Уловитель пыли – Виды пылеуловителей

Виды пылеуловителей

Обеспечение оптимальной работы человека на производстве зависит от множества факторов, среди которых особое место занимает уровень загрязнения воздуха. Существует несколько видов очистки подобной среды, которые зависят от типа вредных веществ распространяемых в ней.

Среди множества устройств самыми популярными являются механизмы для улавливания пыли.

Основные разновидности

Пылеуловители представляют собой механизмы, способные улавливать твердые механические частицы разного размера и структуры. Применяются на производстве, где концентрация таких веществ постоянно повышается в процессе работы станков и других подобных конструкций.

Существует несколько видов пылеуловителей, среди которых можно выделить основные:

  1. Гравитационные камеры. Работают такие системы по принципу воздействия силы тяжести на частицы, которые и оседают в одном месте. Чтобы добиться такого эффекта воздух подается в определенный отдел вентиляционной системы, где пыль заставляют собираться в одном месте. Такой вид пылеуловителей работает эффективно только с большой фракцией и относительно тяжелыми частицами. Гравитационные системы также разделяются на несколько подвидов (прямоточные, камеры лабиринтного типа и т.д.).
  2. Мокрые пылеуловители или скрубберы представляют собой системы очистки воздуха с использованием жидкостей, которые преднамеренно утяжеляют пыль, позволяя таким образом собирать ее вместе. Работают по принципу центробежной силы. Для этого изначально в воздух подается вода, которая собирает на своей поверхности частицы пыли. После попадания такого раствора в специальную камеру, механические части заставляют оседать на определенной поверхности.

Сухой тип пылеуловителей

Такой вариант конструкций применяется довольно часто на различных типах производств. Работа сухих пылеуловителей основывается также на центробежной силе.

Выделяют 2 основных вида сухих очистительных систем:

  • Пылеуловители тканевого типа представляют собой специальные емкости с фильтрами, через которых пропускают загрязненный воздух. При этом пыль оседает на стенках мешка, а очищенный газ подается дальше. Чтобы добиться высокой степени очистки могут использовать несколько слоев подобных фильтров.
  • Электрические пылеуловители представляют собой системы, которые преднамеренно придают твердым частицам электрический заряд. Это в последующем позволяет осаживать их на поверхности электродов.

Смотрите также:

Что делать, если кулер компьютера сильно шумит http://euroelectrica.ru/chto-delat-esli-kuler-kompyutera-silno-shumit/.

Интересное по теме: Как выбрать подшипник?

Советы в статье «Стреппинг машина — что это такое » здесь.

Все виды пылеуловителей являются необходимыми элементами многих производственных процессов, что и привело к такой огромной их популярности.


euroelectrica.ru

Электронный пылеуловитель | Полезное своими руками

Любая домашняя пыль состоит из огромного комплекса аллергенов, которые человек вдыхает вместе с воздухом. Частицы пыли повреждают стенки альвеол, нарушая первый иммунный барьер и открывая путь инфекциям и аллергенам. Аллергия на пыль проявляется такими симптомами, как насморк, чиханье, слезящиеся глаза.

Особенно вредна пыль образовавшаяся в результате естественного разрушения искусственных материалов (поролон, всевозможные утеплители, обои, обивка для мебели, ковры, паласы и т.п.)

В такой пыли накапливаются соединения свинца и пестициды, а также микроскопические пылевые клещи, способные вызывать аллергические реакции и, даже астму.

Поэтому необходимо принимать все меры, чтобы снизить содержание пыли в жилых помещениях (особенно в воздухе).

Обычно для очистки воздуха от пыли применяют сложные и громоздкие механические фильтры, имеющие низкую производительность.

Заметно увеличить производительность и уменьшить размеры воздухоочистительных установок можно, применив электронный пылеуловитель.

Принцип действия такого пылеуловителя заключается в том, что загрязненный воздух проходит через металлическую трубу 1, внутри которой установлены две проволочные сетки 2 и 3, играющие роль фильтра.

Сетка 2 изолирована от короба и находится по отношению к нему под постоянным положительным напряжением 5,2 кВ. Сетка з имеет надежный электрический контакт с коробом (заземлена). Частицы пыли, проходя через первую сетку, приобретают сильный электрический заряд, который заставляет их оседать на сетке второго фильтра, имеющей по отношению к первой сетке отрицательный потенциал.

Для очистки от крупных частиц между первым и вторым фильтрами установлен дополнительный механический фильтр 4. Очищенный от пыли чистый воздух выходит из противоположного отверстия трубы, а пыль осаждается на дне, вблизи второго фильтра.

Устройство электронного пылеуловителя несложно, но требует источника постоянного напряжения 5,2 кB. Его можно собрать по предлагаемой схеме. Он представляет собой выпрямитель сетевого напряжения, состоящий из повышающего трансформатора Тр1 и выпрямителя с удвоением напряжения на диодах Д1, Д2 и конденсаторах С2, С3.

Ограничение выходного тока до безопасной для человека величины 5 ма осуществляется с помощью токоограничительных резисторов R1-R3, а также дополнительной обмотки III, трансформатора Тр1, (вместе с конденсатором С1 она образует феррорезонансный стабилизирующий контур). Действие его сводится к тому, что в случае превышения выпрямленного тока более 5 mA, напряжение на выводах обмотки II снижается.

Неоновая лампа Л1 в данном устройстве играет роль сигнализатора величины выпрямленного напряжения. Включается она параллельно резистору R1.

Сопротивление его подобрано таким образом, чтобы при выпрямленном напряжении 5,2 kV падение напряжения на резисторе R1 составляло около 100B, то есть достаточное для зажигания неоновой лампы.

По мере накопления пыли на второй сетке, происходит увеличение потребляемого тока, это приводит к понижению выходного напряжения. Лампа Л1 гаснет, что свидетельствует о том, что пылеуловитель требует очистки.

Очистку устройства можно производить только после выключения питания.

В выпрямителе пылеуловителя использованы кремниевые диодные столбы и высоковольтные конденсаторы, применяемые в телевизорах. Трансформатор Тр1, с целью повышения его электрической прочности, залит эпоксидной смолой.

В качестве диодов Д1 и Д2 можно использовать кремниевые высоковольтные выпрямительные столбы Д1006-Д1008.

electro-shema.ru

Глава 2 классификация пылеуловителей

2.1 Классификация устройств для очистки воздуха от пыли

Пылеулавливающее оборудование при всем его многообразии может быть классифицировано по ряду признаков: по назначению, по основному способу действия, по эффективности, по конструктивным особенностям. Классификация пылеулавливающего оборудования дана в ГОСТ 12.2.043-80. «Оборудование пылеулавливающее. Классификация».

Оборудование, применяемое для очистки от пыли воздуха в системах вентиляции, кондиционирования и воздушного отопления, а также для защиты от загрязнения пылью воздушной среды зданий, сооружений и прилегающих к ним территорий, метрополитенов, подземных и открытых горных выработок, подразделяется на следующие типы:

  • оборудование, применяемое для очистки от взвешенных частиц пыли воздуха, подаваемого в помещения системами приточной вентиляции, кондиционирования и воздушного отопления — воздушные фильтры;

  • оборудование, применяемое для очистки от пыли воздуха, выбрасываемого в атмосферу системами вытяжной вентиляции — пылеуловители.

Пылеулавливающее оборудование в зависимости от способа отделения пыли от воздушного потока применяют следующих исполнений:

  • оборудование для улавливания пыли сухим способом, при котором отделенные от воздуха частицы пыли осаждаются на сухую поверхность;

  • оборудование для улавливания пыли мокрым способом, при котором отделение частиц от воздушного потока осуществляется с использованием жидкостей.

Пылеулавливающее оборудование по принципу действия подразделяется на группы, по конструктивным особенностям — на виды. Пылеулавливающее оборудование, в котором отделение пыли от воздушного потока осуществляется последовательно в несколько ступеней, отличающихся по принципу действия, конструктивным особенностям и способу очистки, относят к комбинированному пылеулавливающему оборудованию.

2.2 Виды воздушных фильтров

Самоочищающиеся масляные фильтры с пружинной сеткой.

Очистка воздуха производится при его последовательном прохождении через две движущиеся бесконечные пружинные сетки, смоченные маслом (воздух проходит через четыре плоскости, смоченные маслом). Каждая сетка приводится в движение с помощью двух пар валов, получающих вращение от электродвигателя через редуктор. Необходимо обеспечить равномерное движение воздуха по всему сечению фильтра со скоростью до 3 м/с.

При движении пружинных сеток их нижние части погружаются в масляную ванну и при этом очищаются от осевшей на них пыли. Масло в ванне периодически сменяется. Применяют масло веретенное, трансформаторное, турбинное и др. Сорт масла должен соответствовать времени года согласно рекомендации завода-изготовителя фильтров.

Самоочищающийся масляный фильтр с сетчатыми шторками.

Фильтрующий слой создают сетчатые шторки, прикрепленные к втулочным цепям, надетым на приводные шестеренки. На вертикальных участках движения цепей шторки перекрывают друг друга. При прохождении шторок через масляную ванну они промываются, и слой масла обновляется. Шторки движутся периодически — через 12 минут.

Фильтрующая панель поворачивается за 12 — 20 с. (в зависимости от размеров фильтра). Удельная воздушная нагрузка фильтра 8350 м3/(чЧм3). Установка фильтров снабжается системой маслоснабжения с его подогревом, циркуляцией и очисткой.

Рекомендуемая скорость воздуха при прохождении фильтра 2,5 — 2,6м/с.

Рулонные фильтры

Промышленность до недавнего времени изготовляла рулонный фильтр ФРУ, предназначенный для очистки приточного и рециркуляционного воздуха с запыленностью менее 0,5 мг/м3. Возможно применение фильтра и при большей запыленности при технико-экономическом обосновании. Серийно выпускались фильтры производительностью 20-120 м3/ч. Фильтры могут устанавливаться в вентиляционных камерах и в кондиционерах.

Фильтр собирают из двух или трех секций в зависимости от требуемой производительности. Секция состоит из сварного корпуса, подвижной решетки. Решетка натянута между нижним и верхним валами. Нижний вал — ведущий. В верхней и нижней части каркаса установлены катушки с фильтрующим материалом. Перемещение решеток и вращение катушек осуществляется с помощью электродвигателя мощностью 0,25 кВт через редуктор. По мере загрязнения материал перематывается с верхних катушек на нижние. В фильтре применяют фильтрующий материал типа ФСВУ. Он представляет собой слой из стеклянного волокна толщиной 30 — 50 мм, промасленный и пропитанный в процессе изготовления связующими веществами. Слой обладает рыхлостью и упругостью. Материал изготовляется в виде полотнищ длиной 15 м. Подвижная решетка обеспечивает необходимую жесткость и прочность фильтрующего слоя.

Перемотка катушек производится периодически при достижении определенного значения гидравлического сопротивления в результате накопления пыли. Скорость перемещения материала при перемотке около 0,5 м/мин.

Воздушные фильтры высокой эффективности с материалами ФП

Материалы ФП и процесс их получения разработаны в Физико-химическом институте им. Л. Я. Карпова. Материалы ФП представляют собой исключительно равномерные слои ультратонких полимерных волокон.

Поскольку механическая прочность слоя волокон материала ФП невелика, он нанесен на тканевую подложку (марля, бязь, перкаль), которая и обеспечивает необходимую прочность.

В большинстве материалов ФП волокна сцеплены между собой за счет сил трения, и фильтрующий слой выдерживает значительную деформацию. Удлинение при разрыве — от 30 — 50%. Высокая пластичность обеспечивает надежную эксплуатацию фильтров, снаряженных материалами ФП.

Материалы ФП в зависимости от того, из какого полимера они изготовлены, стойки к различным химическим веществам, к высоким температурам — до 250 — 270°C.

Волокна ФП имеют вид ленты, ширина которой в 3 — 5 раз больше толщины. Материалы ФПП обычно обозначают по размеру волокон, а именно по ширине: например, ФПП-15, ФПП-25, ФПП-70 — обозначает фильтр Петрянова из перхлорвиниловых волокон шириной волокон соответственно 1,5; 2,5; 7,0 мкм.

Материалы ФП, изготовленные из полимеров с высокими изоляционными свойствами (перхлорвинил, полистирол), могут получать и удерживать электрические заряды. В результате повышается эффективность фильтра.

При длительном хранении, механическом воздействии, при высокой влажности, под воздействием ионизирующих излучений фильтровальные материалы теряют электрические заряды. Это же происходит и при накоплении в фильтре пыли в результате длительной эксплуатации.

Электрические воздушные фильтры

Фильтры, применяемые для очистки от пыли приточного воздуха, устроены несколько иначе, чем электрические пылеуловители, используемые для очистки выбросов в атмосферу.

Электрический воздушный фильтр — двухзонный. Вначале поток воздуха, подвергающегося очистке, проходит зону 1, которая представляет собой решетку из металлических пластин с натянутыми между ними коронирующими электродами из проволоки. К электродам подведен постоянный ток напряжением 13-15 кВ положительного знака от выпрямителя. Получив электрический заряд при прохождении ионизационной зоны, пылевые частицы в потоке воздуха направляются в осадительную зону. Она представляет собой пакет металлических пластин, расположенных параллельно друг другу на расстоянии 8 — 12 мм. К каждой второй пластине подведен ток напряжением 6,5 — 7,5 кВ положительного знака. Пыль осаждается на заземленных пластинах, к которым ток не подведен.

Вокруг коронирующего электрода происходит электрический разряд, сопровождающийся свечением («корона»). В результате электрических разрядов происходит выделение атомарного кислорода (одноатомные молекулы), образование озона O3, а также оксидов азота. При напряжении, применяемом в воздушных фильтрах, и при наличии в нем двух зон озон и оксиды азота выделяются в небольших количествах и опасности для людей не представляют. В электрических пылеуловителях, применяемых для очистки выбросов, используют ток напряжением 80-100 Вт, кроме того, в этих аппаратах к коронирующим электродам подведен ток отрицательного знака, что по имеющимся данным сопровождается более интенсивным выделением вредных веществ (в 8 раз).

Сила электрического тока и потребляемая мощность в электрических фильтрах невелики и находятся в пределах соответственно 0,8 мА и 10 Вт на 1000 м3/ч очищаемого воздуха.

2.3 Пылеуловители для очистки выбросов в атмосферу

Пылеосадительные камеры.

Очистку газов от пыли под действием сил тяжести производят в пылеосадительных камерах. Запыленный газ поступает в камеру, внутри которой установлены горизонтальные перегородки (полки). Частицы пыли оседают из газа при его движении между полками, расстояние между которыми обычно составляет 0,1-0,4 м. При такой небольшой высоте каналов между полками уменьшается путь осаждающихся частиц пыли. Вместе с тем наличие полок позволяет увеличить эффективную поверхность осаждения частиц. Уменьшение пути частиц и увеличение поверхности осаждения способствуют уменьшению времени осаждения и, следовательно, повышению степени очистки газа и производительности камеры. Однако скорость потока газа в камере ограничена тем, что частицы пыли должны успеть осесть до того, как они будут вынесены потоком газа из камеры.

Газ, пройдя полки, огибает вертикальную отражательную перегородку (при этом из него осаждается под действием сил инерции дополнительно некоторое количество пыли) и удаляется из камеры. Одновременно отражательная перегородка способствует более равномерному распределению газа между горизонтальными полками камеры, так как в этом случае гидравлическое сопротивление каналов между ними одинаково. Пыль, осевшая на полках, периодически удаляется с них вручную специальными скребками через дверцы в боковой стенке или смывается водой. Для непрерывной очистки газа от пыли камеру делят на два самостоятельных отделения или устанавливают две параллельно работающие камеры. В одном отделении (или в одной камере) производится очистка газа, в это же время другое отделение (камера) очищается от осевшей в нем пыли.

Степень очистки газа от пыли в этих аппаратах обычно не превышает 30-40%.

Инерционные пылеуловители.

Действие пылеуловителей такого типа основано на использовании инерционных сил, возникающих при резком изменении направления газового потока, которое сопровождается значительным уменьшением его скорости. Устанавливая на пути движения запыленного газа (например, в газоходе) отражательные перегородки или применяя коленчатые газоходы, изменяют направление движения газа на 90° или 180°. При этом частицы пыли, стремясь сохранить направление своего первоначального движения, удаляются из потока. Для эффективного улавливания пыли скорость потока газа перед перегородками должна составлять не менее 5-15 м/сек.

Инерционные пылеуловители отличаются простотой устройства, компактностью и не имеют движущихся частей, однако в них достигается невысокая степень очистки (примерно 60%) пыли (размер удаляемых частиц более 25 мкм). К недостаткам инерционных пылеуловителей относятся также сравнительно большое гидравлическое сопротивление, быстрый износ и забивание перегородок.

Жалюзийный пылеуловитель состоит из собственно инерционного первичного пылеуловителя и вторичного пылеуловителя — циклона. Запыленный газ поступает в пылеуловитель, жалюзи которого представляют собой набор наклонных колец, установленных с зазором 2-3 мм и немного перекрывающих друг друга. Жалюзи имеют коническую форму для того, чтобы скорость газа в различных поперечных сечениях аппарата оставалась примерно постоянной.

Частицы пыли, ударяясь о кольца жалюзи, отбрасываются к оси конуса, а освобождаемый от наиболее крупных частиц пыли газ проходит через зазоры в конусе и удаляется через патрубок. Небольшая часть газа (примерно 10%), в которой концентрируется основная масса частиц, поступает в циклон, где под действием центробежных сил освобождается от основной массы пыли и возвращается на доочистку в первичный жалюзийный пылеуловитель. Пыль удаляется из циклона через патрубок.

Циклон конструкции Научно-исследовательского института по санитарной и промышленной очистке газов (НИИОгаз) состоит из вертикального цилиндрического корпуса с коническим днищем и крышкой. Запыленный газ поступает тангенциально со значительной скоростью (20-30 м/сек) через патрубок прямоугольного сечения в верхнюю часть корпуса циклона. В корпусе поток запыленного газа движется вниз по спирали вдоль внутренней поверхности стенок циклона. При таком вращательном движении частицы пыли, как более тяжелые, перемещаются в направлении действия центробежной силы быстрее, чем частицы газа, концентрируются в слоях газа, примыкающих к стенкам аппарата, и переносятся потоком в пылесборник. Здесь пыль оседает, а очищенный газ, продолжая вращаться по спирали, поднимается к верху и удаляется через выхлопную трубу.

Движение частиц пыли в циклоне обусловлено в основном вращательным движением потока газа по направлению к пылесборнику (влияние сил тяжести частиц имеет в данном случае значительно меньшее значение). Поэтому циклоны можно устанавливать не только вертикально, но также наклонно или горизонтально.

В циклонах НИИОгаз с диаметром корпуса от 100 до 1000 мм степень очистки газов от пыли составляет 30-85% (для частиц диаметром 5 мкм) и с увеличением диаметра частиц повышается до 70-95% (для частиц диаметром 10 мкм) и далее до 95-99% (для частиц диаметром 20 мкм). При этом содержание пыли в очищаемом газе не должно превышать 0,2-0,4 кг/м3. Лишь для циклонов диаметром 2000-3000 мм допускается увеличение начальной концентрации пыли в газе до 3-6 кг/м3.

Батарейный циклон

Наиболее низкая температура газов, поступающих на очистку в циклон, должна быть не менее чем на 15-20 С выше их точки росы, чтобы не происходили конденсация паров влаги и образование шлама, что вызывает резкое ухудшение очистки.

Степень очистки газа в циклонах зависит от величины фактора разделения Кр = w2/rg . Из этого выражения видно, что степень очистки газа в циклонах может быть повышена либо путем уменьшения радиуса вращения потока запыленного газа, либо путем увеличения скорости газа. Однако повышение скорости газа вызывает значительное возрастание гидравлического сопротивления циклона и увеличение турбулентности газового потока, ухудшающей очистку газа от пыли. Уменьшение радиуса циклона приводит к снижению его производительности. Поэтому часто для очистки больших количеств запыленных газов вместо циклона большого диаметра применяют несколько циклонных элементов значительно меньшего диаметра (их монтируют в одном корпусе). Такие циклоны называются батарейными циклонами, или мультициклонами.

Имеется ряд конструкций батарейных циклонов, отличающихся формой корпуса элементов (например, с элементами цилиндрической формы), их расположением в пространстве (горизонтальные элементы) и способами сообщения газу вращательного движения. Так, в прямоточных батарейных циклонах частицы пыли отбрасываются с помощью закручивающего устройства, расположенного по оси входной трубы, к ее внутренней поверхности и удаляются вместе с небольшой частью газа (5-10%) через кольцевую щель в пылесборную камеру, а очищенный газ выводится через выхлопную трубу. Такие батарейные циклоны более компактны и обладают меньшим гидравлическим сопротивлением, но они менее эффективны, чем обычные батарейные циклоны.

Широко распространенные батарейные циклоны изготовляются с нормализованными элементами диаметром 100, 150 и 250 мм; они рассчитаны на очистку газов с содержанием пыли 0,05-0,1 кг/м3. Степень очистки газа в батарейных циклонах несколько отличается от степени очистки его в обычных циклонах и составляет 65-85% (для частиц диаметром 5 мкм), 85-90% (для частиц диаметром 10 мкм) и 90- 95% (для частиц диаметром 20 мкм).

Для нормальной работы батарейного циклона необходимо, чтобы все его элементы имели одинаковые размеры, а очищаемый газ — равномерно распределялся между элементами. В этих условиях гидравлическое сопротивление элементов будет одинаковым. Батарейные циклоны целесообразно применять, когда улавливаемая пыль обладает достаточной сыпучестью и исключена возможность ее прилипания к стенкам аппарата, что затрудняло бы очистку элементов.

Батарейные циклоны обычно используют, когда расходы запыленного газа велики и применение нескольких обычных циклонов менее экономично.

Циклоны всех видов отличаются простотой конструкции (не имеют движущихся частей) и могут быть использованы для очистки химически активных газов при высоких температурах. По сравнению с аппаратами, в которых отделение пыли осуществляется под действием сил тяжести или инерционных сил, циклоны обеспечивают более высокую степень очистки газа, более компактны и требуют меньших капитальных затрат.

К недостаткам циклонов относятся; сравнительно высокое гидравлическое сопротивление (400-700 н/м2, или 40-70 мм вод.ст.), невысокая степень улавливания частиц размером менее 10 мкм (70-95%), механическое истирание корпуса аппарата частицами пыли, чувствительность к колебаниям нагрузки по газу.

В циклонах рекомендуется улавливать частицы пыли размером более 10 мкм.

Ротационные пылеуловители

В ротационных пылеуловителях очистка газов (воздуха) от пыли основана на использовании центробежных сил и сил Кориолиса, возникающих при вращении рабочего колеса аппарата.

Характерной особенностью ротационных пылеуловителей является то, что в одном аппарате совмещен побудитель (вентилятор) и пылеуловитель. Благодаря этому аппарат более компактен, чем установка, состоящая из вентилятора и пылеулавливающего устройства. Ротационный пылеуловитель потребляет меньше электроэнергии, чем вентилятор и пылеуловитель в сумме.

Ротационные пылеуловители делятся на две основные группы в зависимости от места подвода запыленного потока к аппарату. Большая часть ротационных пылеуловителей относится к группе, в которой запыленный поток поступает в центральную часть колеса, вращающегося в кожухе. Пылевые частицы под действием центробежных сил и сил Кориолиса отбрасываются на периферию диска и оттуда поступают в пылесборник.

Применяются также аппараты ротационного типа, в которых для повышения эффективности очистки запыленный поток соприкасается с водной поверхностью, отдавая воде часть содержащейся в нем пыли.

Ротационные пылеуловители служат для очистки воздуха (газов) от неслипающихся и слабослипающихся пылей при их значительной концентрации в потоке.

Вихревые пылеуловители

В вихревом пылеуловителе, как и в циклоне, сепарация пыли основана на использовании центробежных сил. Основное отличие вихревых пылеуловителей от циклонов заключается в наличии вспомогательного закручивающего газового потока.

Применяют два вида вихревых пылеуловителей: сопловые и лопаточные.

В аппарате и того и другого типа запыленный газ поступает в камеру через входной патрубок с завихрителем типа «розетка» и обтекателем. В кольцевом пространстве между корпусом аппарата и входным патрубком расположена подпорная шайба, которая обеспечивает безвозвратный спуск пыли в бункер.

Обтекатель направляет поток газа к периферии. Пылевые частицы за счет воздействия центробежных сил перемещаются из центральной части потока к периферии.

Далее процесс в аппаратах двух видов несколько отличается. В сопловом аппарате на запыленный поток воздействуют струи вторичного воздуха (газа), выходящие из сопел, расположенных тангенциально. Поток переходит во вращательное движение.

Отброшенные под воздействием центробежных сил к стенкам аппарата пылевые частицы захватываются спиральным потоком вторичного воздуха (газа) и вместе с ним движутся вниз в бункер. Здесь частицы пыли выделяются из потока, а очищенный воздух (газ) снова поступает на очистку.

Эксперименты показали положительную роль повышения давления вторичного воздуха до 30 — 40 кПа сверх атмосферного. Эффективное пылеулавливание может быть обеспечено и при меньшем давлении. Сопла для подачи вторичного воздуха нужно расположить по нисходящей спирали. Оптимальной явилась установка 8 сопел диаметра 11 мм двумя спиральными рядами под углом наклона 30°.

В аппарате лопаточного типа вторичный воздух, отобранный в периферии очищенного потока, подается кольцевым направляющим аппаратом с наклонными лопатками. По основным показателям аппараты лопаточного типа оказались более эффективными: при одинаковом диаметре камеры — 200 мм и производительности 330 м3/ч гидравлическое сопротивление соплового аппарата составило 3,74*103 Па, эффективность 96,5 %, а лопаточного соответственно 2,8Ч103 Па и 98 % (при улавливании особо мелкодисперсной пыли).

Применяют следующие способы подведения к вихревому пылеуловителю воздуха, необходимого для закручивания обеспылеваемого потока: из окружающей среды, из очищенного потока, из запыленного потока. Первый вариант целесообразен, если очистке подвергается горячий газ, который необходимо охладить. Применяя второй вариант, можно несколько повысить эффективность очистки, так как для использования в качестве вторичного воздуха отбирают периферийную часть потока очищенного воздуха с наибольшим содержанием остаточной пыли. Третий вариант наиболее экономичен: производительность установки повышается на 40 — 65 % с сохранением эффективности очистки.

Вихревой пылеуловитель может применяться для очистки вентиляционных и технологических выбросов от мелкодисперсной пыли в химической, нефтехимической, пищевой, горнорудной и других отраслях промышленности. В вихревых пылеуловителях достигается весьма высокая для аппаратов, основанных на использовании центробежных сил, эффективность очистки — 98 — 99 % и выше. На эффективность очистки оказывает незначительное влияние изменение нагрузки (в пределах от 50 до 115 %) и содержания пыли в очищаемом воздухе (газе) — от 1 до 500 г/м3. Аппарат может применяться для очистки газов с температурой до 700 °С. В вихревом пылеуловителе не наблюдается износа внутренних стенок аппарата, что связано с особенностями его воздушного режима. Аппарат более компактен, чем другие пылеуловители, предназначенные для сухой очистки выбросов.

Фильтрационные пылеуловители

В фильтрационных пылеуловителях очистка воздуха (газа) от пыли происходит при прохождении запыленного потока через слой пористого материала. В качестве фильтрующего слоя используют ткани, кокс, гравий и др.

Процесс фильтрации основан на многих физических явлениях (эффект зацепления, в том числе ситовый эффект, — аэрозольные частицы задерживаются в порах и каналах, имеющих сечение меньше, чем размеры частиц; действие сил инерции — при изменении направления движения запыленного потока частицы отклоняются от этого направления и осаждаются; броуновское движение — в значительной мере определяет перемещение высокодисперсных субмикронных частиц; действие гравитационных сил, электростатических сил — аэрозольные частицы и материал могут иметь электрические заряды или быть нейтральными).

По мере накопления в фильтрующем слое задержанных частиц режим фильтрации меняется. Для поддержания его в требуемых пределах производят регенерацию фильтра, которая заключается в периодическом или систематическом удалении задержанных частиц.

Большинство фильтров обладает высокой эффективностью очистки. Фильтры применяют как при высокой, так и при низкой температуре очищаемой среды, при различной концентрации в воздухе взвешенных частиц.

Соответствующим подбором фильтровальных материалов и режима очистки можно достичь требуемой эффективности очистки в фильтре практически во всех необходимых случаях.

Во многих конструкциях фильтровальных пылеуловителей режим работы фильтра, в частности, режим регенерации, поддерживается автоматически.

Обладая многими положительными качествами, фильтрующие устройства в то же время не лишены недостатков: стоимость очистки в фильтрах выше, чем в большинстве других пылеуловителей, в частности, в циклонах. Это объясняется большей конструктивной сложностью фильтров по сравнению с другими аппаратами, большим расходом электроэнергии. Многие конструкции фильтрационных пылеуловителей более сложны в эксплуатации и требуют квалифицированного обслуживания.

studfiles.net

Основные сухие способы улавливания пыли из вытяжного воздуха | Механическая вентиляция

Пылеосадочные камеры. Если на пути перемещения запыленного воздуха по воздуховоду со значительной скоростью устроить расширение в виде камеры большого сечения, то скорость движения воздуха снизится и под действием силы тяжести пыль начнет оседать. Если камеру разделить горизонтальными плоскостями на ряд отсеков малой высоты, то в каждом из них пыль будет оседать более полно, так как путь, проходимый пылевой частицей, при оседании окажется более коротким. При другом устройстве пылеосадочной камеры в ней устраиваются вертикальные перегородки, вследствие чего поток тормозится и изменяет направление. Это способствует выделению пыли.

В пылеосадочных камерах удается чаще всего осуществить грубую и, редко, среднюю очистку воздуха от пыли. Если пыль волокнистая, то поперек камеры устанавливают металлическую сетку, на которой волокна задерживаются и образуют фильтрующий слой, создающий значительный эффект очистки воздуха. Площадь сетки может быть увеличена, если ее натянуть на зигзагообразный каркас.

Циклоны (рис. 64). Циклон представляет собой аппарат, состоящий из двух цилиндров: внешнего 1, внутреннего 2 и конуса 3. Запыленный воздух поступает по касательной к поверхности внешнего цилиндра, описывает внутри него путь по спирали и. дойдя до конуса 3, изменяет свое направление и выходит наружу через внутренний цилиндр.

Механизм циклонного процесса достаточно сложен. Схематически сущность его заключается в том, что вращательное движение запыленного воздуха приводит к возникновению центробежной силы, отжимающей частицы пыли к стенкам внешнего цилиндра.


Рис. 64. Циклонный пылеотделитель.

а — схема пылеотделителя; б — внешний вид установки. 1 — внешний цилиндр; 2 — внутренний цилиндр: 3 — сборный бункер; 4 — колпак.

Благодаря трению о стенки вращающиеся пылевые частицы затормаживаются, теряют скорость и под влиянием силы тяжести падают вниз в конус, откуда могут быть выгружены наружу.

В циклоне удается получить, как и в пылеосадочных камерах, очистку от наиболее крупной и тяжелой пыли, но при одинаковой пропускной способности циклоны занимают значительно меньше места, чем пылеосадочные камеры.

Эффективность пылеотделения в циклоне тем выше, чем меньше его относительный диаметр (отношение диаметра к высоте). Поэтому для улучшения пылезадержания иногда устанавливают группу циклонов малого диаметра, соединенных в один агрегат.

Тканевые фильтры. Пропуская запыленный воздух через матерчатую ткань, можно получить при определенных условиях тонкую очистку. Тканевые фильтры, хотя и громоздки, позволяют осуществлять рециркуляцию воздуха, а также сохранять Неизмененными свойства ценной пыли. Часто тканевые фильтры выполняют в виде рукавов.

Тканевые фильтры не применяют, если температура пылевоздушной смеси превышает 80° при бумажных и 100° при шерстяных тканях, а также при тканях из искусственного волокна. В последнее время получают распространение термостойкие ткани, допускающие фильтрацию воздуха высокой температуры.

Пыль, задерживаемая на ткани, не должна быть липкой, влажной, а очищаемый воздух не должен содержать веществ, разрушающих ткань.

Электрическая очистка. Схема одного из видов электропылеочистителя приведена на рис. 65. Состоит он из двух электродов: трубы 4, внутри которой по оси помещен тонкий стержень 3. К стержню подается постоянный ток с высоким напряжением (40 000—100000 в), благодаря чему внутри трубы возникает электрическое поле. Труба соединена с положительным (заземленным) контактом выпрямителя тока, а стержень — с отрицательным. Запыленный воздух входит через насадок 1. Пылинки в электрическом поле получают в основном отрицательный заряд и оседают на пассивном электроде — стенках трубы.


Рис. 65. Схема электрической очистки от пыли.

1 — вход загрязненного воздуха; 2 — бункер для осаждения пыли; 3 — коронирующий электрод; 4 — осадительный электрод; 5 — заземление; 6 — ток высокого напряжения; 7 — выход очищенного воздуха.

Незначительная часть пыли, имеющая положительный заряд, оседает на стержне. Освобожденный от пыли воздух удаляется через насадок 7. Осажденные частицы жидкой пыли стекают с электродов в бункер 2 самостоятельно; твердая пыль удаляется механически.

Электроочиститель обеспечивает примерно такую же степень очистки, как и тканевые фильтры, но область применения его шире. Через него можно пропускать нагретые и агрессивные газы. Вместе с тем в нем легко отделяются влажные и капельные взвеси. Некоторые разновидности электроочистителей обеспечивают очень тонкую очистку и применяются в ответственных случаях для очистки от пыли приточного воздуха.

www.stroitelstvo-new.ru

Пылеуловители. Большая энциклопедия техники

Пылеуловители

Пылеуловителями называются аппараты для очистки воздуха от пыли, используемые в промышленности вместо дорогих газоочистных сооружений, где пыле– или золоулавливание производятся в небольших объемах или лишь время от времени.

Некоторые из видов пыли вредны для здоровья, что приводит к необходимости очищения воздуха с целью соблюдения требуемых санитарно-гигиенических норм в производственных помещениях. Скопление пыли в производственных помещениях ведет к преждевременному износу оборудования. Концентрация ее выше определенного уровня может привести к взрыву. Все это послужило предпосылкой для создания пылеулавливающих аппаратов.

Пылеуловители подразделяются на:

  1) аппараты сухой инерционной очистки;

  2) аппараты мокрой очистки. Аппараты сухой очистки газов подразделяются на:

  1) пылеосадительные камеры инерционного действия;

  2) жалюзийные аппараты;

  3) циклоны;

  4) ротационные пылеуловители;

  5) дымососы-золоуловители.

Аппараты мокрой очистки подразделяются на:

  1) центробежные скрубберы;

  2) мокрые аппараты ударно-инерционного действия;

  3) полые газопромыватели;

  4) насадочные газопромыватели;

  5) барботажные и пенные аппараты;

  6) дезинтеграторы;

  7) скоростные газопромыватели. Кратко охарактеризуем каждый из них.

Пылеосадительные камеры инерционного действия

Принцип их действия основан на гравитационном осаждении частиц из горизонтально направленного потока газов, а также их инерционном осаждении при обтекании газовым потоком цепных или проволочных завес и отклоняющихся перегородок.

Достоинства: простота конструкции. Недостатки: продолжительное время очистки, большие габариты.

Жалюзийные аппараты – принцип действия основан на отсасывании той части газового потока, разделенного жалюзийной решеткой, которая содержит основную массу пыли, обычно составляющую 10—20% от всего поступившего в пылеуловитель газа.

После очищения эта часть газа снова смешивается с основным потоком газов, поступивших в пылеуловитель.

Достоинства: простота конструкции и малая занимаемая площадь.

Недостатки: улавливание частиц размером не менее 20 мкм, снижение коэффициента очистки из-за износа жалюзийных решеток после трех месяцев использования.

В настоящее время используется для очистки газов, образующихся при сжигании торфа, от крупных составляющих золы.

Циклоны – принцип действия основан на применении центробежной силы, образующейся при вращательно-поступательном движении потока газа.

Частицы пыли, вместе с частью газа попавшие в циклон, под действием центробежной силы опускаются в бункер, а затем за счет сил инерции отделяются от газов, меняющих направление на 180°.

При движении этой части газов к выхлопной трубе они смешиваются с частью газов, не попавшей в бункер.

Достоинство: используются для очистки дымовых газов и улавливания пыли с высокой слипаемостью и абразивностью частиц.

Недостаток: поскольку бункер играет важную роль в аэродинамике циклонной очистки, то уменьшение размеров бункеров по сравнению с рекомендуемым приводит к снижению эффективности работы аппарата.

Циклоны используются в одинарном или групповом исполнении.

Циклоны могут иметь прямоточную или батарейную конструкцию.

Прямоточные циклоны достаточно эффективно используются при небольшом содержании мелких частиц в очищаемых газах.

После поступления во входное отверстие прямоточного циклона раскручиваемые с помощью направляющего аппарата частицы газа попадают к стенкам выходного патрубка, спускаются в пылевую камеру, а затем очищенный там поток газа через выходной батарейный циклон объединяет в своем корпусе несколько циклонных элементов. Они имеют общие провод и отвод газов и один сборочный бункер.

Достоинство: уменьшенные по сравнению с другими циклонами габариты и возможность их использования для улавливания наиболее крупных с высокой образивностью частиц, для уменьшения износа других более эффективных циклонов, установленных после прямоточных.

Недостаток: маленький коэффициент эффективности работы.

В применяемых раньше циклонных элементах для раскручивания потоков газа использовались направляющие с двумя винтовыми лопастями, наклоненными под углом 25°, или с восемью наклоненными под тем же углом лопастями типа «винт» или «розетка». Направляющие аппараты типа «розетка» имеют лучший коэффициент эффективности очищения, чем направляющие аппараты типа «винт», но при этом быстрее забиваются пылью. Поэтому последние разработки конструкций циклонов привели к применению тангенциального подвода газов к элементам и к увеличению диаметра нижнего конуса циклонного элемента с одновременным отсосом концентрата пыли или золы из сборного бункера.

Центробежные пылеуловители ротационного действия

Их работа заключается в следующем: очищающая смесь газов приобретает вращательное движение с помощью рабочего колеса и попадает в кожух пылесборника, а затем очищенный газ выходит через выходной патрубок.

Ротационные пылеуловители бывают двух типов. В первом из них улавливаемые частицы очищаемой смеси с помощью наклонных лопастей вентилятора движутся в направлении подачи газа, обратном движению ротора. В ротационных пылеуловителях второго типа частицы пылегазовой смеси с помощью центробежной силы вращающегося барабана приобретают направление, обратное движению поступающего газового потока. В этом случае эффективность очистки газа определяется отношением центробежной силы к силе аэродинамического сопротивления газового потока.

Дымососы-золоуловители – дымовой газ всасывается через входной патрубок и под действием центробежной силы, образующейся в результате вращения улитки рабочего колеса, осаждается на стенках корпуса дымососа, а затем посредством перепада давления, производимого крыльчаткой, через патрубок уловленной золы попадает в циклон.

Очищенный таким образом газовый поток через крыльчатку тракта рециркуляции, снова закручивающей поток газа, повторно попадает в улитку рабочего колеса. Благодаря работе рециркуляционного тракта значительно повышается коэффициент эффективности работы дымососа-золоуловителя.

В связи с этим была создана последняя модификация дымососов-золоуловителей, в которых на валу дымососа были установлены спиральная улитка и крыльчатка отсосного тракта. Это привело к увеличению размеров дымососа, но значительно продлило срок работы улитки рабочего колеса.

Достоинство: при увеличении нагрузки коэффициент эффективности очистки остается неизменным.

Недостаток: быстрый износ крыльчатки рабочего колеса.

Центробежные скрубберы работают следующим образом: частицы поступающего газового потока, подлежащего очищению, при помощи центробежных сил, образованных вращением лопастной направляющей, попадают на орошаемые стенки скруббера и, захватываясь каплями воды, вместе с ними выводятся из аппарата.

Достоинство: простота конструкции.

Недостаток: эффективно используются только при улавливании частиц размером менее 20 мкм.

Мокрые ударно-инерционные аппараты – принцип действия состоит в следующем: через входной патрубок частицы очищаемого газа попадают в резервуар с жидкостью и при повороте газового потока на 180° абсорбируются на водной поверхности, а очищенный поток газа удаляется через выходной патрубок.

Последняя модификация аппаратов ударно-инерционного действия – ротоклон. Он предполагает использование в их конструкции изогнутых каналов с находящейся в них жидкостью, после удара о поверхность которой частицы газа вместе с каплями жидкости пропускаются через каплеотбойник.

Достоинство: простота конструкции, возможность регулировать их производительность, не влияя на эффективность очистки.

Недостаток: эффективно используется только при улавливании частиц размером менее 20 мкм.

Полые газопромыватели – принцип действия заключается в следующем: входящие в цилиндрическую камеру частицы очищаемого газа абсорбируются жидкостью, распыленной в ней, а очищенный газ направляется к выходному патрубку.

Достоинство: высокая степень очистки.

Недостаток: эффективно используется только при улавливании частиц размером более 10 мкм.

Насадочные газопромыватели

В этих устройствах для очистки газов используются укладываемые на опорную решетку насадки с различной конфигурацией.

Достоинство: эффективно применяется только для улавливания хорошо смачиваемой газовой смеси при условии абсорбции в процессе очистки.

Недостаток: частое забивание насадки.

Барботажные и пенные пылеуловители

Принцип действия барботажных аппаратов заключается в том, что газы очищаются с помощью осаждения частиц пыли на пузырьках жидкости. Конструктором Б. М. Позиным был разработан метод очистки с использованием пены. Последняя модификация пенного пылеуловителя предусматривает установку в цилиндрическом корпусе аппарата провальной тарелки, через отверстия которой осуществляется подвод газа для контакта с пеной, а затем и вывод его из рабочей зоны через те же отверстия.

Достоинство пенного аппарата заключается в том, что промывание отверстий провальной тарелки жидкостью в процессе его работы препятствует загрязнению отверстий тарелки, таким образом продлевая срок службы аппарата.

Дезинтеграторы – принцип действия основан на очищении пыли с помощью жидкости, распыляющейся лопатками ротора и поступающей со скоростью 90 м/с потоком газа.

Достоинство: высокая эффективность при улавливании частиц размером более 1 мкм, возможность регулирования коэффициента эффективности работы увеличением количества лопастей ротора или статора устройства.

Недостаток: сложность конструкции.

Скоростные газопромыватели (скруберры Вентури) представляют собой отрезок трубы Вентури с подведенной в нее распыляемой жидкостью и укрепленным за ней каплеуловителем. Частицы газового потока, поступающие в аппарат с высокой скоростью, распыляют орошающую его жидкость, а затем улавливаются ею. Имеют широкие предпосылки использования в связи с повышением требований к очистке газовых выбросов промышленных предприятий.

Достоинство: данные аппараты отличаются высокой эффективностью очистки.

Недостаток: быстрое загрязнение форсунок аппарата при использовании для орошения недостаточно осветленной воды.

Поделитесь на страничке

Следующая глава >

info.wikireading.ru

Улавливание пыли — Справочник химика 21


    УЛАВЛИВАНИЕ ПЫЛИ И ТУМАНА В ПЕННЫХ ГАЗООЧИСТИТЕЛЯХ [c.162]

    Разработанный в СССР струйно-пенный пылеуловитель [302] состоит из конфузора с выходным патрубком, брызгоуловителя, корпуса со струйной и пенообразующими решетками, пода с входным патрубком, выпрямляющими лопатками и сливом жидкости. Аппарат отличается тем, что промывка газа в нем производится в двухфазном потоке, который па верхней решетке переходит в обычный пенный слой. Высокие скорости газа и развитая поверхность контактирования усиливают действия инерционных и молекулярных сил, способствующих улавливанию пыли. Эффективность очистки достигает 96—99% при улавливании пыли дисперсностью выше 1—2 мкм. [c.234]

    На ряде установок дополнительное улавливание пыли из газов регенерации осуществляется в электроосадителях, расположенных за паровыми котлами-утилизаторами. В отдельных случаях электроосадитель заменяют скруббером, где пыль улавливается нисходя -щим потоком дестиллатного сырья установки (см. фиг. 13). [c.129]

    Для улавливания пыля в помещениях с производства ми категории Б рле-дует применять фильтр 1 только с непрерывным автоматическим удалением пыли (матерчатые типа МФУ или мокрые типа скрубберов ПСП-БТИ). [c.310]

    На фиг. 50 изображена схема одного пз батарейных циклонов, включаюш его ряд элементов, называемых -малыми циклонами, где собственно п происходят улавливание пыли и очистка газа. [c.128]

    Наряду с несомненными достоинствами, в особенности при непрерывном ведении процесса, сушилки с псевдоожиженным слоем имеют, специфические особенности разного плана, которые могут затруднить осуществление процесса. Так, полидисперсные материалы широкого гранулометрического состава могут высушиваться неравномерно, должна быть обеспечена стабильность гидродинамической обстановки, возможны возникновение и разряды статического электричества, необходимо улавливание пыли требуют ся вентиляторы высокого давления, надежные питатели, средства контроля и автоматического управления. Все эти вопросы детально рассмотрены в монографиях по сушке [c.499]

    Характерной особенностью работ, посвященных повышению эффективности улавливания пыли в полых колоппах, является стремление обеспечить достаточно густое заполнение всего объема аппарата каплями диспергированной жидкости, причем одновременно стремятся избежать слияния капель в сплошной поток [100]. По данным этой работы, наиболее эффективны равномерно распределенные крупные капли = = 0,8- 1,0 мм при их объемной концентрации около 17о-Можно отметить, что и в модельных опытах по абсорбции хорошо растворимых газов при подобных условиях достигались очень высокие коэффициенты массопередачи. [c.186]

    Печь диаметром 2—3 м и длиной 30 м футерована высокоглиноземистым шамотным кирпичом класса А и обогревается продуктами сгорания мазута или природного газа, проходящими через печь. Начальная температура газов при входе в печь 900—1000 °С, конечная 350—400 °С. Газы, выходящие из печи, направляются в скруббер для улавливания пыли TiO., и затем выбрасываются в атмосферу. Время пребывания пигмента в печи составляет 12—14 ч. [c.154]

    Как показывает практика, эффективность, рассматриваемой стадии улавливания ныли намного превышает эффективность инерционного улавливания в подрешеточной зоне. Эксперименты подтвердили, что описанный инерционный механизм улавливания пыли (механизм удара) является основным при работе пенных пылеуловителей. [c.166]

    Сырье в реактор подается сравнительно холодное. Некоторое количество его вводится в нижнюю часть колонны. Оно стекает вниз по распределительным перегородкам. Нижняя часть колонны превращается в своего рода. скруббер для улавливания пыли. При этом в ней конденсируются тяжелые фракции дистиллята. Смесь сырья с рециркулятом поступает на прием сырьевого насоса. Отпадает необходимость в печи для нагрева сырья, что удешевляет основное оборудование и упрощает обслуживание установки. [c.126]

    Выразим эффективность улавливания пыли на первой стадии для частиц одного размера через степенную функцию вида [c.166]

    Применение высоких давлений благоприятствует использованию реакторов КС, так как с повышением давления увеличивается однородность взвешенного слоя, не образуются крупные пузыри. Циркуляция газовой смеси является фактором отрицательным, так как возникает вероятность засорения циркуляционных компрессоров пылью, образующейся при истирании катализатора необходимы весьма износоустойчивые катализаторы или же фильтры для улавливания пыли после реактора КС. [c.208]

    Т]

www.chem21.info

Пылеуловители. Пылеосадительные камеры. Пылеулавливаюшие установки

Пылеуловители центробежные

Центробежный пылеуловитель – самый распространенный вид механических пылеуловителей, который применяется в пищевой, химической, горнодобывающей и многих других отраслях промышленности. Основным преимуществом таких пылеуловителей является их дешевизна, высокая производительность, простата механизма, а также достаточно простая и не затратная эксплуатация. Если сравнивать центробежные пылеуловители с другими типами, то они обладают такими преимуществами, как надежная работа при высокой температуре и давление, отсутствие частей, которые двигаются, простота ремонта и изготовления, а также возможность использования для улавливания абразивных частиц.

Центробежные пылеуловители используют центробежную силу для улавливания пыли. Самыми популярными центробежными пылеуловителями являются циклоны с мокрой пленкой. В таких аппаратах осаждения частиц происходит при помощи действия центробежного и инертного механизма. Следовательно, эффективность таких аппаратов намного выше, чем циклонов, потому что благодаря наличию мокрой пленки не происходит вторичный унос пыли. К тому же такие аппараты эффективнее скрубберов за счет того, что скорость капель и потока газа в них намного выше благодаря центробежной силе.

В мокрые циклоны жидкость подводится вдоль внутренних стенок аппарата и в приосевую его зону.

Самым эффективным мокрым пылеуловителем является скруббер Вентури, который относится к скоростным аппаратам. Такие установки можно разделить по области использования на:

  • Низконапорные, используемые для концентрирования и очищения аспирационного воздуха. Гидравлическое сопротивление таких аппаратов находится в пределах от 3000 до 500 Па.
  • Высоконапорные аппараты используются для очищения газов от субмикронной и микронной пыли. Их сопротивление достигает 20000-30000 Па.

Работа таких аппаратов основана на газовом потоке высокой скорости, который выполняет интенсивное дробление жидкости, которая его орошает. А благодаря турбулентности газового потока, а также достаточно большой разницы между скоростью каплями жидкости и частицами, происходит осаждения частиц пыли на каплях жидкости, которая ее орошает.

Для того чтобы снизить гидравлическое сопротивление, основная часть скруббера изготавливается в виде трубы Вентури, которая плавно сужается на входе газов и расширяется на их выходе. Вход и выход газов соединяются при помощи сопла.

Для стабильной работы аппарата очень важно, чтобы было полное и равномерное орошение сечения горловины жидкости. Именно поэтому выбор способа орошения является очень важным и влияет на конструкцию аппарата.

Чаще всего используется три способа орошения горловины:

  1. Периферийное. При таком способе орошения форсунки или сопла монтируются по периметру горловины или конфузора.
  2. Центральное. Орошающая жидкость попадает на горловину из форсунок, которые установлены в конфузоре или перед ним.
  3. Пленочное. Используется чаще всего для того, чтобы предотвратить образование на стенках отложений.

Для вычисления гидравлического сопротивления используется выражение:

Δp = Δpг + Δpж

В котором Δpг является гидравлическим сопротивлением сухой трубы, которое обусловлено движением газа:

Δpг = (ξc·νг²·ρг)/2

Где ξс является коэффициентом гидравлического сопротивления сухой трубы,
а νг это скорость газов, которые находятся в горловине.

Эффективность улавливания пыли сильнее всего зависит от того, какое удельное орошение и скорость газов. Оптимальное отношение скорости потока пыли и удельного орошения в первую очередь зависит от дисперсного состава пыли. При этом удельная величина орошения находится в пределах 0,5-1,5 л/м3 газов.

Помимо этого, эффективность пылеулавливания зависит от дисперсности капель распыленной жидкости. При этом, чем капли меньше, чем газ лучше очищается.

Чтобы определить средний диаметр капли, используется эмпирическая формула:

dк = 4870/ν² + 28,18·m1,5

Центробежные пылеуловители (циклоны) получили активное применение в промышленности. Загрязненный газ на скорости от 20 до 25 м/сек поступает в корпус циклона. Поток газа движется по касательной, в результате чего приобретает вращательное движение. Частицы пыли откидываются центробежной силой и попадают в крайние слои загрязненного газа, которые перемещаются по спирали вниз вдоль стенок циклона. Взвешенные частицы пыли выводятся из установки через специальный отводящий патрубок. Смесь газа и пыли вращается и поднимается вверх, в результате чего образуется вихрь. Данный вихрь двигается по направлению оси установки к выхлопной трубе и захватывает с собой часть газа, из внутренних слоев перемещающихся вниз. Данный слой газа характеризуются невысоким содержанием частиц пыли. Он перемещается по конической части корпуса до нижнего края выхлопной трубы. По достижении нижнего края выхлопной трубы, поток разворачивается к оси циклона.

Вихревые пылеуловители. Технические характеристики

Все чаще в промышленности используются вихревые пылеуловители. Такой аппарат напоминает циклон, однако его особенностью является наличие в нем дополнительного закручивающего газового потока. В мире выпускаются различные модели таких пылеуловителей, имеющие производительность 300-40000 м3/час. Производительность вихревых пылеуловителей увеличивается при уменьшении диаметра.

В вихревых пылеуловителях атмосферный воздух, запыленные газы, а также периферийная часть потока чистого газа применяются как вторичный газ.

Если сравнивать вихревые пылеуловители с противоточными циклонами, то первые имеют такие преимущества, как работа с газами высокой температуры, хорошая степень очистки, регулировка процесса очищения газа от пыли за счет регулировки расхода вторичного воздуха. Среди недостатков вихревых пылеуловителей следует выделить высокое гидравлическое сопротивление, необходимость в мощном тягодутьевом устройстве, а также сложную эксплуатацию и установку.

Для того чтобы рассчитать минимальный диаметр частиц, которые способен полностью уловить вихревой пылеуловитель, используется формула:

dкр = √(ν²/H)·(18μг·ln[D1/Dтр])/([ρчz]·ω²)

в которой H — является высокой рабочей зоны,
Dтр – диаметр проводящей трубы,
D1 — это диаметр самого аппарата,
ω — угловая скорость очищаемого газа.

Вихревой пылеуловитель

Конструкцию вихревого пылеуловителя можно увидеть на рисунке. В таком аппарате неочищенный поток газа попадает в аппарат через патрубки, закручивается, а после этого поступает в рабочую зону вихревого пылеуловителя. Под воздействием центробежной силы частицы пыли из газа направляются к стенкам аппарата. А под воздействием силы тяжести они направляются вниз. После этого они попадают в специальный бункер. При этом очищенный воздух удается через выхлопной патрубок.

Эффективность работы такого пылеуловителя зависит от отношения количество верхнего Q2 и нижнего Q1 потока газа. Чтобы вихревой пылеуловитель работал со своей максимальной эффективностью, Q2/ Q1 должно находиться в пределах от 1,5 до 2,2.

Чтобы рассчитать такой пылеуловитель, необходимо:

  1. Определение диаметра рабочей зоны. Для того при расчетах скорость запыленного потока берется как νг=5-10 (м/с):

D1 = √4·G/Π·νг

  1. Определение размеров пылеуловителя в зависимости от его диаметра.
  2. Расчет гидравлического сопротивления вихревого пылеуловителя по формуле:

Δp = (ξ·ρ·νг²)/2

в которой ξ является коэффициентом гидравлического сопротивления. При этом должны учитываться коэффициенты сопротивления верхнего и нижнего потоков.

Динамические пылеуловители. Особенности

Особенностью динамических пылеуловителей является то, что в таких аппаратах очищение газов от пыли происходит не только при помощи центробежной силы, но и за счет силы Кориолиса, которая возникает в процессе вращения рабочего колеса. В таких пылеуловителях кроме осаждения частиц выполняется еще и функция тягодутьевого устройства.

Пылеуловитель такого типа использует большее количество электроэнергии, чем вентилятор при таком же напоре и производительности. Однако этот расход энергии все равно меньше, чем необходимый расход при раздельном функционировании центробежного пылеуловителя и вентилятора.

Конструкция простейших динамических пылеуловителей состоит из кожуха и рабочего колеса. При этом рабочее колесо приводит в движение неочищенный газ. А под воздействием силы Кориолиса и центробежной силы из газа выделяются частицы пыли.

Динамические пылеуловители делятся на две группы. Аппараты первой группы работают так, что газовый поток с пылью подается на центральную часть колеса, а частицы пыли, которые отделяются в процессе очищения, двигаются в направлении подачи газа. Пылеуловители второй группы частицы пыли перемещаются в направлении, обратном движению газа. При этом неочищенный газ всасывается в отверстия барабанов, которые находятся на его боковой поверхности.

Самыми популярными динамическими пылеуловителями являются дымосос-пылеуловители (см. рис.). Такие аппараты используются для первоначального очищения газов для асфальтобетонных заводов, линейного производства. Такие динамические пылеуловители способны задерживать частицы пыли, размер которых не меньше 15 мкм. Рабочее колесо на валу создает разность давления, с помощью которой и выполняется перемещение газов. А под воздействием центробежных сил частицы пыли отбрасываются в периферии, а после этого выводятся из аппарата с некоторым количеством газа.

oil-filters.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *