Как выбрать конденсатор – как выбрать и пользоваться, расчет емкости для пускового и рабочего, подключение и эксплуатация

Содержание

Как выбрать конденсатор?

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов (температурные характеристики, тип корпуса и так далее), которые делают тот или иной тип конденсаторов (электролитический, керамический и пр.) наиболее предпочтительным для вашего проекта.

В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника.

Например, результат поиска для DIP конденсаторов  c рабочим напряжением 450 В серии HP3 производства компании Hitachi с емкостью 56…680 мкФ приведен на Рис.1.

Рис. 1. Результат поискового запроса для  имеющихся на складе конденсаторов серии HP3 с рабочим напряжением 450 В от Hitachi  с емкостью в диапазоне  56…560 мкФ

Конденсаторы (Рис. 2) представляют собой двухвыводные компоненты, используемые для фильтрации, хранения энергии, подавления импульсов напряжения и других задач. В самом простом случае они состоят из двух параллельных пластин, разделенных изоляционным материалом, называемым диэлектриком.

Рис. 2. Конденсаторы различных типов

Конденсаторы хранят электрический заряд. Единицей емкости является Фарад (Ф). Это название было дано в честь Майкла Фарадея, который в свое время стал пионером в области практического использования конденсаторов.

Конденсаторы могут быть полярными и неполярными. К полярным относятся почти все электролитические и танталовые конденсаторы. Они должны подключаться с учетом полярности напряжения. Если перепутать выводы «-» и «+», то это приведет к короткому замыканию. К неполярным относятся керамические, слюдяные и пленочные конденсаторы. Они могут работать при любой полярности приложенного напряжения, что делает их подходящими для применения в цепях переменного тока.

Несмотря на широкое распространение конденсаторов, выбор конкретной модели бывает достаточно сложным. Вы можете знать емкость и рабочее напряжение, которые требуются в вашем проекте, но у конденсаторов есть и множество других характеристик, таких как полярность, температурный коэффициент, стабильность, последовательное эквивалентное сопротивление (ESR) и так далее. Это делает каждый конкретный тип конденсаторов пригодным для конкретного приложения. Ниже перечислены наиболее популярные типы конденсаторов с кратким описанием их достоинств и особенностей.

Типы конденсаторов

Существует несколько типов конденсаторов, которые отличаются электрическими характеристиками и стоимостью. Ниже приведено описание наиболее популярных типов конденсаторов: алюминиевых электролитических, керамических, танталовых, пленочных, слюдяных и полимерных (твердотельных). Кроме того, для каждого типа представлены наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.

Рис. 3. Алюминиевый электролитический конденсатор

Описание: алюминиевые электролитические конденсаторы (Рис. 3) являются полярными, поэтому их нельзя использовать в цепях переменного напряжения. Они могут иметь высокую номинальную емкость, но отклонение от номинала обычно составляет до 20%.

Приложения

: алюминиевые электролитические конденсаторы оптимальны для приложений, которые не требуют высокой точности и работы с переменными напряжениями. Чаще всего они применяются в качестве развязывающих конденсаторов в источниках питания, то есть для уменьшения пульсаций напряжения. Они также широко используются в импульсных DC/DC-преобразователях напряжения.

Корпусное исполнение: как для монтажа в отверстия, так и для поверхностного монтажа.

Примеры:

Для монтажа в отверстия:

  • 25 В серия TKR производства Jamicon с диапазоном доступных емкостей 10…5000 мкФ.
  • 50 В серия ECA-1HM  от Panasonic с диапазоном доступных емкостей 4.7…3300 мкФ.
  • 450 В серия HP32 от Hitachi AIC с диапазоном доступных емкостей 56…1000 мкФ.

Для поверхностного монтажа:

  • 10 В серия EEE-FP1A от Panasonic с диапазоном доступных емкостей 33…1000 мкФ.
  • 50 В серия CA050 от Yageo с диапазоном доступных емкостей 0,22…220 мкФ.

Рис.4. Керамические конденсаторы

Описание: существует два основных типа керамических конденсаторов (Рис. 4): многослойные чип-конденсаторы (MLCC) и керамические дисковые. MLCC пользуются большой популярностью и широко применяются в электронных устройствах, поскольку обладают высокой стабильностью и малым уровнем потерь. Они отличаются низким последовательным сопротивлением (ESR) и минимальной погрешностью номинала по сравнению с электролитическими или танталовыми конденсаторами. Вместе с тем их максимальная емкость невелика и достигает всего нескольких десятков мкФ. Из-за высокой удельной емкости MLCC имеют очень малые габариты и отлично подходят для размещения на печатных платах.

Приложения: поскольку керамические конденсаторы являются неполярными, то их можно применять в цепях переменного тока. Они широко используются в качестве «универсальных» конденсаторов, например, для высокочастотной развязки, фильтрации, подстройки резонаторов и подавления электромагнитных помех. Как MLCC, так и керамические дисковые конденсаторы подразделяются на два класса:

Керамические конденсаторы I класса – точные (+/- 5%) и стабильные конденсаторы с минимальной зависимостью емкости от температуры. Конденсаторы NP0/C0G отличаются минимальным температурным коэффициентом 30 ppm/K. К сожалению, их максимальная емкость ограничена несколькими нанофарадами (нФ). Поскольку они очень стабильны и точны, то их чаще всего используют в системах с частотным регулированием, например, в резонансных схемах для радиочастотных приложений.

Керамические конденсаторы II класса менее точны, но обеспечивают более высокую удельную емкость (номинальные значения - до десятков мкФ) и, следовательно, подходят для фильтрации и развязки. Среди их недостатков можно отметить большой коэффициент напряжения. Например, даже при приложении напряжения, равного половине рабочего, обычно наблюдается снижение емкости на 50%.

  • X5R может работать в диапазоне - 55…85°C с изменением емкости +/- 15%;
  • X7R может работать в диапазоне - 55…125°C с изменением емкости +/- 15%;
  • Y5V - в диапазоне от - 30…+ 85°C с изменением емкости -20/ +80%.

Корпусные исполнения: наиболее распространены корпуса для поверхностного монтажа 0201, 0402, 0603, 0805, 1206 и 1812. Цифры обозначают габаритные размеры в дюймовой системе. Например, 0402 составляет 0,04х0,02", 0603 - 0,06х0,03" и так далее.

Примеры:

Тип NP0/C0G:

  • 0402 - серия CC0402JRNPO9 производства компании Yageo с диапазоном доступных емкостей 0,01…1 нФ;
  • 0603 - серия CC0603JRNPO9 от Yageo с диапазоном доступных емкостей 0,008…2,7 нФ.

Тип X7R:

  • 0402 - серия CC0402KRX7R9BB от Yageo с диапазоном доступных емкостей 0,1…10 нФ;
  • 0603 - серия CC0603KRX7R7BB от Yageo с диапазоном доступных емкостей 0,1…1 мкФ;
  • 1206 - серия GRM31 от Murata с диапазоном доступных емкостей 470 пф…22 мкФ;
  • 0805 - серия CL21 от Samsung с диапазоном доступных емкостей 150 пф…10 мкФ.

Для монтажа в отверстия:

Рис. 5. Танталовые конденсаторы

Описание: танталовые конденсаторы (Рис. 5) – это подтип электролитических конденсаторов с высоким уровнем поляризации. При их использовании необходимо проявлять осторожность, поскольку они имеют склонность к катастрофическим отказам даже при воздействии импульсов напряжения с амплитудой, лишь немного превышающей номинальное рабочее напряжение. Танталовые конденсаторы могут иметь высокую номинальную емкость и отличаются высокой временной стабильностью. Они меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Но алюминиевые электролиты могут выдерживать более высокие максимальные напряжения.

Приложения: из-за малого тока утечки, стабильности и высокой емкости танталовые конденсаторы часто используются в схемах выборки-хранения, в которых требуется обеспечивать минимальный ток утечки для продолжительного хранения заряда. Также, благодаря малым размерам и долговременной стабильности, они применяются для фильтрации по цепям питания.

Корпусные исполнения: танталовые конденсаторы выпускаются как для монтажа в отверстия, так и для поверхностного монтажа (SMD). Тем не менее, чаще всего используются именно SMD-компоненты. В дюймовой системе типоразмер А соответствует размеру 1206 (0,12х0,06"), типоразмер В соответствует размеру 1210, типоразмер C соответствует размеру 2312, типоразмер D - размеру 2917.

Примеры:

  • Типоразмер A: серия TAJA от AVX с диапазоном доступных емкостей 1…10 мкФ;
  • Типоразмер B: серия TAJB от AVX с диапазоном доступных емкостей 10…47 мкФ;
  • Типоразмер C: серия TAJC от AVX с диапазоном доступных емкостей 47…220 мкФ;
  • Типоразмер D: серия TAJD от AVX с диапазоном доступных емкостей 220…680 мкФ.

Рис. 6. Пленочные конденсаторы

Описание: пленочные конденсаторы (Рис. 6) являются неполярными, что позволяет использовать их в цепях переменного напряжения. Они отличаются малыми значениями эквивалентного сопротивления (ESR) и последовательной индуктивности (ESL).

Приложения: пленочные конденсаторы часто применяются в схемах с аналого-цифровыми преобразователями. Кроме того, они способны работать с высоким пиковым током и, таким образом, могут применяться в снабберных цепочках для фильтрации индуктивных выбросов напряжения в DC/DC-преобразователях.

Примеры: серия B32021 производства компании EPCOS с диапазоном доступных емкостей 1 нФ…10 нФ и рабочим напряжением 300В AC.

Рис. 7. Слюдяной конденсатор

Описание: слюдяные конденсаторы (Рис. 7) являются неполярными, отличаются малой величиной потерь, высокой стабильностью и обладают отличными характеристиками на высоких частотах.

Приложения: эффективны при работе в составе радиочастотных схем. Они могут стоить несколько долларов за штуку, поэтому в маломощных приложениях чаще используют керамические конденсаторы. Однако слюдяные конденсаторы благодаря высокому напряжению пробоя остаются практически незаменимыми для таких приложений, как  радиопередатчики высокой мощности.

Примеры:

  • серия CD производства CDE с диапазоном доступных емкостей 0,001…47 нФ (монтаж в отверстия).

Рис. 8. Полимерные (твердотельные) конденсаторы

Описание: твердотельные конденсаторы являются полярными, так же как и другие электролитические конденсаторы, но имеют ряд преимуществ, например, меньшие потери благодаря низкому последовательному сопротивлению ESR и длительный срок службы. Для обычных алюминиевых электролитов существует риск высыхания электролита при низких температурах, но твердотельные конденсаторы благодаря применению твердого полимерного диэлектрика обладают высокой надежностью даже при очень низких температурах.

Приложения: используются вместо электролитов в высококачественных материнских платах и DC/DC-преобразователях.

Примеры:

  • серия CD производства CDE с диапазоном доступных емкостей 0,001…10 нФ (монтаж в отверстия). 

Описание: конденсаторная сборка (capacitor array)  - это группа конденсаторов, конструктивно объединенных в одном корпусе, причем любой из конденсаторов может быть отдельно от остальных подключен к внешней цепи. Существует много различных типов сборок, которые отличаются количеством конденсаторов, типом диэлектрика, величиной отклонения емкости конденсатора от номинального значения, максимальным рабочим напряжением, типом корпуса и др.

Приложения: конденсаторные сборки широко применяются в мобильной и носимой аппаратуре, в материнских платах компьютеров и цифровых приставках, в радиочастотных модемах и усилителях, в автомобильных и медицинских приложениях и т.д.

Корпусные исполнения: конденсаторные сборки выпускаются как в DIP корпусах, так и в SMD исполнении. Наиболее популярные типоразмеры сборок для поверхностного монтажа 0508, 0612, 0805 представлены в нашем каталоге.

Примеры:

Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:

  1. использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением  250 В и корпусом 0805 представлен на Рис. 9.
  2. воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805" или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.

Рис. 9. Фрагмент скриншота сервиса поиска конденсатора

Заключение

В данном руководстве были рассмотрены некоторые наиболее популярные типы конденсаторов. Кроме них существуют суперконденсаторы, кремниевые конденсаторы, оксид-ниобиевые и подстрочные конденсаторы, которые обладают уникальными преимуществами по величине емкости, уровню надежности или возможности подстройки. Однако в большинстве электронных схем вы чаще всего увидите один из шести рассмотренных выше типов конденсаторов.

Журнал: https://blog.octopart.com/archives/2016/03/how-to-select-a-capacitor

www.terraelectronica.ru

типы, емкость, практика, полезные советы / Школа электрика / Коллективный блог

Конденсатор – электрическая цепь, содержащая две точки для соединения с другими цепями, с заданным значением емкости и небольшой проводимостью. Конденсатор – пассивный электронный компонент, который накапливает заряд и энергию электрического поля. Самая простая конструкция представляет собой два электрода в форме пластин (обкладки), разделенных диэлектриком с толщиной меньшей, чем размеры обкладок. На практике электрический конденсатор состоит из множества слоев диэлектрика и многослойных электродов.

Электрические конденсаторы используют в системах энергоснабжения для стабилизации электрической энергии в условиях переменного тока, для сглаживания пульсирующего тока, для устранения искрения контактов и радиопомех, для создания симметричного трехфазного напряжения и т.д.

Электрические параметры зависят от конструкции конденсатора и свойств используемых материалов. Чтобы правильно подобрать конденсатор для конкретного устройства, необходимо выяснить следующие параметры:


  1. Емкость,
  2. Рабочее напряжение (максимальное напряжение при длительной работе конденсатора без изменения свойств),
  3. Необходимую точность диапазон значений емкости,
  4. Температурный коэффициент емкости,
  5. Стабильность,
  6. Ток утечки диэлектрика при номинальном напряжении и заданной температуре.

Емкость конденсатора (С) определяют по формуле:,

где q ― заряд, накопленный в конденсаторе, U ― разность потенциалов между его электродами. Единица измерения в системе СИ ― фарад (Ф). В практике применяют микрофарад (мкФ) и пикофарад (пФ).

Емкость конденсатора зависит от электродов (форма и размер), их расположения и свойств диэлектрика, который разделяет электроды. Электродами могут быть плоские параллельные и цилиндрические пластины (рис. 1, а, б).

Емкость конденсатора можно проверить в домашних условиях, для этого понадобится компьютер со звуковой картой и программы C-ESR-метр.

Стабильность параметров конденсаторов может меняться с течением времени. Проверить качество конденсатора можно так:

Конденсаторы различают по возможности изменения емкости на:

  • постоянные – основной класс конденсаторов, не меняют емкости
  • переменные – возможно изменение емкости во время эксплуатации прибора
  • подстроечные – емкость изменяется только при регулировке и не меняется во время эксплуатации прибора

В зависимости от назначения конденсаторы разделяют на классы:

  • общего назначения, применяемые в большинстве приборов. Самые распространенные низковольтные конденсаторы, требования к ним минимальные.
  • специального назначения. Сюда входят импульсные, дозиметрические, помехоподавляюшие, высоковольтные, пусковые и т.д.

Конденсаторы бывают:

  • вакуумные,
  • с газообразным диэлектриком,
  • с жидким диэлектриком,
  • с твёрдым органическим диэлектриком (бумага, пленка, комбинированные),
  • с твердым неорганическим диэлектриком (керамика, стекло, неорганические пленки, слюда),
  • оксидно-полупроводниковые и электролитические конденсаторы. Это конденсаторы с очень большой удельной емкостью. Анодом здесь является оксидный слой на металле, изготовляют его из фольги алюминия, ниобия или тантала. В качестве катода служит электролит или полупроводник, который наносят на оксидный слой.

Электролитические конденсаторы обычно используют при возникновении необходимости в большой емкости. Здесь применяют специальную бумагу, которую пропитывают электролитом. Обкладки делают из алюминия или тантала.

Очень важно не ошибиться в полярности при подключении для избегания взрыва конденсатора.

На корпусе компонента производители всегда указывают знак «минус». Такие конденсаторы работают в сглаживающих фильтрах и разделительных цепях.

Керамические конденсаторы – это небольшой керамический диск, покрытый с двух сторон проводником. Такие конденсаторы используют в разделительных цепях.

Пленочные конденсаторы имеют более высокую емкость, которая достигается за счет принципа «многослойности», т.е. используют слои диэлектрика, которые чередуются со слоями обкладок. Диэлектриком здесь является тефлон, поликарбонат, металлизированная бумага, полиэстер, полипропилен. Бывают радиальные и аксиальные виды пленочных конденсаторов, они отличаются расположением обкладок и слоев диэлектрик. Такие конденсаторы применяют в высоковольтных источниках питания.

Слюдяные конденсаторы используют в устройствах воспроизведения звука, различных фильтрах и т.д. В качестве диэлектрика используют природный материал ― слюду, которая имеет как относительно высокую диэлектрическую проницаемость, так и электрическую и механическую прочность.

Расшифровка маркировки конденсатора:

МБМ – металлобумажный малогабаритный

КПК-М – подстроечный керамический малогабаритный

БМТ – бумажный малогабаритный теплостойкий

КТ – керамический трубчатый

МБГО – металлобумажный герметизированный однослойный

МБГЧ – металлобумажный герметизированный однослойный

ПСО – пленочный стирофлексный открытый

КЛС – керамический литой секционный

КД – керамический дисковый

КСО – слюдянной опресованный

МБГ – металлобумажный герметизированный

БМ – бумажный малогабаритный

КМ – керамический монолитный

МБГТ – металлобумажный герметизированный теплостойкий

ПМ – полистироловый малогабаритный

ПО – пленочный открытый

В таблицах 1-3 приведены данные об основных характеристиках конденсаторов разных типов.

Таблица 1. Керамические, электролитические и конденсаторы на основе металлизированной пленки: характеристики

Таблица 2. Слюдяные и конденсаторы с полиэстеровой и полипропиленовой основой: характеристики

Таблица 3. Слюдяные конденсаторы с поликарбонатной, полистиреновой и танталовой основой: характеристики

О цветовой маркировке конденсаторов

Корпус большинства конденсаторов имеет надпись с информацией об их номинальной емкости и рабочем напряжении. Но иногда можно встретить и цветовую маркировку.

На некоторых конденсаторах можно увидеть маркировочную надпись из двух строк. В первой строке содержится информация об их емкости (пФ или же мкФ) и точности (К = 10%, М 20%). Во второй строке – информация о допустимом постоянном напряжении, а также код материала диэлектрика.

Для монолитных керамических конденсаторов характерна маркировка кодом, который состоит из трех цифр. В этом коде третья цифра указывает на то, сколько нулей необходимо приписать к первым двум цифрам, чтобы узнать емкость в пикофарадах.

Так выглядит цветовой код, обозначающий номинал конденсатора

Пример 1. Что значит код 103, указанный на конденсаторе? Этот код означает, что к числу 10 необходимо дописать три нуля, чтобы получилась емкость конденсатора – это будет 10 000 пФ.
Пример 2. На конденсаторе стоит такая маркировка: 0,22/20 250. Это значит, что емкость данного конденсатора составляет 0,22 мкФ ± 20% и рассчитан он на постоянное напряжение 250 В.

Некоторые замечания и полезные советы. При работе с конденсаторами следует:

  • уменьшать рабочее напряжение при повышении температуры;
  • создавать большой запас прочности по напряжению;
  • обеспечить реальное рабочее напряжения около 0,5 допустимого значения;
  • принудительно понижать рабочие напряжения для частот выше 50-60 Гц или импульсных сигналов;
  • для повышения безопасности в цепь разряда следует подключить резистор, имеющий сопротивление 1 МОм параллельно конденсатору;
  • для выравнивания напряжений в высоковольтных цепях нужно подключить резистор, имеющий сопротивление в диапазоне 220 к0м ― 1 МОм, параллельно каждому конденсатору;
  • керамические проходные конденсаторы устанавливают непосредственно на корпус аппарата или металлический экран;
  • необходимо учитывать амплитуду импульса тока заряда, могущего в разы превосходить допустимое значение, чтобы не ошибиться с выбором конденсатора в качестве фильтра источника электропитания;
  • не допускать ошибок при определении полярности включения для использования электролитического конденсатора как разделительного;
  • электролитические конденсаторы взаимозаменяемы, внимание следует обращать на значение рабочего напряжения.
ВложениеРазмер
capacitor-01.JPG18.86 КБ
capacitor-02.JPG44.21 КБ
capacitor-03.JPG12.71 КБ
capacitor-04.JPG29.16 КБ
capacitor-08.JPG149.78 КБ

44kw.com

Как выбрать конденсатор? | Ответ здесь

Конденсатор, это электронная деталь назначение которого накапливать в себе на какое-то время электрический ток, и выполнять циклическую передачу тока.

Способ 1

Инструкции

1. Как выбрать конденсатор – каждый конденсатор представляет собой металлический цилиндр или прямоугольник, внутри которого находятся металлические пластины и диэлектрики.

2. На каждом конденсаторе написана его емкость, которая указана в фарадах и микрофарадах. Подбирают конденсаторы исходя их общей нагрузки сети, например если мощность будет равна одному киловатту, то конденсаторы нужно брать емкостью не менее 1 фарада.

3. Следует учитывать так же напряжение в сети, если к примеру напряжение равно 12 вольт, то конденсаторы нужно подбирать на напряжение не менее 20 вольт. А лучше приобретать конденсаторы с запасом, так как иногда в электросетях могут быть нагрузки немого выше расчетных на короткое время, и конденсаторы с малой емкостью могут сгореть.

4. Если рассматривать фирмы, которые производят конденсаторы то на сегодняшний день наиболее популярными являются mystery, stinger,kicx. Конденсаторы используют не только в электронике, но и в автомобилях, при установке авто кустики, особенно при установке сабвуферов.

Способ 2

Инструкции

1. Как выбрать конденсатор – в магазинах продается огромное количество конденсаторов, чтобы их выбрать нужно, знать в каких условиях конденсатор будет быть использован.

2. Следует обратить внимание на то что оно написано на самом конденсаторе, на нем указана емкость, которая обозначается в фарадах, а так же напряжение на которое он рассчитан.

3. Чтобы было легче ориентироваться, следует знать что один киловатт равен одному фараду, а если напряжение низкое, например 2 – 3 вольта, то нужно брать конденсаторы рассчитанные на напряжение 12 – 14 вольт.

4. Приобретать конденсаторы следует брать с некоторым запасом, рассчитанные на чуть большее напряжение и киловатты.

5. Если ток в сети будет высокочастотным, то необходимо брать конденсаторы с керамическими прослойками, так как они наиболее надежны.

questione.ru

Как подобрать конденсатор для трехфазного двигателя

Содержание:

  1. Принцип подключения трехфазного устройства к одной фазе
  2. Схемы подключения трехфазного двигателя к однофазной сети
  3. Виды пусковых конденсаторов
  4. Выбор конденсатора для трехфазного двигателя
  5. Расчет емкости
  6. Как подключить пусковой и рабочий конденсаторы
  7. Видео

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.


Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.


Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.


Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.


Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.


Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.


electric-220.ru

Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


www.szemo.ru

Как подобрать конденсаторы к электродвигателю

Трехфазный асинхронный электродвигатель может работать от однофазной сети с фазосдвигающим конденсатором. Наиболее простой способ подключения базируется на подключении одной из обмоток трехфазных электродвигателей через фазосдвигающий конденсатор. При этом полезная мощность развиваемая двигателем будет находиться в пределах 50-60% от его мощности при работе от трехфазной сети.
Для нормальной работы электродвигателя с конденсаторным пуском желательно, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. Однако на практике это условие выполнить не только сложно, но и невозможно, поэтому обычно используют двухступенчатое управление двигателем. Такое управление работой электродвигателя означает, что при его пуске и наборе оборотов в цепь подключают два конденсатора: рабочий и пусковой, а после разгона один конденсатор – пусковой отключают и оставляют только рабочий конденсатор.
Данная принципиальная схема подключения трехфазных электродвигателей в однофазную сеть работает следующим образом: при включении пакетного выключателя П1 замыкаются контакты П1.1 и П1.2. Необходимо сразу же после включения П1 нажать кнопку «Разгон» – двигатель начинает набирать обороты, а после выхода на обороты – кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.
Емкость рабочего конденсатора Ср зависит от вида соединения обмоток двигателя, так в случае соединения обмоток двигателя в «треугольник» она определяется по формуле:
А в случае соединения обмоток двигателя в «звезду»:
где:
Ср – емкость рабочего конденсатора в мкФ;
I – потребляемый электродвигателем ток в А;
U – напряжение в сети, V.
Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить по следующей формуле:
где:
Р – мощность двигателя, указанная в его паспорте, Вт;
U – напряжение в сети, V;
ή – КПД двигателя;
cosφ – коэффициент мощности.
Величину емкости пускового конденсатора Сп выбирают в 2-2,5 раза больше емкости рабочего конденсатора Ср, при этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Кроме того для сети 220V лучше всего использовать бумажные конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500V и выше. Применение электролитических конденсаторов в данной схеме (рис.1) категорически запрещается. Поскольку электролитический конденсатор, при включении в сеть переменного тока, быстро разогревается, электролит вскипает и происходит взрыв конденсатора. На это уходит, как показал опытный эксперимент, всего примерно 10-15с.
Однако в качестве пусковых конденсаторов, при условии их кратковременного включения – на 1-2с, можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450V. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют резистором R1 с сопротивлением 2-3 мОм. Резистор R1 необходим для «стекания» оставшегося электрического заряда на конденсаторах. Общая емкость соединенных конденсаторов составляет (С1+С2)/2.
На практике в основном величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя. В таблице№1 приведена зависимость минимальных значений емкостей конденсаторов от мощности трехфазного электродвигателя при включении в сеть 220 В.
Таблица№1.


Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20-30 % превышающий номинальный. Поэтому если двигатель часто используется в недогруженном режиме или вхолостую, то емкость конденсатора Ср в этом случае следует уменьшить. Также может случиться, что во время перегрузки электродвигатель остановился. Тогда, сняв нагрузк

ruscos.ru

Как выбрать конденсатор?

Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов (температурные характеристики, тип корпуса и так далее), которые делают тот или иной тип конденсаторов (электролитический, керамический и пр.) наиболее предпочтительным для вашего проекта.

В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника.

Например, результат поиска для DIP конденсаторов  c рабочим напряжением 450 В серии HP3 производства компании Hitachi с емкостью 56…680 мкФ приведен на Рис.1.

Рис. 1. Результат поискового запроса для  имеющихся на складе конденсаторов серии HP3 с рабочим напряжением 450 В от Hitachi  с емкостью в диапазоне  56…560 мкФ

Конденсаторы (Рис. 2) представляют собой двухвыводные компоненты, используемые для фильтрации, хранения энергии, подавления импульсов напряжения и других задач. В самом простом случае они состоят из двух параллельных пластин, разделенных изоляционным материалом, называемым диэлектриком.

Рис. 2. Конденсаторы различных типов

Конденсаторы хранят электрический заряд. Единицей емкости является Фарад (Ф). Это название было дано в честь Майкла Фарадея, который в свое время стал пионером в области практического использования конденсаторов.

Конденсаторы могут быть полярными и неполярными. К полярным относятся почти все электролитические и танталовые конденсаторы. Они должны подключаться с учетом полярности напряжения. Если перепутать выводы «-» и «+», то это приведет к короткому замыканию. К неполярным относятся керамические, слюдяные и пленочные конденсаторы. Они могут работать при любой полярности приложенного напряжения, что делает их подходящими для применения в цепях переменного тока.

Несмотря на широкое распространение конденсаторов, выбор конкретной модели бывает достаточно сложным. Вы можете знать емкость и рабочее напряжение, которые требуются в вашем проекте, но у конденсаторов есть и множество других характеристик, таких как полярность, температурный коэффициент, стабильность, последовательное эквивалентное сопротивление (ESR) и так далее. Это делает каждый конкретный тип конденсаторов пригодным для конкретного приложения. Ниже перечислены наиболее популярные типы конденсаторов с кратким описанием их достоинств и особенностей.

Типы конденсаторов

Существует несколько типов конденсаторов, которые отличаются электрическими характеристиками и стоимостью. Ниже приведено описание наиболее популярных типов конденсаторов: алюминиевых электролитических, керамических, танталовых, пленочных, слюдяных и полимерных (твердотельных). Кроме того, для каждого типа представлены наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.

Рис. 3. Алюминиевый электролитический конденсатор

Описание: алюминиевые электролитические конденсаторы (Рис. 3) являются полярными, поэтому их нельзя использовать в цепях переменного напряжения. Они могут иметь высокую номинальную емкость, но отклонение от номинала обычно составляет до 20%.

Приложения: алюминиевые электролитические конденсаторы оптимальны для приложений, которые не требуют высокой точности и работы с переменными напряжениями. Чаще всего они применяются в качестве развязывающих конденсаторов в источниках питания, то есть для уменьшения пульсаций напряжения. Они также широко используются в импульсных DC/DC-преобразователях напряжения.

Корпусное исполнение: как для монтажа в отверстия, так и для поверхностного монтажа.

Примеры:

Для монтажа в отверстия:

  • 25 В серия TKR производства Jamicon с диапазоном доступных емкостей 10…5000 мкФ.
  • 50 В серия ECA-1HM  от Panasonic с диапазоном доступных емкостей 4.7…3300 мкФ.
  • 450 В серия HP32 от Hitachi AIC с диапазоном доступных емкостей 56…1000 мкФ.

Для поверхностного монтажа:

  • 10 В серия EEE-FP1A от Panasonic с диапазоном доступных емкостей 33…1000 мкФ.
  • 50 В серия CA050 от Yageo с диапазоном доступных емкостей 0,22…220 мкФ.

Рис.4. Керамические конденсаторы

Описание: существует два основных типа керамических конденсаторов (Рис. 4): многослойные чип-конденсаторы (MLCC) и керамические дисковые. MLCC пользуются большой популярностью и широко применяются в электронных устройствах, поскольку обладают высокой стабильностью и малым уровнем потерь. Они отличаются низким последовательным сопротивлением (ESR) и минимальной погрешностью номинала по сравнению с электролитическими или танталовыми конденсаторами. Вместе с тем их максимальная емкость невелика и достигает всего нескольких десятков мкФ. Из-за высокой удельной емкости MLCC имеют очень малые габариты и отлично подходят для размещения на печатных платах.

Приложения: поскольку керамические конденсаторы являются неполярными, то их можно применять в цепях переменного тока. Они широко используются в качестве «универсальных» конденсаторов, например, для высокочастотной развязки, фильтрации, подстройки резонаторов и подавления электромагнитных помех. Как MLCC, так и керамические дисковые конденсаторы подразделяются на два класса:

Керамические конденсаторы I класса – точные (+/- 5%) и стабильные конденсаторы с минимальной зависимостью емкости от температуры. Конденсаторы NP0/C0G отличаются минимальным температурным коэффициентом 30 ppm/K. К сожалению, их максимальная емкость ограничена несколькими нанофарадами (нФ). Поскольку они очень стабильны и точны, то их чаще всего используют в системах с частотным регулированием, например, в резонансных схемах для радиочастотных приложений.

Керамические конденсаторы II класса менее точны, но обеспечивают более высокую удельную емкость (номинальные значения - до десятков мкФ) и, следовательно, подходят для фильтрации и развязки. Среди их недостатков можно отметить большой коэффициент напряжения. Например, даже при приложении напряжения, равного половине рабочего, обычно наблюдается снижение емкости на 50%.

  • X5R может работать в диапазоне - 55…85°C с изменением емкости +/- 15%;
  • X7R может работать в диапазоне - 55…125°C с изменением емкости +/- 15%;
  • Y5V - в диапазоне от - 30…+ 85°C с изменением емкости -20/ +80%.

Корпусные исполнения: наиболее распространены корпуса для поверхностного монтажа 0201, 0402, 0603, 0805, 1206 и 1812. Цифры обозначают габаритные размеры в дюймовой системе. Например, 0402 составляет 0,04х0,02", 0603 - 0,06х0,03" и так далее.

Примеры:

Тип NP0/C0G:

  • 0402 - серия CC0402JRNPO9 производства компании Yageo с диапазоном доступных емкостей 0,01…1 нФ;
  • 0603 - серия CC0603JRNPO9 от Yageo с диапазоном доступных емкостей 0,008…2,7 нФ.

Тип X7R:

  • 0402 - серия CC0402KRX7R9BB от Yageo с диапазоном доступных емкостей 0,1…10 нФ;
  • 0603 - серия CC0603KRX7R7BB от Yageo с диапазоном доступных емкостей 0,1…1 мкФ;
  • 1206 - серия GRM31 от Murata с диапазоном доступных емкостей 470 пф…22 мкФ;
  • 0805 - серия CL21 от Samsung с диапазоном доступных емкостей 150 пф…10 мкФ.

Для монтажа в отверстия:

Рис. 5. Танталовые конденсаторы

Описание: танталовые конденсаторы (Рис. 5) – это подтип электролитических конденсаторов с высоким уровнем поляризации. При их использовании необходимо проявлять осторожность, поскольку они имеют склонность к катастрофическим отказам даже при воздействии импульсов напряжения с амплитудой, лишь немного превышающей номинальное рабочее напряжение. Танталовые конденсаторы могут иметь высокую номинальную емкость и отличаются высокой временной стабильностью. Они меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Но алюминиевые электролиты могут выдерживать более высокие максимальные напряжения.

Приложения: из-за малого тока утечки, стабильности и высокой емкости танталовые конденсаторы часто используются в схемах выборки-хранения, в которых требуется обеспечивать минимальный ток утечки для продолжительного хранения заряда. Также, благодаря малым размерам и долговременной стабильности, они применяются для фильтрации по цепям питания.

Корпусные исполнения: танталовые конденсаторы выпускаются как для монтажа в отверстия, так и для поверхностного монтажа (SMD). Тем не менее, чаще всего используются именно SMD-компоненты. В дюймовой системе типоразмер А соответствует размеру 1206 (0,12х0,06"), типоразмер В соответствует размеру 1210, типоразмер C соответствует размеру 2312, типоразмер D - размеру 2917.

Примеры:

  • Типоразмер A: серия TAJA от AVX с диапазоном доступных емкостей 1…10 мкФ;
  • Типоразмер B: серия TAJB от AVX с диапазоном доступных емкостей 10…47 мкФ;
  • Типоразмер C: серия TAJC от AVX с диапазоном доступных емкостей 47…220 мкФ;
  • Типоразмер D: серия TAJD от AVX с диапазоном доступных емкостей 220…680 мкФ.

Рис. 6. Пленочные конденсаторы

Описание: пленочные конденсаторы (Рис. 6) являются неполярными, что позволяет использовать их в цепях переменного напряжения. Они отличаются малыми значениями эквивалентного сопротивления (ESR) и последовательной индуктивности (ESL).

Приложения: пленочные конденсаторы часто применяются в схемах с аналого-цифровыми преобразователями. Кроме того, они способны работать с высоким пиковым током и, таким образом, могут применяться в снабберных цепочках для фильтрации индуктивных выбросов напряжения в DC/DC-преобразователях.

Примеры: серия B32021 производства компании EPCOS с диапазоном доступных емкостей 1 нФ…10 нФ и рабочим напряжением 300В AC.

Рис. 7. Слюдяной конденсатор

Описание: слюдяные конденсаторы (Рис. 7) являются неполярными, отличаются малой величиной потерь, высокой стабильностью и обладают отличными характеристиками на высоких частотах.

Приложения: эффективны при работе в составе радиочастотных схем. Они могут стоить несколько долларов за штуку, поэтому в маломощных приложениях чаще используют керамические конденсаторы. Однако слюдяные конденсаторы благодаря высокому напряжению пробоя остаются практически незаменимыми для таких приложений, как  радиопередатчики высокой мощности.

Примеры:

  • серия CD производства CDE с диапазоном доступных емкостей 0,001…47 нФ (монтаж в отверстия).

Рис. 8. Полимерные (твердотельные) конденсаторы

Описание: твердотельные конденсаторы являются полярными, так же как и другие электролитические конденсаторы, но имеют ряд преимуществ, например, меньшие потери благодаря низкому последовательному сопротивлению ESR и длительный срок службы. Для обычных алюминиевых электролитов существует риск высыхания электролита при низких температурах, но твердотельные конденсаторы благодаря применению твердого полимерного диэлектрика обладают высокой надежностью даже при очень низких температурах.

Приложения: используются вместо электролитов в высококачественных материнских платах и DC/DC-преобразователях.

Примеры:

  • серия CD производства CDE с диапазоном доступных емкостей 0,001…10 нФ (монтаж в отверстия). 

Описание: конденсаторная сборка (capacitor array)  - это группа конденсаторов, конструктивно объединенных в одном корпусе, причем любой из конденсаторов может быть отдельно от остальных подключен к внешней цепи. Существует много различных типов сборок, которые отличаются количеством конденсаторов, типом диэлектрика, величиной отклонения емкости конденсатора от номинального значения, максимальным рабочим напряжением, типом корпуса и др.

Приложения: конденсаторные сборки широко применяются в мобильной и носимой аппаратуре, в материнских платах компьютеров и цифровых приставках, в радиочастотных модемах и усилителях, в автомобильных и медицинских приложениях и т.д.

Корпусные исполнения: конденсаторные сборки выпускаются как в DIP корпусах, так и в SMD исполнении. Наиболее популярные типоразмеры сборок для поверхностного монтажа 0508, 0612, 0805 представлены в нашем каталоге.

Примеры:

Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:

  1. использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением  250 В и корпусом 0805 представлен на Рис. 9.
  2. воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805" или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.

Рис. 9. Фрагмент скриншота сервиса поиска конденсатора

Заключение

В данном руководстве были рассмотрены некоторые наиболее популярные типы конденсаторов. Кроме них существуют суперконденсаторы, кремниевые конденсаторы, оксид-ниобиевые и подстрочные конденсаторы, которые обладают уникальными преимуществами по величине емкости, уровню надежности или возможности подстройки. Однако в большинстве электронных схем вы чаще всего увидите один из шести рассмотренных выше типов конденсаторов.

Журнал: https://blog.octopart.com/archives/2016/03/how-to-select-a-capacitor

kra.terraelectronica.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *