Пробка теплопроводность – Навеяло. Эффективно ли использовать в качестве утеплителя пробковое покрытие? Или все же мин. вату? По теплотехнике

Содержание

Техническая пробка: теплопроводность и некоторые особенности

Техническая пробка представляет собой агломераты гранулированной коры пробкового дерева с добавлением различных связующих веществ, как натуральных, так и синтетических. Изделия из технической пробки, поступающие в продажу в виде панелей (листов) или в рулонном виде, состоят из спрессованной, хорошо прогретой и предварительно раздробленной коры.

Теплопроводность таких изделий существенно зависит от плотности пробки и типа связующего, использованного при их изготовлении и находится в пределах от 0,042 до 0,13 Вт/(м·град).

Пробковые панели из гранулированной натуральной пробки, не содержащие искусственных связующих, имеют теплопроводность на уровне 0,04 Вт/(м·град).

Теплопроводность композиционной («клеевой») пробки почти в 2 раза выше, чем натуральной, поскольку она есть сумма коэффициентов теплопроводности самой пробки и клеевой основы (смолы или другого связующего).

Еще недавно считалось, что техническую пробку можно использовать лишь для внутренней декоративной отделки, но и в строительстве этому натуральному материалу с низкой плотностью также нашлось свое особое применение. Специалисты в области строительства считают, что пробка является отличным и очень эффективным теплоизоляционным материалом, который находится на более высоком уровне по своим свойствам, чем, к примеру, минеральные традиционные утеплители.

Измельченную пробку в виде многочисленных мельчайших гранул применяют в качестве натуральной насыпной теплоизоляции при утеплении строительных конструкций. Теплопроводность такой пробковой теплоизоляции составляет около 0,034 Вт/(м·град).

Теплопроводность пробки различных типов при комнатной температуре
Тип пробки Плотность пробки, кг/м3 Теплопроводность пробки, Вт/(м·град)
Пробка измельченная (частицы менее 3 мм) 37 0,034
Пробка гранулированная 45 0,038
Пробка агломерированная (пластины, листы) 80…190 0,042
Пробковые сегменты 180…260 0,047…0,17
Пробка минеральная на битумной основе 270…350 0,073
Пробка композиционная (пробковое ковровое покрытие)
540…600 0,078…0,13

Пробка является ценным материалом для строительных и отделочных работ по нескольким причинам, самой весомой из которых считается ее низкая плотность и уровень водопоглощения, а также не подверженность деформированию. Кроме того, техническая пробка не подвергается воздействию бактерий и грибка. Хотелось бы отметить, что такой легкий строительно-отделочный материал совершенно не изменяет свои свойства с течением времени и это тоже можно причислить к несомненным плюсам.

Кроме того, немаловажным плюсом пробкового покрытия является полная пожаробезопасность, а это значит, что даже при воздействии пламени пробка не сгорит, а будет только медленно тлеть, при этом в воздух не будут выделяться токсичные вещества, как это часто происходит с другими не натуральными материалами.

Еще одной положительной особенностью использования технической пробки является отсутствие реакции на холод и высокие температуры. Максимальная рекомендуемая температура применения пробки 90°С. Помимо этого, пробка обладает и высокой стойкостью к резким температурным перепадам.

Источники:

  1. В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2005 — 536 с.
  2. Михеев М. А., Михеева И. М. Основы теплопередачи.
  3. Чиркин В.С. Теплофизические свойства материалов ядерной техники..
  4. Физические величины. Справочник. Под ред. Григорьева И. С., Мейлихова Е. З. — М.: Энергоатомиздат, 1991 — 1232 с.
  5. ГОСТ Р ИСО 633-2011 Кора пробковая. Термины и определения.

thermalinfo.ru

Полная таблица теплопроводности строительных материалов

Таблица теплопроводности материалов

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 840
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0.2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Войлок шерстяной 150…330 0.045…0.052 1700
Газо- и пенобетон, газо- и пеносиликат 300…1000 0.08…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0.23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем
(ГОСТ 9573-82)
50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол «Пеноплекс» 35…43 0.028…0.03 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)
50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996 – 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 200…600 0.065…0.145 1060
Полистиролбетон модифицированный на
активированном пластифицированном шлакопортландцементе
200…500 0.057…0.113 1060
Полистиролбетон модифицированный на
композиционном малоклинкерном вяжущем в стеновых блоках и плитах
200…500 0.052…0.105 1060
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060
Полистиролбетон модифицированный на
шлакопортландцементе в стеновых блоках и плитах
200…500 0.062…0.121 1060
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.28
Пробка техническая 50 0.037 1800
Ракушечник 1000…1800 0.27…0.63
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун 7220 40…60 500
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75)
и аглопорита (ГОСТ 11991-83) — засыпка
400…800 0.12…0.18 840
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

termoizol.com

Пробка, теплопроводность - Справочник химика 21

    Полагая, что подвод теплоты к твердой пробке материала в канале червяка осуществляется только за счет теплопроводности от цилиндра через пристенный слой расплава, параметр Ф можно рассчитать по формуле [c.347]

    Теплопроводность расплава над твердой пробкой гранул полиэтилена при средней температуре [c.357]

    Пример VI. 16. Определить количество тепла, которое поступает в холодильную камеру, построенную из красного кирпича [толщина бк = 0,2 м, теплопроводность Лк = 0,7 вт/ м-град)] и изолированную с наружной стороны слоем пробки толщиной 0,1 м [теплопроводность сухой пробки кх = 0,07, влажной пробки Ха = = 0,15, а промерзшей пробки = 0,35 вт/(м-град)]. Температура внутри камеры сн = —34°С, а снаружи н = 28°С. Коэффициент теплоотдачи внутри и снаружи составляет соответственно вн = = 5 вт м -град) н = 9 вт](м -град). Точка росы, соответствующая влажности наружного воздуха, /р = 12° С. Определить также распределение температур внутри стенки. [c.162]


    Задача VI. 2. Определить количество тепла, проникающего в холодильную камеру с площадью стен 120 м . Стены камеры выполнены из строительного кирпича [толщина бк = 0,25 м теплопроводность Хк = 0,7 вт/(м-град)] и изолированы слоем пробки толщиной бп = 0,2 м [теплопроводность Хд = 0,07 вт/(м-град).]. Пробка покрыта тонким слоем лака, препятствующего ее увлажнению. Термическое сопротивление лаковой пленки ничтожно мало. Температура внутренней поверхности камеры вн — —2° С температура ее наружной поверхности н = 25°С. [c.174]

    Теоретический анализ такого способа плавления затруднен, потому что необходимо рассматривать не только вопросы теплопроводности, но и распределение напряжений в сжатой пробке, состоящей из отдельных частиц полимера при неодинаковой температуре и сложной внешней нагрузке. Как указывалось в разд. 8.9, анализ даже сравнительно простой схемы нагружения изотермической пробки представляет значительные трудности. Тем не менее, поскольку преимущества диссипативного разогрева и плавления при смешении, характеризующегося высокими скоростями и низкой температурой расплава, очевидны, необходимо в ближайшем будущем разработать методы для его теоретического анализа. [c.298]

    Теплопроводность воды очень незначительна по сравнению с теплопроводностью других веществ так, теплопроводность, пробки 0,1 кал см- -с- -град- асбеста — 0,3—0,6 бетона — 2—3 дерева —0,3—1,0 кирпича — 1,5—2,0 льда —5,5 кал-см- -с Х Хград-.  [c.12]

    Так как коэффициент теплопроводности пробки X = 0,037 ккал/м -ч-г рад, [c.496]

    Пенопласт Мипора на основе карбамидо-формальдегидных полимеров изготовляют в виде блоков и плит. Главное достоинство миноры— легкость (более чем в 10 раз легче пробки), малая теплопроводность (в два раза меньше теплопроводности пробки), устойчивость к горению, особенно при добавлении фосфорнокислых солей. [c.56]

    При расчете процесса теплопередачи считаем, что толщина слоя гранул бесконечно велика. Это допущение можно считать приемлемым, поскольку коэффициент теплопроводности гранул очень мал. Поэтому температура гранул быстро снижается от температуры поверхности раздела (температура плавления) до температуры слоев пробки, достаточно удаленных от зоны плавления. [c.247]

    Существует много способов для сбора газовых компонент, которые мы не можем рассмотреть здесь. Вместо этого остановимся на приборе, изображенном на рис. 18.9. Газ-носитель (гелий) поступает из стального баллона через счетчик потока в левую половину элемента для измерения теплопроводности. В этот же элемент через сменную резиновую пробку шприцем вводится в образец. Затем газ пропускается через хроматографическую колонну и через правую половину элемента [10]. Очень важно, чтобы колонна и элемент для измерения теплопроводности были тщательно термостатированы при достаточно высокой температуре, чтобы ни одна из компонент газовой смеси не сконденсировалась. [c.264]

    Здесь йз и 6 — коэффициенты теплопроводности материала пробки и металла корпуса. Поскольку последний в 10—100 раз больше, чем первый, то можно принять, что распределение температур в стенке корпуса линейно, т. е. температура корпуса линейно изменяется от температуры поверхности контакта Гд(0) до температуры корпуса Ть Ь) (или температуры охлаждающей жидкости) на расстоянии Ь от внутренней поверхности корпуса. [c.292]

    Простейший калориметр с изотермической оболочкой изображен на рис. 3. Металлический стакан 1 вставлен в оболочку 2 на подставке 3 из материала с малой теплопроводностью (пробка, резина, дерево, органическое стекло и др.). [c.49]

    Схемы камер теплопроводности представлены на рис. 2. Камеры изготовлены из стекла. В качестве сопротивления использована платиновая нить диаметром 20 x. На рис. 2а представлена схема камеры теплопроводности, в которой платиновая нить, впаянная в смычок из манганиновой проволоки, вмонтирована в пробки из термостойкой пластмассы фторпласт [c.211]

    Пробки уплотнены клеем БФ-2 или эпоксидной смолой. На рис. 26 представлена схема камеры теплопроводности, в которой платиновая нить впаяна в стекло па платиновых контактах. Такая камера обеспечивает лучшую герметичность при повышенной температуре. Однако она менее надежна вследствие возмож-.пого провисания платиновой нити. [c.211]

    При увеличении объемной влажности на 1% коэффициент теплопроводности увеличивается для пробковых плит приблизительно на 0,003, торфоплит — на 0,004 и минеральной пробки — на 0,007 ккал/мчас °С. [c.206]

    При выборе раз.мера и материала для калориметрической системы необходимо иметь в виду следующее с увеличением диаметра стержня растут силы, действующие на торцевые пробки и корпус блока с увеличением длины — резко возрастает сложность изготовления калориметра, при уменьшении растет роль торцов и становятся заметными утечки теплоты по конструктивным элементам. Стержень должен иметь высокую теплопроводность и известную теплоемкость, а блок — высокую температуропроводность и механическую прочность. Размеры блока должны быть достаточными для размещения термопар и нагревате.тя. Нагреватель должен равномерно наматываться по поверхности блока. [c.98]

    Количество исследуемого образца, при прочих равных условиях, во многом определяет успех исследования. Большие количества измельченного материала помещают в стеклянный контейнер, который затем соединяют с системой напуска. Обычно для этой цели используют узкогорлый сосуд с пробкой и стеклянной ватой (толщина тампона должна быть не менее 2,5 см). Помещенная в горлышко вата препятствует проникновению порошка в остальную часть прибора. Контейнер и образец должны быть сначала эвакуированы при низкой температуре, причем следует помнить, что теплопроводность порошка м ожет быть очень низкой, вследствие чего на его охлаждение придется затратить некоторое время до начала эвакуации. Ускорения процесса охлаждения можно добиться с помощью введения в сосуд мешалки, изготовленной из материала с большой теп- [c.184]

    С использованием математич. моделей зоны пластикации м. б. определены длина участка червяка, в пределах к-рого текущая ширина X пробки уменьшается до 0,05—0,1 ео начального значения закономерности распределения давлений и темп-р на этом участке возникающее в пределах зоны осевое усилие и расходуемая мощность. Решение этих задач основано на совместном рассмотрении ур-ния теплового баланса (учитывающего подвод тепла к пробке вследствие теплопроводности от нагревателей корпуса и диссипативного разогрева в тонком слое, а также расход теила на разогрев и плавление материала) и ур-ния движения в тонком слое, определяющего интенсивность отвода образующегося расплава к толкающей стенке червяка. Длину пробки из условия Х/И с0,05 он-ределяют, интегрируя численными методами по длине винтового канала ур-ние вида  [c.469]

    Поропласты могут быть получены с весьма широкими пределами плотности (от 8 до 250 кг/ж ). Напомним, что плотность пробки, наиболее легкого ие известных естественных материалов, 200—250 кг м . Соответственно, поропласты имеют и наиболее низкую по сравнению со всеми известными теплоизоляционными материалами теплопроводность (табл. 23), которая зависит от плотности и от размера ячеек. Чем мень- [c.223]

    Кроме того, из минеральной ваты производят плиты минеральной пробки. По способу ВНИХИ минеральную вату смешивают с битумной эмульсией и небольшим количеством сернокислого глинозема. Этой массой наполняют формы, под вакуум-прессом формуют и удаляют большую часть воды. Затем формы направляют в сушилки, где испаряется оставшаяся влага. Толщина плит обычно 30 и 50 мм. Объемный вес плит из минеральной пробки 300—400 кПм , коэффициент теплопроводности 0,060—0,070 ккал/м час град. Минеральная пробка имеет очень малую гигроскопичность (около 2%о), водопоглощение не более 25% за сутки, она не заражается грибками, не гниет, грызуны в ней не селятся, она почти не горюча. Из минеральной пробки изготовляют не только плиты, но и скорлупы, сегменты и изоляцию для фасонных частей. Минеральная пробка по некоторым свойствам оказывается лучше натуральной пробки и является весьма перспективным материалом. [c.96]

    Оба рассмотренных способа дают результаты, отличающиеся друг от друга и от действительных значений коэффициента теплопередачи при наличии в ограждении элементов (включений), выполненных из материалов (например, из стали), теплопроводность которых значительно отличается от теплопроводности теплоизоляционного материала (коэффициент теплопроводности стали приблизительно в 1000 раз больше коэффициента теплопроводности пробки). [c.133]

    В качестве теплоизоляционных материалов в отечественном торговом холодильном оборудовании применяют преимущественно гофрированный картон, пенопласты, ми-пору. За границей используют полистирол, пробку, стеклянное волокно. В табл. 27 приводятся свойства некоторых изоляционных материалов, по результатам испытаний ВНИХИ при температуре 20—30° [ПО]. В табл. 27 указаны коэффициенты теплопроводности при средних значениях объемного веса. Эти величины могут меняться в известных пределах. Так, например, объемный вес мипоры может составлять от 10 до 25 кг/м . [c.215]

    В качестве изоляционных материалов применяются обычно волокнистые и пористые материалы, содержащие прослойки воздуха. Наиболее употребительны следующие м атериалы асбест, пробка, торф, войлок и др. Изоляции подвергаются исключительно металлические поверхности как наиболее теплопроводные. Поверхность изолированного аппарата в целях уменьшения потерь тепла лучеиспусканием обычно окрашивается в белый цвет. Изоляционная обшивка должна быть легкой, негорючей и достаточно прочной. Экономия тепла, даваемая изоляцией, весьма значительна. Так, изолированный трубопровод теряет в окружающее пространство тепла приблизительно в 5 раз меньше, чем неизолированный, [c.44]

    В 90-х годах прошлого века над этой проблемой начал работать шотландский химик Джеймс Дьюар (1842—1923). Он приготовил в большом количестве жидкий кислород, который хранил в изобретенном им сосуде, получившем название сосуда Дьюара. Сосуд Дьюара — это колба с двойными стенками, из пространства между которыми выкачан воздух Теплопроводность разреженного газа между стенками настолько мала, что температура веш,ества, поме-ш,енноро в сосуд, долгое время остается постоянной. Чтобы еще более замедлить процесс передачи тепла, Дьюар посеребрил стенки сосуда, (Бытовой термос — это всего-навсего сосуд Дьюара, закрывающийся пробкой.) [c.122]

    Испытание в этой форме довольно условно. Переход от подвижного состояния в неподвижное, даже при одной и той же температуре, может совершаться с различной легкостью и зависит от ряда причин, напр., характера парафина, смол и т. п. Кроме того плохая теплопроводность нефти не дает уверенности в том, что нефть вся имеет одну и ту же температуру ло всей массе, особенно лри вынимании пробирки из смеси. Поэтому иногда выгоднее, хотя бы ценой большей продолжительности исследования, окружать пробирку жуфтой, дурно проводящей тепло. Для этого пробирку с нефтью на пробке опускают Б др тую, более широкую, наполненную почти доверху незастывающей жидкостью (спирт, керосин и т. д.) или даже вовсе ничем не наполненную (воздушная рубапжа). [c.39]

    Используя перегонку с водяным паром, можно выделять нелетучие твердые вещества из их растворов в высококипящих растворителях, очищать нелетучие жидкости от следов растворителя, отделять летучие изомеры от нелетучих и т. д. Пар получают в специальных парообразователях (рис. 19). Они представляют собой цилиндрические или конические сосуды, выполненные из металла с высокой теплопроводностью (например, из меди) или термостойкого стекла (колбы Эрленмейера большой вместимости). До дна сосуда опущена высокая стеклянная трубка для регулирования давления внутри сосуда. В конусообразной части у металлического сосуда н в пробке у стекляниного находится пароотводная трубка. Металлический парообразователь сбоку имеет также мерное стекло для контроля за уровнем воды  [c.36]

    Величина коэффициентов теплопроводности газов на порядок меньше теплопроводности жидкостей. Поэтому газы обладают самой низкой теплопроводностью из всех веществ. Низкий коэффициент теплопроводности теплоизоляционных материалов (диатомито вые земли, шлаковая вата, торф, пробка) обусловливается их пористостью. Поэтому тепловой поток в таких материалах является в основном процессом теплопередачи через воздух, заключенный в порах. Твердое вещество таких материалов не позволяет воздуху приходить в состояние движения от разности температур, а тем самым и предотвращает передачу дополнительного количества тепла конвективными токами. Закон Фурье для процессов теплопередачи весьма напоминат закон Ома для электрического тока. В этом можно легко убедиться, если уравнение (1-6) написать в следующей форме  [c.27]

    Например, все указанные в школьной программе работы с раздаточным материалом (они даны в разделах Лабораторные опыты п Практические занятия ) прежде всего целесообразно организовать в процессе изучения нового материала. Так, на уроке в УП классе при изучении вопроса о веществах и их свойствах учитель организует работу по ознакомлению с агрегатным состоянием и физическими свойствами некоторых веществ поваренной соли, алюминия, меди, воды, серы, железа, аммиака, который находится в пробирке, плотно закрытой пробкой (для этого перед уроком лаборант слегка смачивает стенки пробирок нашатырным спиртом и сразу же закрывает их пробками). Работа проводится после того, как будет выяснено отличие понятий физического тела и вещества. Для того чтобы организовать целенаправленную познавательную деятельность, учитель записывает на доске план изучени и описания свойств веществ 1) агрегатное состояние при данных условиях, 2) цвет, 3) блеск, 4) твердость, 5) пластичность, 6) электрическая проводимость, 7) теплопроводность, 8) растворимость в воде, 9) плотность, 10) температура плавления, температура кипения. Поскольку данная работа — одна из первых самостоятельных работ по химии, то учитель берет на себя основную роль в руководстве действиями учащихся, несмотря на то что эта работа приведена в приложении учебника (на с. 105—106). Текст инструкции целесообразно предложить учащимся прочитать дома, чтобы лучше повторить изученный материал и более успешно выполнить домашние упражнения (подобные разобранным в классе). [c.21]

    Реактивы и оборудование Газовый хроматограф ЛХМ-8МД с детектором по теплопроводности (катарометром) колонки хроматографические металлические длиной 3 метра, внутренним диаметром 2 миллиметра с адсорбентом Паропак Р термометр ртутный 50-250 С микрошприц МШ-10 секундомер флаконы стеклянные 14 мл с пробкой [c.17]

    Во всех работах при газохроматографическом определении спирта используется статический вариант.В качестве сосуда для установления равновесия между фазами обычно применяются стеклянные флаконы или пробирки, закрытые эластичной резиновой пробкой. Дозирование в хроматограф равновесного пара в таких случаях производится с помощью газовых шприцев. Гольд-баум с соавторами [37] предложили совместить операции установления равновесия и дозирования пара в хроматограф, используя для этой цели медицинские шприцы, которыми кровь отбирается у человека. Все же лучшая воспроизводимость дозирования равновесного пара при определении спирта в крови достигается в специа-лизированных приборах, таких, как А1со-Апа1угег [38] с детектором по теплопроводности на термисторах и уни нереальные парофазные анализаторы Р40, Р42 и Р45 фирмы Перкин — Элмер . Пневматическая система автоматического ввода равновесного пара в хроматограф, описанная в гл. 2, была разработана именно для этих анализов [39] (на основе методики Махата [40,41]). [c.124]

    Для понижения потерь тепла (или холода) в окружающую среду и обеспечения нормальных санитарных условий в производственных помещениях наружные поверхности горячих (или сильно охлажденных) стенок аппаратов н трубопроводов покрывают одним или несколькими слоями теплоизоляционных материалов, обладающих низкими коэффициентами теплопроводности [обычно ниже 0,2 Вт/(м-К)]. Ассортимент теплоизолирующих материалов весьма обширен дерево, пробка, асбест, шлаковая вата, зонолит (прокаленный сорт слюды — вермикулита), асбозурит, асбослюда (смесь асбеста и слюды), совеяит и др. Применяют также смеси различных материалов. Физические свойства распространенных теплоизолирующих материалов (плотность, теплоемкость, теплопроводность) приведены в технических справочниках и специальных курсах теплопередачи. [c.314]

    Подготовка к работе трубки для сожжения. Перед употреблением трубку для сожжения моют хромовой смесью, дистиллированной водой и высушивают. Через широкую часть трубки в суженный конец ее вводят серебряную проволоку толщиной 1 мм, один конец которой должен выступать наружу, а другой, свернутый в спираль, находиться в трубке. Серебряная спираль препятствует конденсации воды в трубке вследствие хорошей теплопроводности. Затем вводят слой серебряной ваты толщиной 2 мм и пробку из свежепрокаленной асбестовой ваты толщиной примерно 5 мм, которая снижает скорость проходящего через трубку газового потока. Асбест уплотняют при помощи медной проволоки. [c.99]

    Этот метод литья обладает рядом преимуществ. В обычной, поршневой машине в центре массы в зоне плавления создается пробка из нерасплавленных гранул. Поскольку расплав, образующийся в промежутке между стенкой цилиндра и этой пробкой, обладает плохой теплопроводностью, приходится поддерживать на поверхности цилиндра повышенные температуры. Червяк же непрерывно счищает расплавившиеся гранулы с поверхности цилиндра и одновременно приводит в соприкосновение с ней новые порции материала. Кроме того, в обычных литьевых машинах наличие торпеды на Пути движения расплава вызывает увеличение потерь давления. В червяке винтовая нарезка давит на материал по мере продвижения его вдоль цилиндра, вызывая циркуляционное движение в канале червяка и способствуя тем самым лучшему смешению материала. В поршневых машинах поршень давит на расплавленный материал через слой полурасплавленных гранул, тогда как в машинах с червячной пластикацией в. период впрыска червяк давит непосредственно на расплавленную массу. С применением червяка уменьшается продолжительность пребывания материала в машине, что очень важно для материалов, чувствительных к перегреву (например, для поливинилхлорида). К сказанному следует добавить, что эффективность работы иластицирующего устройства и производительность этих машин выше, чем обычных литьевых машин. Дальнейшие усовершенствования несомненно пойдут по пути увеличения скоростей и размеров литьевых машин. [c.136]

    Применение меди обусловлено ее высокой теплопроводностью и СЛУЖИТ для выравнивания температурного поля в блоке. Торцы блока герметично закрываются пезьбовыми пробками 7 п 8 с уплотнительными шайбами. 9. Внутри полости трубы 6 размещается медный стержень 10. торцы которого отделяются от резьбовых пробок охранными цилиндриками П. Длина стержня с охранными цилиндриками примерно в 25 раз превышает его радиус. Рабочая поверхность измерительного стержня тщательно шлифовалась и хромировалась. Внут-оенний диаметр трубы равен 11,06 мм, а диаметр стержня 10 мм, Зазор между этими деталями толщиной 0,53 мм заполняется исследуемой жидкостью.. Могут использоваться разные толщины за счет применения сменных стержней соответствлтощих диаметров. Размер зазора, одинаковый но всей поверхности стержня, обеспечивается калиброванными кварцевыми шариками, запрессованными в стержень и охранные цилиндрики, которые предназначены для выравнивания температурного поля вокруг стержня и поэтому имеют хороший тепловой контакт со стенками трубы 6 и значительно более слабый межлу собой и с резьбовыми пробками. По торцам охранных цилиндриков, как и в стержне, запрессованы [c.104]

    Стальная труба диаметром 60 X 3 мм изолирована слоем пробки (X == 0,03), толщиной 30 мм, и сверху еще слоем совелита (85% магнезии- -15% асбеста), толщиной 40 мм. Теплопроводность совелита А = 0,16. Температура стенки трубы—110°, а наружной поверхности изоляции10°. [c.172]

    Для расчета процесса предварительного прокаливания синтетического сырья для кварцеварения нами определены его коэффициенты температуропроводности, теплопроводности и теплоемкость методом нестационарного режима, описанного ранее [9, 15, 16]. Использованный прибор схематически изображен на рис. 1. Он представляет собой трубу из кварцевого стекла 1 (080 и I 1000 мм) с электронагревательной спиралью 2, обогревающей 800 мм трубы, и теплоизоляцией низ трубы закрывали пробкой, из пеношамота (/г 200 мм), на ко,торый помещали плоский нагреватель 3 из платиновой проволоки (0 0,2 мм), намотанной на круглую кварцевую гребенку толщиной 0,8 мм и покрытую кварцевой стеклотканью и кожухом из платины толщиной 0,4 мм. В центре кожуха с одной стороны приварен королек платиновой термопары 4. В трубку засыпали исследуемый материал и помещали еще два нагревателя 3 на расстоянии 300 мм друг от друга, п ричем в продукте на расстоянии х (м) от королька термопары среднего нагревателя закрепляли королек термопары 5, измеряющей температуру материала. Термопары 4 подсоединены к самопишущему потенциометру КСП-4 6 и к высокоточным регуляторам температуры ВРТ-2 7, с помощью которых в материале между нагревателями 3 к началу опыта создавалась и автоматически поддерживалась постоянная температура в интервале 300— 1400 К. После стабилизации температур ток, подаваемый на спираль 2, переключали с автоматического режима на [c.91]

    Пробка представляет собой ячеистый материал естественного происхождения и давно используется в технике умеренного холода. Она вырабатывается из коры пробкового дуба и, отчасти, коры бархатного дерева. В холодильной технике применяются плиты экспанзит , которые прессуются из пробковой крупы крупных фракций и подвергаются термической обработке при 260—280° С. Свойства экспанзита согласно ВТУ № 190 и ТУ № 174/5-2-41 характеризуются следующими данными плотность не более 180 кг/ж , коэффициент теплопроводности не более 0,058 вт (м-град) при 293° К. [c.71]


chem21.info

Теплопроводность строительных материалов - Таблица 4

Это заключительная, но не последняя, таблица из серии данных по теплопроводности. В этой таблице иллюстрируется теплопроводность строительных материалов для городского строительства — собраны показатели для металла, который широко применяется в строительстве (сталь), для стекла, для чугуна (если у вас есть котел или печь), для фанеры и для других материалов.

Посмотрим на Таблицу 4, в которой указана теплопроводность строительных материалов (некоторые показатели для одних и тех же материалов с различной плотностью):

Можно ли использовать песок в качестве утеплителя? Судя по показателям для сухого песка – да. Если обеспечить защиту песка от влаги, то его можно использовать в тех местах, где требуется одна из его характеристик – негорючесть. Песок используют в качестве теплоизолятора и рассеивающего тепло элемента в так называемых «песчаных ящиках» при проходке дымоходом сквозь перекрытия из сгораемых материалов. Песок в сухом виде принимает избыточное тепло от дымохода (иногда температура может быть до 800-1000 градусов С при горении сажи в дымоходе) и рассеивает его, не давая воспламениться конструкциям перекрытия. Сухой песок может быть использован как в потолочных перекрытиях первого этажа, так и в чердачных перекрытиях.

Если песок намокает, то теплопроводность его резко повышается, и он теряет свои теплоизолирующие свойства.

Группа полимерных материалов, куда входит полимочевина, полиуретановая мастика и полиэтилен, при насыщении их воздухом, демонстрирует завидные показатели по теплопроводности – они весьма низкие. На основе вспененного полиэтилена выпускают ряд теплоизоляторов, которые используются во влажной среде – в подвалах, в воде, в грунте. Ими утепляют трубы и защищают другие коммуникации ниже уровня земли. При этом независимо от степени влажности вспененный полиэтилен сохраняет свои показатели по теплопроводности на уровне 0,05 Вт/(м*С).

Пробка – это суперизолятор. Мало того, что она не боится влаги и очень плохо горит. Так еще и показатели теплопроводности пробки находятся на уровне лучших утеплителей – в районе 0,04-0,05 Вт/(м*С). Пробковая крошка может быть использована как утеплитель в любом месте частного дома, будь то стены или перекрытия. Единственный минус этого натурального утеплителя – цена. Пробка очень дорогая.

Чугун и сталь – два металла, которые широко используются в строительстве и которые можно найти в частном доме. Арматура стен, материал котлов и печей, оконная и дверная фурнитура, запорная арматура в системах водоснабжения и отопления – вот неполный список тех мест, где применяются эти металлы.

И в некоторых из них очень важно, чтобы сталь и чугун обладали отличной теплопроводностью. Например, в системе отопления, радиаторы отдают тепло теплоносителя воздуху комнат дома. Чем лучше теплопроводность сплавов, из которых изготовлены радиаторы, тем выше отдача от мощности установленного теплогенератора. Именно поэтому в радиаторах используются сталь, чугун, медь и алюминий.

Из указанных в таблице строительных материалов также стоит упомянуть торф. При должной влагоизоляции или гидрофобной обработке этот натуральный материал может быть использован как экологически чистый утеплитель для частного дома. Из торфа изготавливают плиты утеплителя, которые затем монтируют в деревянный каркас каркасного дома.

dom-data.ru

Теплопроводность строительных материалов, что это, таблица

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

Содержание статьи

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 - 150 кг/м30,043-0,06
Пеностекло, крошка, 151 - 200 кг/м30,06-0,063
Пеностекло, крошка, 201 - 250 кг/м30,066-0,073
Пеностекло, крошка, 251 - 400 кг/м30,085-0,1
Пеноблок 100 - 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 - 220 кг/м30,057-0,063
Пеноблок 221 - 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата 0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Название материала, плотность Коэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор 0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 - 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

stroychik.ru

Характеристики пробкового утеплителя

Одним из ключевых критериев при выборе отделочных материалов является их стоимость. Но некоторые владельцы недвижимости готовы потратить любые деньги, чтобы получить качественную и даже элитную отделку. В сфере теплоизоляции к классу премиумных материалов относится пробка. Большинству она известна по своему применению в алкогольной отрасли, но благодаря своим уникальным природным характеристикам пробка служит сырьём для производства первоклассных теплоизоляторов.

Производства пробки и её строение

Пробковый утеплитель имеет в своей основе кору пробкового дуба (Quércus súber), ареал распространения которого находится лишь в нескольких странах: Тунис, Марокко, Алжир, Италия, Испания, Франция и Португалия. Половина всего объёма данного сырья формируется плантациями Португалии, где данная отрасль имеет национальное значение. Все страны-производители натуральной пробки в год экспортируют около 170 тыс. тонн этого довольно редкого материала, что в условиях высокого спроса держит цены на него на стабильно высоком уровне.

В качестве утеплителя кора пробкового дуба использовалась ещё в средние века испанскими монахами, которые отделывали им полы в своих кельях. Массовое промышленное производство прессованной пробковой крошки (агломерата) берёт начало в 1891 г, когда этот метод был официально запатентован в США. Крупнейшим поставщиком данного материала является Amorim Group, все отделения которого находятся на территории Португалии. Свой путь к успеху компания начала ещё в 1870 году, на данный момент под этим брендом объедено более 40 крупных промышленных производств.

Микроструктура пробковой коры представляет собой последовательно соединённые твёрдые капсулы, имеющие форму неправильного многогранника. Ближайшим аналогом такого строения будут пчелиные соты. Каждая капсула имеют сложную структуру, состоящую из нескольких слоёв:

  • Снаружи она покрыты двумя слоями клетчатки, предающие ей структуру.
  • Затем следует полая камера, наполненная газовой смесью, близкой к атмосферному воздуху (отличие лишь в значительно сниженном содержании углекислого газа).
  • Далее располагается капля с древесной смолой — суберином, который и составляет большую часть всего пробкового материала.
  • Ядро капсулы также состоит из целлюлоз, придающей ей внутреннюю жёсткость.

На 1 см3 пробкового сырья приходиться около 40 млн. таких капсул, что создаёт уникальную мембранную структуру, практически не имеющую недостатков. Внутренние полости значительно снижают теплопроводность этого материала, что и делает его высококачественным утеплителем. Одновременно с этим большая концентрация смолы практически полностью предотвращает впитывание влаги, которая является основным фактором, влияющим на разрушение большинства теплоизоляторов.

В процентом соотношении состав пробки выглядит так:

  • Суберин — 60%.
  • Целлюлоза — 20%.
  • Лигнин, связующий жёсткий целлюлозные структуры — 12%.
  • Вода — 5%
  • Прочие примеси (дубильные вещества, цирин и т. д.) — 3%.

Необработанное пробковое сырьё имеет следующие технические характеристики:

  • Теплопроводность — 0,04 ± 0,1 Вт/м*К.
  • Процент поглощения воды ≤13% от общей массы.
  • Плотность — 245 ± 5 кг/м3.
  • Максимальное выдерживаемое давление — 1 т/см2.
  • Затвердевание при низких температурах, которое быстро пропадает под воздействием тепла.

При этом все типы пробковых утеплителей имеют высокие показатели звукоизоляции и пожарной безопасности. Отличное звукопоглощение позволяет использовать данный материал как отдельное средство для создания особых акустических условий. Также пробка не поддерживает горение даже под воздействием открытого пламени.

Разновидности теплоизолирующих материалов на основе натуральной пробки

Натуральное пробковое сырьё может выступать в роли теплоизолятора. Но крайне высокой стоимости целесообразнее использовать специальные материалы на её основе, к которым относят экспанзит (чёрный агломерат) и импрегнированные пластины (белый агломерат). Пробковую кору лучше всего использовать в качестве декоративной отделки пола и стен. Её тонкий слой не позволит обеспечить полноценную теплоизоляцию, но оригинальный внешний вид сможет стать украшением любого интерьера.

Оба этих материала производятся на основе измельчённого в гранулы пробкового сырья. Технология изготовления чёрного агломерата заключается в нагревании до 300°C, что запускает процесс возгонки суберина и в результате даёт однородный массив. За счёт увеличение объёма внутренних полостей изначальный объём может увеличиться до 30%, что положительно сказывается на теплопроводности и стоимости материала.

Международный формат для данного материла — плиты 1000 на 500 мм. Но в зависимости от марки толщина его может варьироваться от 10 до 300 мм. Тонкие листы до 50 мм скатываются в рулоны, а более толстые поставляются в виде готовых к применению плит. Благодаря вспучиванию плотность экспанзита уменьшается до 120 ± 10 кг/м3, но теплопроводность остаётся на прежнем уровне — 0,04 Вт/м*К. Данный тип теплоизоляции может использоваться при температурном режиме от −200 до +150 °C, что позволяет её использовать даже для утепления неотапливаемых пола и стен.

Технология производства белого агломерата гораздо проще: пробковые гранулы прессуют с добавление натуральных клеящих веществ. Стандартный формат — плиты 900 на 600 и 1000 на 500 мм. Если толщина листа не превышает 50 мм, импрегнированные пластины также скатываются в рулоны. Плотность колеблется в пределах от 110 до 260 кг/м3, средняя теплопроводность — 0,05 Вт/м*К.

Специфика применения пробковых материалов в качестве теплоизоляции

Данный тип утеплителей может использоваться для организации практически любой теплоизоляции:

  • Фасадное утепление.

В этом случае плиты из агломерата наклеиваются на базовый слой штукатурки. При этом важно соблюдении плотности швов между пластинами. После высыхания прямо на теплоизоляционный слой можно наносить декоративную штукатурку или другой вид внешней отделки.

  • Теплоизоляция горизонтальных кровель.

Высокие показатели сопротивления впитыванию влаги и возможность переносить высокое давление, позволяет использовать его для отделки плоских кровель, которые одновременно выступают в роли пола. Технология монтажа также заключается в приклеивании пластин к несущей конструкции и финишной обработке финишными защитными средствами. В этом случае пробка выступает не только в качестве утеплителя, но и в качестве отделочного материала.

  • Свободная укладка в межбалочные пространства пола и стен.

Пробковый утеплитель для стен может быть использован в комплексе с конструкциями, имеющими значительные внутренние промежутки: деревянные балки, панели, металлические профили и т. д. В этом случае процесс монтажа мало чем отличается от других теплоизоляторов плиточного типа, таких как минеральная вата, пенополистирол и т. д.

Как уже было сказано выше, пробковые материалы могут послужить полноценным средством для тщательной звукоизоляции. Как чёрные, так и белые агломераты практически полностью поглощают звуки в диапазоне от 2 кГц.

Можно сделать вывод, что при наличии значительных финансовых возможностей пробковые утеплители могут стать оптимальным решением для теплоизоляции любого типа, имея при этом наилучшие эксплуатационные свойства, а также отличную звукоизоляцию и пожарную безопасность.

remontami.ru

Теплопроводность строительных материалов, их плотность и теплоемкость: таблица теплопроводности материалов

ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 897
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0.2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Воздух сухой при 20°С 1.205 0.0259 1005
Войлок шерстяной 150…330 0.045…0.052 1700
Газо- и пенобетон, газо- и пеносиликат 280…1000 0.07…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ 810…840 0.14…0.185
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0.23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол Пеноплэкс 22…47 0.03…0.036 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плита огнеупорная теплоизоляционная Avantex марки Board 200…500 0.04
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые   0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996– 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 150…600 0.052…0.145 1060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе 200…500 0.057…0.113 1060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500 0.052…0.105 1060
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах 200…500 0.062…0.121 1060
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная техническая 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.073…0.096
Пробковое покрытие для полов 540 0.078
Ракушечник 1000…1800 0.27…0.63 835
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун 7220 40…60 500
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка 400…800 0.12…0.18 840
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

thermalinfo.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *