За счет электроники стало возможным повысить функциональность ламп. Они могут дистанционно включаться и выключаться, яркость и цветность регулируется в широком диапазоне.Таким образом, электронное управление является основой нормального функционирования всех светодиодных ламп. Порядок работы электронного управленияСовременная светодиодная лампа может в полной мере проявить свои возможности благодаря качественным светодиодам и максимальному отведению тепла. Однако, без электронного блока управления, оптимизирующего все функции, невозможна нормальная работа данных осветительных устройств. Вся работа блока основана на специальной микросхеме, которая известна, как контроллер светодиодного драйвера. В соответствии со своей основной функцией, этот контроллер формирует постоянный ток, независимый от внешних условий, для его последующей подачи к светодиодам. При помощи микросхемы контроллера производится сравнение тока, протекающего в лампе, с его точно установленным значением. По итогам сравнения выдаются высокочастотные управляющие импульсы, уменьшающие или увеличивающие этот ток. Стабилизация тока осуществляется импульсным стабилизатором. Его КПД значительно выше, в сравнении с обычными линейными конструкциями. За счет стабильного тока светодиоды начинают светиться с постоянной яркостью, а срок их эксплуатации значительно увеличивается. Ток, предназначенный для светодиода, зависит от мощности и конструкции той или иной лампы. Как правило, диапазон используемой силы тока, очень широкий. Эффективное управление этими токами осуществляется мощными выходными транзисторами, являющимися частью контроллера. Использование возможностей контроллера позволяет подключать различные сервисные функции, которые совершенно не подходят для ламп накаливания. Управление светодиодными лампочками может осуществляться дистанционно, с помощью пульта, через компьютер и различные виды датчиков. Электронный блок, управляющий светодиодными лампами, работаем по следующей схеме. К цоколю лампы подключается диодный мост, осуществляющий выпрямление напряжения сети 220 вольт. Роль силового ключа выполняет мощный транзистор, находящийся под управлением контроллера. С помощью транзистора производится переключение тока высокой частоты в первичной обмотке трансформатора. Во вторичной обмотке появляется ток, уже выпрямленный и стабилизированный диодом, который и поступает непосредственно к светодиодам. Особенности современных светодиодных лампНовое поколение светодиодных ламп обладает поистине уникальными свойствами. Прежде всего, они позволяют заранее настроить необходимую яркость и цветовую гамму. Достаточно всего лишь приобрести лампу, вкрутить ее в обычный патрон, после чего, настроить необходимый уровень освещения с помощью регулировок, расположенных на пульте управления. За счет этого, стало возможным создавать любые комфортные условия. В последующем, все заданные настройки сохраняются при каждом включении и выключении лампы. В настоящее время разрабатываются лампочки, которые будут определять наличие или отсутствие людей в помещении и выполнять самостоятельное включение или выключение света. Безопасную эксплуатацию обеспечивает сама схема светодиодной лампы, где ведущую роль играет ее собственная электронная часть. Кроме того, существуют и дополнительные элементы, например, термодатчик и датчик, встроенные в контроллер. Функцией термодатчика является выключение лампы при сильном перегреве колбы, а датчик выполняет отслеживание предельных значений напряжения в сети. При неисправности колбы, лампа все равно будет безопасной, благодаря специальной изолированной конструкции электронного блока. В настоящее время, все более широкой популярностью пользуются, так называемые, умные дома. Для таких домов предполагается и специфическая система освещения, с интеллектуальным уклоном. Данная система имеет целый ряд явных преимуществ. С помощью программирования имеется возможность добиться следующих результатов:
Таким образом, управление светодиодными светильниками осуществляется через встроенную микросхему, и не требует какого-либо дополнительного оборудования. Управление светодиодными лампамиДля того, чтобы добиться желаемых результатов при эксплуатации светодиодных ламп, необходимо точно знать, на каких принципах строится управление этими световыми приборами. Импульсный стабилизатор, согласно своему названию, стабилизирует входное напряжение или ток. Регулировка производится с помощью транзистора, непрерывно функционирующего в активном режиме. В конечном итоге, происходит преобразование высокого входного напряжения в низкое напряжение на выходе. Широтно-импульсная модуляция позволяет регулировать ширину импульсов, с ее помощью задается необходимый ток для светодиодов. Высокая частота используется в процессе преобразования напряжения и позволяет значительно уменьшить габаритные размеры дросселей и трансформаторов. Чем выше частота, тем меньше размеры этих устройств. Изолированные и неизолированные конструкции. Первый вариант используется в трансформаторе, где первичная и вторичная обмотка изолированы между собой. Поэтому, высокое входное сетевое напряжение не может попасть напрямую к выходу, то есть, на светодиоды. Изоляция гарантируется даже при выходе из строя каких-либо электронных элементов управления. Человек останется в безопасности при случайном касании светодиодов. Когда вместо трансформатора используется дроссель, это упрощает конструкцию лампы и удешевляет ее, но, одновременно, снижается безопасность. В этом случае, велика вероятность попадания на выход сетевого напряжения, при поломке электроники. Коэффициент мощности может корректироваться. В обычных лампах накаливания, наблюдается совпадение фаз тока и напряжения. Это связано с тем, что нить лампы, фактически, играет роль резистора, а коэффициент мощности составляет единицу. При увеличении нагрузки, фазы тока и напряжения сдвигаются, что ведет к снижению коэффициента. Это вызывает дополнительные потери во время передачи энергии. В светодиодных лампах эта проблема решается путем установки дополнительных цепей, корректирующих коэффициент мощности. Простая схема источника питания светодиодной лампы |
electric-220.ru
схема, устройство, описание и отзывы
Электрическая лампа является незаменимым элементом в электрификации любого помещения. Сегодня существуют различные виды ламп. Из них любой хозяин подберет варианты, оптимальным образом дополняющие уют в доме. Лампы могут иметь разные технические характеристики. Подобрав их правильно, удастся к тому же сэкономить деньги на оплате электрической энергии.
Несмотря на разнообразие видов, у них есть одинаковые части: это цоколь с резьбой и патрон. Соответствующая информация всегда содержится на самих лампах.

Цоколи
Для бытовых нужд бывают лампы с маленьким, средним и большим цоколем. Этим характеристикам соответствуют размеры Е14, Е27 и Е40. Число здесь означает миллиметровый диаметр. Размер Е27 является наиболее распространенным. Е40 используют на уличных лампах с мощностью в 300, 500 и 1000 Вт.
Кроме вкручиваемых в патрон цоколей, бывают варианты штырькового типа. Их виды: G5, G9, 2G10, 2G11, G23, R7s-7. Такие цоколи нужны для экономии места. Электрическая лампа здесь крепится в светильнике при помощи штырьков.
Мощность
Это одна из главных характеристик. Производитель ее указывает на цоколе или баллоне. Мощность электрической лампы определяет, какой световой поток будет исходить от нее. Светоотдача и уровень излучаемого света — разные понятия. Ведь энергосберегающая лампочка, имеющая мощность 5 Вт, может светить не хуже лампы накаливания на 60 Вт. Параметр светоотдачи, к сожалению, не фиксируется. Поэтому в этом остается полагаться лишь на собственный опыт использования тех или иных вариантов, а также на советы продавцов.
Светоотдача
Параметр означает, что на 1 Ватт лампа выдает соответствующее количество люменов. Сравнив показатели разных видов, можно заметить, что энергосберегающая люминесцентная лампа будет от четырех до девяти раз экономичнее лампы накаливания. Если последняя на 60 Ватт даст приблизительно 600 люмен, то энергосберегающая те же результаты покажет при параметрах 10-11 Ватт.

Эти виды лампочек появились первыми в домах в девятнадцатом веке. Они, конечно, очень изменились с тех пор. Однако принцип действия остался тем же.
Все они состоят из стеклянного баллона, внутри которого — вакуумное пространство, цоколя с контактами и предохранителями, а также нитями накаливания, испускающими свет. Спираль изготовлена из вольфрамовых сплавов, которая с легкостью выдержит рабочую температуру +3200 градусов по Цельсию. Электрическая схема ламп такова: при прохождении через проводник с малым сечением и проводимостью электрического тока часть энергии переходит на разогрев спиральной детали. Поэтому он начинает светиться. Чтобы нить не перегорела в этот же миг, в лампы накачивают инертный газ.
Несмотря на такое простое устройство электрической лампы, придумано множество их видов, отличающихся друг от друга по формам, габаритам и используемым материалам. Кроме того, лампы изготавливают с разной мощностью. Она варьируется от 40 до 250 Вт, если предназначена для бытового освещения. Для промышленных нужд делают более мощные установки.
Простая схема электрической лампы может выглядеть следующим образом.

Бывают декоративные лампы в виде свечей, баллон которых имеет вытянутую, а не круглую форму, и похож по форме на свечу. Обычно их используют в небольших светильниках. Стекла могут окрашиваться в разные цвета. В состав стекол зеркальных ламп входит отражающее покрытие, чтобы направлять свет компактным пучком. Чаще всего они применяются для потолочного освещения, чтобы направлять весь свет вниз. Электрическая лампа накаливания имеет низкое напряжение. Те, которые предназначены для местного освещения, имеют напряжение всего 12, 24, 36 В. Их применяют при авариях, в ручных приборах и так далее. Вместе с малым потреблением энергии они дают совсем небольшое освещение.
Также отличаются электрические лампы сопротивлением, которое изменяется вместе с напряжением и мощностью, но не линейным образом.
Такие лампы имеют целый ряд недостатков. В первую очередь у них низкий коэффициент полезного действия — он не превышает 2-3 % от энергии потребления. Остальное отдается выработке тепла. Во-вторых, они являются небезопасными с точки зрения риска возникновения пожара. Обычная газета способна загореться уже через двадцать минут после того, как будет приложена к лампе с мощностью в 100 Вт. Лампы также не являются долговечными, так как служат всего от 500 до 1000 часов.
Зато они стоят очень дешево и не требуют никаких дополнительных настроек и подключений. Поэтому, несмотря на имеющиеся недостатки, многие потребители отзываются об этих лампах положительно и продолжают пользоваться именно ими.
Галогенные лампы
Данный вид имеет тот же принцип работы, что и в предыдущем случае. Разница заключается лишь в составе газа внутри баллона. Здесь к инертному газу добавляют йод или бром. Таким образом увеличивается температура нитей накаливания и снижаются испарения вольфрама. Поэтому их срок службы в разы больше по сравнению с лампами накаливания.

Так как температура стекла увеличивается очень быстро, их изготавливают из кварца. Такой материал не выносит никаких загрязнений.
Галогенные лампы, в свою очередь, подразделяются на разные виды. Это и линейные варианты, используемые в стационарных или переносных прожекторах, и лампы с зеркальным покрытием, которые часто устанавливают в гипсокартонные конструкции. Среди недостатков у них можно выделить чувствительность к перепадам напряжения. Поэтому при применении желательно использовать дополнительно специальный трансформатор, где будет выравниваться сила тока электрической лампы.
Часто такие лампы устанавливают для автомобильных фар. И хотя автовладельцы положительно о них отзываются, они не видят особой разницы между экономичными вариантами и дорогими, с различными напылениями и другими эффектами.
Люминесцентные лампы дневного света
Если галогенные лампы имели аналогичный принцип действия с лампами накаливания, то данный вид существенно отличается по своей работе. Здесь под воздействием тока в колбе из стекла горят не вольфрамовые нити, а пары ртути. Так как свет излучается в ультрафиолете, различить его фактически невозможно. Ультрафиолет вынуждает излучать свет люминофор, покрытие на стенках трубок. Его мы и видим. Способ соединения в этом случае также существенно отличается. На трубках находятся штырьки, которые нужно вставить в патрон и повернуть.

Лампы дневного света работают при низкой температуре, поэтому к ним легко прикасаться. Благодаря большой поверхности удается добиться ровного рассеянного света, хорошего для глаз человека. Срок службы в десять раз превышает аналогичный показатель у ламп накаливания.
Но такие лампы напрямую к сети не подключаются. Для них применяют специальные балласты и стартеры, поджигающие их при включении. Большинство светильников, предназначенных для люминесцентных ламп имеют встроенные устройства свечения, напоминающие электронные пускорегулирующие аппараты.
Несмотря на дороговизну, покупатели светильников с такими лампами отмечают их естественность для зрения. Поэтому их потребители остаются верными своему выбору.
Маркировка у них следующая:
- ЛБ означает белый свет;
- ЛД — дневной;
- ЛЕ — естественный;
- ЛХБ — холодный;
- ЛТБ — теплый.
После букв следуют цифры, первая из которых означает степень передачи света, а следующие — соответствующую температуру свечения. Чем выше светопередача, тем освещение является более естественным для восприятия. Разная температура даст разный цвет. Так, очень теплый белый получится при 2700К, теплый — при 3000К, естественный — при 4000К, дневной — при 5000К.
Энергосберегающие лампы
Когда появились эти компактные лампы, они произвели настоящий фурор на рынке. Виды их чрезвычайно разнообразны. А достоинства их очевидны: теперь нет необходимости устанавливать дополнительный балласт и использовать специальные светильники. Они легко вкручиваются в обычный цоколь. В то же время, как и у всех видов, у них имеются недостатки. Это плохая работа при низкой температуре, долгий запуск, несовместимость со световыми регуляторами, высокая цена, ртутные соединения в составе, несхожесть с естественным светом.
Такие лампы хоть и набирают популярность, но люди все-таки с некоторой оглядкой относятся к ним и, пользуясь, обычно имеют в запасе обычные лампочки.

Светодиодные электрические лампы
Данный вид появился во второй половине двадцатого века. По действию они представляют собой полупроводник, где часть энергии выделяется в виде излучения, воспринимаемого человеческим глазом. Цвет получается разный, в зависимости от материала полупроводника.
Эти модели лучше ламп накаливания по всем показателям:
- длительности срока службы;
- светоотдаче;
- прочности;
- экономичности и так далее.
Светодиодные лампы бывают разными в зависимости от мощности, размера, производительности и так далее.

Но помимо всех этих очевидных преимуществ, существует один значительный недостаток: цена, которая выше стоимости обычных ламп накаливания в 100 раз. Такой существенный минус, естественно, уменьшает количество потребителей. Но тем не менее светодиоды набирают все большее количество поклонников.
fb.ru
Схема и устройство светодиодной лампы на 220 вольт
Светодиодная лампа на 220в, частота сети 50Гц, мощность 3Вт, тип LED3-JDR, производитель Camelion, цоколь E14, потребляемый ток 26mA, световой поток 235Лм. Температура свечения 4500 К. Это параметры заявленные производителем.
Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным.
Яркость свечения светильника визуально сопоставима с энергосберегающей лампой на 7-9 Вт. Разобрать лампу оказалось не просто. Защитное стекло приклеено на совесть, прорезал склейку по контуру, но снять его без потерь не получилось – стекло плафона очень хрупкое.
На плате с наружной стороны установлены 6 smd светодиодов неизвестного типа. На обратной стороне «драйвер». Схема питания светодиодов этой лампы не удивила: для гашения избыточного напряжения используется реактивное сопротивление конденсатора С2, далее выпрямительный мост и сглаживающий конденсатор С3, а не импульсный драйвер, как в светодиодной лампе GL5,5.

Конденсатор С2 полистирольный металлопленочный типа CBB22 рассчитан на использование в цепях постоянного тока и импульсных схемах, обладает эффектом самовосстанавления, хорошей изолирующей способностью и минимальными потерями на высокой частоте. Советские аналоги — конденсаторы типов К73-17, К73-44, К71-7

Десятиомный резистор ограничивает пиковый ток заряда С3 для исключения перегрузки выпрямительного диодного моста при включении. Через резистор R1 разряжается конденсатор С3 после выключения. С1 на плате не установлен, предназначен для увеличения тока через светодиоды при необходимости. При обрыве в цепи светодиодов напряжение на С3 без резистора R2 может достигнуть 350 вольт, а с этим резистором оно хоть и превысит номинальное для конденсатора, но не настолько, чтобы тот вышел из строя.
При напряжении в сети 237 вольт напряжение на всей цепочке диодов составило 93 В, на каждом светодиоде 15,3 вольта соответственно. Корпуса излучателей на плате типоразмера 6730 (6,7х3 мм), похоже, в каждом корпусе находится матрица из 4-х последовательно включенных светодиодов. Для светодиодов белого свечения падение напряжения при номинальном токе порядка 3,5 вольт. В нашем случае получается 3,8 вольта на каждом диоде, т.е. диоды работают в жестком режиме. Об этом говорит и то, что их температура при работе составляет 50-60 градусов Цельсия. В таком режиме диоды подвержены усиленной деградации и срок их службы будет в разы меньше, чем при номинальных токах. Производитель никогда не будет делать «вечную» лампу, иначе он разорится.
В схеме светодиодной лампы с гасящим конденсатором и выпрямительным мостом, за которым стоит конденсатор для сглаживания пульсаций ток будет очень отличаться от синусоидальной формы. Но это отдельная тема.

На этом фото, для сравнения, показаны однокристальные светодиоды 3528 (3,5х2,8 мм) у которых номинальный ток 20 мА.
Более эффективные (но больших габаритов) светодиодные светильники на 220 вольт можно сделать своими руками из диодной ленты. Для этого нужно взять 20 отрезков ленты 3528 на 12 вольт и спаять их последовательно, соблюдая полярность. Конденсаторы С1, С2 и резисторы R1, R2 исключаются из схемы. Вместо R1 надо поставить перемычку, а С3 должен быть на напряжение не менее 310 вольт. В данной схеме 10-тиомный резистор будет служить еще и предохранителем в случае короткого замыкания моста. На такой светильник понадобиться 1 метр открытой ленты с 60 диодами (20 отрезков по 5 сантиметров) или 0,5 метра с 120 диодами (20 отрезков по 2,5 см). Конструкция и размеры могут быть различными, главное соблюдать технику безопасности и, конечно, такой светильник должен иметь корпус с хорошей изоляцией.
firstelectro.ru
Схема светодиодной лампы на 220 в
Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.
С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

Список номиналов:
- C1 – значение емкости по таблице, 275 В или больше
- C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
- R1 – 100 Ом
- R2 – 1 MОм (для разряда конденсатора C1)
- VD1 .. VD4 – 1N4007
Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.
Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.
количество светодиодов последовательно, шт | 1 | 10 | 20 | 30 | 50 | 70 |
напряжение на сборке из светодиодов, В | 3,5 | 35 | 70 | 105 | 165 | 230 |
ток через светодиоды, мА (С1=1000нФ) | 64 | 57 | 49 | 42 | 32 | 20 |
ток через светодиоды, мА (С1=680нФ) | 44 | 39 | 34 | 29 | 22 | 14 |
ток через светодиоды, мА (С1=470нФ) | 30 | 27 | 24 | 20 | 15 | — |
ток через светодиоды, мА (С1=330нФ) | 21 | 19 | 17 | 14 | — | — |
ток через светодиоды, мА (С1=220нФ) | 14 | 13 | 11 | — | — | — |
Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.
По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.
Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.
Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.
Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.

Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.
Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.
hardelectronics.ru
СХЕМА СВЕТОДИОДНОЙ ЛАМПЫ
СХЕМА СВЕТОДИОДНОЙ ЛАМПЫ
Как ещё недавно лампы накаливания вытеснялись люминесцентными энергосберегающими, так сейчас последние, стали всё больше заменять на светодиодные. К преимуществам светодиодных ламп можно отнести: очень большой срок службы, светодиодные лампы имеют срок службы 50 тысяч часов. При использовании ламп в течении 5 часов в сутки их хватит как минимум на 15 лет. Светодиодные лампы ударопрочные и не содержат вредных для здоровья веществ. В светодиодных лампах отсутствует ультрафиолетовое и инфракрасное излучение, а так-же отсутствует мерцание, что делает их абсолютно безвредными для глаз. И наконец, экономичность. Потребляемая мощность светодиодных ламп составляет 10 Вт. При этом световая отдача таких ламп сравнима с отдачей ламп накаливания мощностью 100 Вт.
Типовая схема питания выполняется по бестрансформаторному принципу и содержит ограничительный конденсатор и диодный мост.
Конденсатор 0.2 мкФ — балластный, его емкость выбрана такой, чтобы ток через светодиоды не превышал 25 мА. Основное назначение конденсатора 10 мкФ -сглаживать пульсации напряжения, выпрямленного мостом VD1-VD4. Резистор 1 к ограничивает ток через линейку светодиодов. Готовую лампу можно вставлять в стандартный патрон любого осветительного прибора.
Ещё одна разновидность схемы питания светодиодных ламп, была описана в одном из зарубежных журналов:
За границей, уже давно наловчились выпускать светодиодные лампы по стандартной схеме:
и всё больше заполняют ими наш рынок. Между прочим, ещё одним преимуществом этих ламп является термостойкость. Когда возникла необходимость поменять светильник в сауне выяснилось, что новый стоит около 100 уе! Как Вы догадались, проблема успешно была решена установкой светодиодной лампы.
Ну а как же мы? Недавно госкорпорация «Роснано» приняла проект по производству в России твердотельных светодиодов. Проект предполагает создание высокотехнологичного промышленного производства систем освещения нового поколения. Основой продукции станут полупроводниковые чипы нитрида галлия. Конечным продуктом станут светодиодные чипы, светодиодные лампы и осветительные системы, яркость которых сопоставима с лучшими мировыми аналогами. Комплекс по производству светодиодных чипов, ламп и светотехники разместится в Екатеринбурге. На полную производственную мощность компания должна выйти к 2013 году, По прогнозам, спрос на экономичные светодиодные лампы, в условиях роста тарифов на электроэнергию будет только расти.
ФОРУМ по светодиодным лампам.
Светодиодыelwo.ru