Схема эпра 2х36 – Электронный балласт для ламп EB-2×36. Ремонт EB-2×36

Содержание

Схема эпра для люминесцентных ламп

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (

рис.1 ).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2 ), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max =32 B; Uос =5 В; Uнеотп.и.max =5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

Электронный балласт: современное решение для качественной и экономной работы люминесцентных ламп

Несмотря на то, что долговечные и надёжные люминесцентные лампы прочно вошли в нашу жизнь, усовершенствованный пускорегулирующий механизм к ним ещё не оценён потребителями по достоинству. Основная причина этого – высокая цена на электронные пускорегулирующие аппараты.

Главное преимущество схемы балласта для люминесцентных ламп заключается в экономии энергии, потребляемой источником света (до 20%) и увеличении срока её службы. Потратив деньги на покупку ЭПРА, мы экономим на электроэнергии и приобретении новых ламп в будущем. К преимуществам также можно отнести бесшумность, мягкость пуска и простоту установки.

Воспользовавшись прилагаемой к устройству инструкцией, компактную микросхему электронного балласта удастся без проблем установить в светильник. Заменив ею традиционный дроссель, стартер и конденсатор, мы позволим лампе стать более экономной.

Устройство ЭПРА для люминесцентных ламп

Схемы электронных балластов для люминесцентных ламп выглядят следующим образом:

На плате ЭПРА находится:

  1. Фильтр электромагнитных помех, который устраняет помехи, приходящие со стороны сети. А также гасит электромагнитные импульсы самой лампы, которые могут негативно влиять на человека и окружающие бытовые приборы. Например, создавать помехи в работе телевизора или радиоприёмника.
  2. Задача выпрямителя — преобразовывать постоянный ток сети в переменный, подходящий для питания лампы.
  3. Коррекция коэффициента мощности – схема, отвечающая за контроль сдвига по фазе переменного тока, проходящего через нагрузку.
  4. Сглаживающий фильтр предназначен для снижения уровня пульсации переменного тока.

Как известно, выпрямитель идеально выпрямить ток не в состоянии. На выходе из него пульсация может составлять от 50 до 100 Гц, что неблагоприятно сказывается на работе лампы.

  • Инвертор используется полумостовой (для небольших ламп) или мостовой с большим количеством полевых транзисторов (для мощных ламп). КПД у первого типа относительно невысокий, но это компенсируется микросхемами-драйверами. Основная задача узла – преобразование постоянного тока в переменный.

    Перед тем, как выбрать энергосберегающую лампочку. рекомендуется изучить технические характеристики её разновидностей, их преимущества и недостатки. Особое внимание следует уделить месту установки компактной люминесцентной лампы. Очень частое включение-выключение или морозная погода на улице значительно сокращают продолжительность работы КЛЛ.

    Подключение LED лент в сеть 220 Вольт осуществляется с учетом всех параметров осветительных устройств — длина, количество, монохромность или многоцветность. Подробнее об этих особенностях — здесь.

  • Дроссель для люминесцентных ламп (специальная индукционная катушка из свёрнутого проводника) участвует в подавлении помех, накоплении энергии и плавной регулировке яркости.
  • Защита от перепадов напряжения – устанавливается не во всех ЭПРА. Защищает от колебаний напряжения в сети и ошибочного пуска без лампы.
  • Принцип действия устройства

    Схему включения люминесцентной лампы вместе с балластом можно разделить на четыре основные фазы.

    Из выпрямителя ток поступает на буфер конденсатора, где сглаживается частота пульсации. Затем высокое постоянное напряжение попадает на полумостовой инвертор. Конденсаторы низкого напряжения электрода лампы и микросхемы заряжаются.

    Как только напряжение достигает 5,5 В, микросхема сбрасывается. Транзисторы регулируют зарядку конденсатора компенсационной обратной связи. Напряжение растёт. И когда оно достигает 12 В микросхема начинает генерировать колебания – система входит в фазу предварительного нагрева.

    Если лампы нет, цепь разрывается на этапе зарядки конденсаторов низкого напряжения.

    После генерирования колебаний ток течёт через центральную часть полумоста и электроды лампы. Частота колебаний постепенно снижается, а напряжение тока растёт. Весь процесс нагрева в среднем занимает до 1,8 секунды с момента включения. При этом напряжение довольно низкое, что не позволяет лампе включиться раньше положенного срока. Лампа за это время успевает прогреться. Так называемый холодный поджиг портит лампы – их концы темнеют. ЭПРА создан, чтобы надёжно защитить лампу от такого неправильного пуска.

    Частота полумоста снижается до минимума и приближается к показателям резонансной частоты контура, образованного электродами лампы. Минимальное значение напряжения зажигания лампы 600 Вольт. Дроссель способствует преодолению током этого значения – повышает напряжение и лампа зажигается. Поджиг происходит в среднем за 1,7 секунды.

    Чтобы оценить уровень эффективности применения диммера для ламп накаливания. необходимо проанализировать все плюсы и минусы использования такой схемы управления освещением. При покупке любых ламп, будет не лишним обратить внимание, могут ли они быть подвергнуты диммированию

    Установка блока защиты может продлить срок службы лампочек накаливания путем их плавного включения. Для бытовых галогенок в этих же целях используют электронный понижающий трансформатор.

    Частота тока падает до номинальной рабочей частоты. В процессе работы конденсаторы низкого напряжения постоянно заряжаются. Активируется упреждающее управление, которое регулирует частоту переключения полумоста.

    Мощность лампы поддерживается в достаточно стабильном положении, даже если происходят перепады напряжения в сети.

    • Задействование схемы ЭПРА для люминесцентных ламп исключает сильное нагревание прибора, поэтому о пожарной безопасности светильника можно не беспокоиться.
    • Устройством обеспечивается равномерное свечение – глаза не устают.
    • С недавнего времени в офисных помещениях правилами охраны труда рекомендовано использовать ЭПРА совместно со всеми люминесцентными лампами.

    Видео с примером работы люминесцентной лампы от ЭПРА

    ЭПРА – что это такое, и как работает

    Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

    Конструкция и принцип работы ЭПРА

    По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

    Преимущества

    • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
    • Она не моргает и не шумит.
    • Коэффициент мощности – 0,95.
    • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
    • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
    • Обеспечение плавного свечения, без мерцания.

    Внутреннее устройство ЭПРА

    Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

    Схема устройства

    Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

    Но тут необходимо выполнить два основных условия:

    1. Разогреть две нитки накала.
    2. Создать большое напряжение до 600 вольт.

    Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

    Теперь сама схема ЭПРА.

    Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

    Как работает

    Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

    После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

    Электронный пускорегулирующий аппарат

    В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

    • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
    • Две – управляющие. В каждой по четыре витка.

    Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

    Далее происходит следующее:

    • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
    • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

    Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

    Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

    По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

    Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

    Тестирование

    Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

    • При 220 вольт она составила 38 кГц.
    • При 100 вольтах 56 кГц.

    Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

    Причины неисправностей

    Итак, по каким причинам люминесцентная лампа может не гореть?

    • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
    • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
    • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
    • Неправильно проведена схема подключения аппарата к лампам.

    Это интересно

    В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

    При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

    Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

    Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

    Подключение

    И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

    Для чего нужна пускорегулирующая аппаратура для люминесцентных ламп

  • Как работает электронный балласт и его схема

  • Как работает стартер для ламп дневного света

    Источники: http://www.ascerdfg2.narod.ru/electronics/epra.html, http://elektrik24.net/osvetitelnye-pribory/lampy/energosberegayushhie/lyuminescentnye/elektronnyj-ballast.html, http://onlineelektrik.ru/osveshhenie/sdiod/epra-chto-eto-takoe-i-kak-rabotaet.html

  • electricremont.ru

    ЭПРА ДЛЯ ЛАМПЫ СВОИМИ РУКАМИ

    Необходимость хорошего освещения радиолюбительского места занятий, с достаточным световым потоком и в тоже время экономичного,  подвигло, можно даже сказать,  на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник  «потолочно — настенного»  варианта китайского производства. Последнее понравилось более всего, но  крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два – три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить. 

    Схема принципиальная

    Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.

    Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) – сработало.

    Рисунок можно сохранить на ПК и увеличить

    Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён – лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет – увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.

    В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.

    Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 – 7n5, R4 сопротивление 6 Ом, R5 — 8 Ом, R7 – 13 Ом.

    Светильник «вписался»  не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

    el-shema.ru

    Схема ЭПРА для ЛБ-40

    на главную

    Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

    В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

    Фото. Внешний вид светильника

    Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

    Рис 1. Электронный ПРА

    Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

    Рис 2. Принципиальная схема ЭПРА

    Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

    Работа электронного балласта

    Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети ~220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

    Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

    Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

    Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

    На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

    Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

    Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

    При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

    Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

    Детали электронного балласта

    Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

    1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
    2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
    3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
    4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
    5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
    6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
    7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
    8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
    9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
    10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
    11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
    12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
    13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

    Ремонт

    При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

    Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

    Трещины в пайке монтажной платы

    Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

    Повреждение отдельных радиоэлементов

    Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.


    на главную
    .

    www.ascerdfg2.narod.ru

    ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

       Очередная прогулка по магазинам завершилась покупкой балласта для ламп дневного освещения. Балласт на 40 ватт, способен питать одну мощную ЛДС или две маломощные по 20 ватт. 


       Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый. 


       Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.

       Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:


       Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:


       Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):


       В схеме купленного балласта особенно порадовал сетевой фильтр — чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита — это не похоже на китайцев.


       После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи — теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.


       После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны — транзисторы прикручены через дополнительные изоляторы и через шайбы. 


       С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.

       Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.

       Форум по электронным преобразователям

       Обсудить статью ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

    radioskot.ru

    ЭПРА на дискретных элементах для ламп Т8

    Светотехника

    Главная  Радиолюбителю  Светотехника



    В статье предложен простой электронный пускорегулирующий аппарат для люминесцентных ламп Т8, собранный на дискретных элементах.

    Люминесцентные лампы на протяжении многих десятилетий являются самым популярным источником света после ламп накаливания. Как известно, для их работы необходим пускорегулирующий аппарат (ПРА) — устройство, обеспечивающее стабильный розжиг и поддерживающее необходимый рабочий ток в лампе. Электронным пускорегулирующим аппаратам (ЭПРА), или электронным балластам, посвящено множество книг и публикаций, например [1, 2]. Универсальный ЭПРА, описанный в [1], обеспечивает «тёплый» старт для ламп и очень низкий коэффициент пульсаций светового потока (около 1 %). Но подобные устройства довольно сложны для повторения в радиолюбительских условиях, требуют редких компонентов и «чувствительны» к трассировке печатной платы, особенно к разводке общего провода. В предлагаемой статье рассмотрен более простой вариант электронного балласта, собранный из распространённых радиодеталей. Схема ЭПРА приведена на рис. 1. Он рассчитан на работу с четырьмя лампами Т8 мощностью 18 Вт либо с двумя лампами по 36 Вт (рис. 2).

    Рис. 1. Схема ЭПРА

    Рис. 2. Схема расположения ламп

    Основные технические характеристики

    Напряжение питания, В …..155…240

    Максимальный потребляемый ток (4 лампы по 18 Вт), мА……………………..330

    Коэффициент мощности (4 лампы по 18 Вт), не менее…………………….0,96

    Коэффициент пульсаций светового потока, %, не более ……………………18

    КПД, не менее……………….0,9

    Частота преобразователя, кГц………………………65

    За основу взят полумостовой автогенератор «электронного трансформатора» для галогенных ламп, описанный в [3]. Отличия заключаются в выходном каскаде, в наличии пассивного корректора мощности (в «электронном трансформаторе» для галогенных ламп [3] он не нужен) и изменённой цепи запуска. В остальном принцип его работы аналогичен.

    Выходной каскад — это два последовательных LC-контура, включённых параллельно: Т2 (обмотка I), С11 и Т3 (обмотка I), С12. Каждый контур рассчитан на нагрузку 36 Вт, т. е. две лампы по 18 Вт либо одна лампа мощностью 36 Вт. Резонансная частота контуров — около 60 кГц.

    Пассивный корректор мощности собран на диодах VD5-VD8 и конденсаторах C5, C6. Он служит для корректировки формы потребляемого устройством тока. Это обеспечивает коэффициент потребляемой мощности близким к единице. При желании корректор можно исключить, но в этом случае коэффициент мощности не будет превышать 0,5…0,6.

    Запуск автогенератора осуществляется без «привычного» в подобных устройствах динистора. Это позволило упростить устройство и избежать главного недостатка динисторного запуска, связанного, по мнению автора, с разбросом параметров самого динистора, который может приводить к нестабильному запуску автогенератора при пониженном напряжении сети. Запуск осуществляется подачей напряжения смещения «напрямую» на базу транзистора VT2 через резисторы R3, R4, а также на колебательный контур, образованный элементами С9, L2, обмоткой II трансформатора T1. Возникающие в нём колебания в сумме с приложенным напряжением смещения и приводят к открыванию транзистора VT2. Сопротивление резисторов R3, R4 подобрано так, что протекающий через них ток недостаточен для удержания в открытом состоянии VT2 в момент возникновения в обмотке II трансформатора T1 напряжения обратной полярности, т. е. в момент, когда откроется транзистор VT1.

    Изменение цепи запуска и увеличение рабочей частоты преобразователя с 35 кГц (в «электронном трансформаторе» для галогенных ламп) до 65 кГц позволило добиться устойчивого пуска балласта при понижении напряжения в сети до 145…155 В, а также несколько уменьшить габариты выходных трансформаторов Т2 и Т3.

    Балласт собран на печатной плате размерами 116×42 мм из фольгированного с одной стороны стеклотекстолита. Чертёж проводников показан на рис. 3, расположение элементов — на рис. 4. Все элементы для поверхностного монтажа (VD1-VD4, R2-R5) расположены со стороны печатных проводников, выводные — на противоположной стороне платы. Конденсаторы С2-С4, С7, С10, С13 — любые плёночные, подходящих габаритов на номинальное напряжение не менее 400 В (постоянного тока — VDC), С11, С12 — на 1600 В (VDC), С1 — керамический на напряжение 1500 В (VDC), но лучше применить помехопо-давляющий конденсатор Y-класса на номинальное напряжение не менее 275 В (переменноготока — VAC). Диоды FR107 (VD5-VD12) можно заменить любыми быстродействующими выпрямительными с обратным напряжением не менее 600 В и прямым током не менее 300 мА. Трансформатор T1 намотан на кольцевом магнитопроводе (магнитная проницаемость — 2300) с внешним диаметром 9, внутренним — 5 и высотой кольца — 3,5 мм. Обмотки I и II содержат по четыре витка, обмотка III имеет два витка одножильного провода диаметром 0,3 мм. Направление всех обмоток должно быть одинаковым. Обмотки I и II должны иметь индуктивность 16 ±15 % мкГн, обмотка III — 4 мкГн. Выходные трансформаторы Т2 и Т3 намотаны на магнитопроводах Е20/10/6 из материала N27 (Epcos) или аналогичных с немагнитным зазором около 1 мм. Первичные обмотки содержат по 130 витков жгута из шести проводов диаметром 0,1…0,15 мм. При отсутствии шестижильного жгута можно использовать одножильный провод диаметром 0,25…0,35 мм, однако при этом нагрев трансформаторов увеличится на 10…15 оС. Вторичные обмотки имеют по 13 витков одножильного провода диаметром 0,3 мм. Индуктивность первичных обмоток должна быть 1±15 % мГн. Дроссели L1, L2 — стандартные, например ЕС24.

    Рис. 3. Чертёж проводников

    Рис. 4. Расположение элементов

    Фотографии печатной платы собранного устройства приведены на рис. 5, рис. 6. Фотографии работающего балласта с лампами — на рис. 7 и рис. 8. Правильно собранное устройство начинает работать сразу и налаживания не требует.

    Рис. 5. Печатная плата устройства в сборе

    Рис. 6. Печатная плата устройства в сборе

    Рис. 7. Работающий балласт с лампами

    Рис. 8. Работающий балласт с лампами

    Литература

    1. Лазарев В. Универсальный ЭПРА с «тёплым» стартом для люминесцентных ламп Т8. — Радио, 2015, № 9, с. 31-35.

    2. Давиденко Ю. Н. Настольная книга домашнего электрика: люминесцентные лампы. — СПб.: Наука и Техника, 2005.

    3. Лазарев В. «Электронные трансформаторы» для галогенных ламп 12 В. — Радио, 2015, №8, с. 32-36.

    Автор: В. Лазарев, г. Вязьма Смоленской обл.

    Дата публикации: 27.02.2016

    Мнения читателей

    Нет комментариев. Ваш комментарий будет первый.

    Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


    www.radioradar.net

    Электронный балласт — схема и принцип работы

    Если кто-то не знает, как работают люминесцентные лампы, то важным моментом здесь является электрический ток, но не в плане питания, а в плане его вида. Люминесцентные лампы работают от постоянного тока, поэтому в электрическую схему светильника устанавливается так называемый регулируемый высокочастотный инвертор или по-другому электронный балласт. По сути, это обычный выпрямитель, только от стандартного прибора его отличает небольшие размеры, а соответственно и небольшой вес. Как приятное добавление инвертор не издает шума при работе. Давайте рассмотрим в этой статье, что собой представляет электронный балласт – схема его внутренней начинки.

    В первую очередь необходимо отметить тот факт, что прибор отвечает не только за выпрямление переменного тока, но и за пуск самой лампы. То есть, его можно сравнить с обычным (стандартным) дроссельным контактом. Правда, надо быть до конца откровенным и сказать, что электронный балласт для люминесцентных ламп является прибором капризным, поэтому его срок годности оставляет желать лучшего.

    Разновидности и назначение

    В настоящее время производители предлагают два основных типа:

    • Одиночные.
    • Парные.

    Здесь все понятно. Одиночные предназначаются для включения одной лампы, парные для нескольких, соединенных в единую сеть. Самое важно, выбирая инвертор, необходимо учитывать общую яркость светильника в целом, потому что именно по этому показателю и подбирается балласт для люминесцентных ламп.

    Итак, кроме вышеописанных функций, для чего еще необходим электронный балласт.

    1. Установленный в схему инвертор должен обеспечить подачу постоянного тока, тем самым обеспечить источник света равномерным излучением без мерцания.
    2. При помощи него производится быстрое включение лампы. Без него она загорится тоже, но только через несколько секунд и при работе будет обязательно гудеть.
    3. Скачки напряжения – враг номер один для системы освещения. Так вот балласт сглаживает данные скачки за счет выпрямления тока в независимости от его амплитуды.
    4. В схеме электронного балласта есть специальный регулятор. Он фиксирует неисправности внутри самого светильника. Если поломка обнаружена, регулятор тут же отключает источник света от подачи электрического тока.

    Внимание! Многие производители в схемах используют различные детали и элементы, с помощью которых можно экономить потребляемую электроэнергию. Во многих моделях данный показатель составляет 20%. Неплохой результат.

    Как работает балласт

    Как уже было сказано выше, балласт для люминесцентных ламп – это практически дроссель. Поэтому данный прибор и выпрямляет электрический ток, и тут же нагревает катоды люминесцентных ламп. После чего на них поступает то количество напряжения, которое быстро включает осветительный прибор. Напряжение выставляется специальным регулятором, который установлен в схеме инвертора, именно им устанавливается диапазон напряжений. Вот почему мерцание источника света отсутствует.

    В схеме также присутствует свой собственный стартер. Он отвечает за передачу напряжения и за зажигание. Когда включается лампа, на микросхеме балласта напряжение падает, соответственно снижается и сила тока. Это дает возможность найти оптимальный режим работы светильника.

    В настоящее время люминесцентные светильники комплектуются двумя видами балластов:

    • С плавным запуском – это так называемый холодный вариант.
    • Быстрый запуск – горячий. Сюда в основном относятся дроссели ПРА.

    Сегодня все больше производителей стараются найти золотую середину, так называемые комбинированные схемы (универсальные). К примеру, вот модель такого электронного балласта «ЭПРА SEA T8-18». И еще один момент, который касается доработки схемы. Считается, что нормальная яркость светового потока, который обеспечивает люминесцентная лампа, обеспечивается мощностью 200 Вт. Если мощность падает до 110 Вт, то яркость люминесцентного светильника серьезно снижается.


    onlineelektrik.ru

    Балласт электронный: схема 2х36 — 4u PRO

    Электронный балласт — это устройство, которое включает люминесцентные лампы. Модели между собой отличаются по номинальному напряжению, сопротивлению и перегрузке. Современные устройства способны работать в экономном режиме. Подключение балластов осуществляется через контроллеры. Как правило, они применяются электродного типа. Также схема подключения модели предполагает применение переходника.

    Стандартная схема устройства

    Схемы электронных балластов люминесцентных ламп включают в себя набор трансиверов. Контакты у моделей применяются коммутируемого типа. Обычное устройство состоит из конденсаторов емкостью до 25 пФ. Регуляторы в устройствах могут применяться операционного либо проводникового типа. Стабилизаторы в балластах устанавливаются через обкладку. Для поддержания рабочей частоты в устройстве имеется тетрод. Дроссель в данном случае крепится через выпрямитель.

    Устройства низкого КПД

    Балласт электронный (схема 2х36) низкого КПД подходит для ламп на 20 Вт. Стандартная схема включает в себя набор расширительных трансиверов. Пороговое напряжение у них составляет 200 В. Тиристор в устройствах данного типа используется на обкладке. С перегрузками борется компаратор. У многих моделей используется преобразователь, который работает при частоте 35 Гц. С целью повышения напряжения применяется тетрод. Дополнительно используются переходники для подключения балластов.

    Устройства высокого КПД

    Электронный балласт (схема подключения показана ниже) имеет один транзистор с выходом на обкладку. Пороговое напряжение элемента равняется 230 В. Для перегрузок используется компаратор, который работает на низких частотах. Данные устройства хорошо подходят для ламп мощностью до 25 Вт. Стабилизаторы довольно часто применяются с переменными транзисторами.

    Во многих схемах используются преобразователи, и рабочая частота у них равняется 40 Гц. Однако она может повышаться при возрастании перегрузок. Также стоит отметить, что у балластов используются динисторы для выпрямления напряжения. Регуляторы часто устанавливаются за трансиверами. Операционные налоги выдают частоту не более 30 Гц.

    Устройство на 15 Вт

    Балласт электронный (схема 2х36) для ламп на 15 Вт собирается с интегральными трансиверами. Тиристоры в данном случае крепятся через дроссель. Также стоит отметить, что есть модификации на открытых переходниках. Они выделяются высокой проводимостью, но работают при низкой частоте. Конденсаторы используются только с компараторами. Номинальное напряжение при работе доходит до 200 В. Изоляторы используются только в начале цепи. Стабилизаторы применятся с переменным регулятором. Проводимость элемента составляет не менее 5 мк.

    Модель на 20 Вт

    Электрическая схема электронного балласта для ламп на 20 Вт подразумевает применение расширительного трансивера. Транзисторы стандартно используются разной емкости. В начале цепи они устанавливаются на 3 пФ. У многих моделей показатель проводимости доходит до 70 мк. При этом коэффициент чувствительности сильно не снижается. Конденсаторы в цепи используются с открытым регулятором. Понижение рабочей частоты осуществляется через компаратор. При этом выпрямление тока происходит благодаря работе преобразователя.

    Если рассматривать схемы на фазовых трансиверах, то там имеется четыре конденсатора. Емкость у них стартует от 40 пФ. Рабочая частота балласта поддерживается на уровне 50 Гц. Триоды для этого используются на операционных регуляторах. Для понижения коэффициента чувствительности можно встретить различные фильтры. Выпрямители довольно часто используются на подкладках и устанавливаются за дросселем. Проводимость балласта в первую очередь зависит от порогового напряжения. Также учитывается тип регулятора.

    Схема балласта на 36 Вт

    Балласт электронный (схема 2х36) для ламп на 36 Вт имеет расширительный трансивер. Подключение устройства происходит через переходник. Если говорить про показатели балластов, то номинальное напряжение равняется 200 Вт. Изоляторы для устройств подходят низкой проводимости.

    Также схема электронного балласта 36W включает в себя конденсаторы емкостью от 4 пФ. Тиристоры довольно часто устанавливаются за фильтрами. Для управления рабочей частотой имеются регуляторы. У многих моделей используется два выпрямителя. Рабочая частота у балластов данного типа максимум равняется 55 Гц. При этом перегрузка может сильно возрастать.

    Балласт Т8

    Электронный балласт Т8 (схема показана ниже) имеет два транзистора с низкой проводимостью. У моделей используются только контактные тиристоры. Конденсаторы в начале цепи имеются большой емкости. Также стоит отметить, что балласты производятся на контакторных стабилизаторах. У многих моделей поддерживается высокое напряжение. Коэффициент тепловых потерь составляет около 65 %. Компаратор устанавливается с частотой 30 Гц и проводимостью 4 мк. Триод для него подбирается с обкладкой и изолятором. Включение устройства осуществляется через переходник.

    Использование транзисторов MJE13003A

    Балласт электронный (схема 2х36) с транзисторами MJE13003A включает в себя только один преобразователь, который находится за дросселем. У моделей используется контактор переменного типа. Рабочая частота у балластов составляет 40 Гц. При этом пороговое напряжение при перегрузках равняется 230 В. Триод в устройствах применяется полюсного типа. У многих моделей имеется три выпрямителя с проводимостью от 5 мк. Недостатком устройства с транзитами MJE13003A можно считать высокие тепловые потери.

    Использование транзисторов N13003A

    Балласты с данными транзисторами ценятся за хорошую проводимость. У них малый коэффициент тепловых потерь. Стандартная схема устройства включает проводной преобразователь. Дроссель в данном случае используется с обкладкой. У многих моделей низкая проводимость, но рабочая частота равняется 30 Гц. Компараторы для модификаций подбираются на волновом конденсаторе. Регуляторы подходят только операционного типа. Всего в устройстве имеется два реле, а контакторы устанавливаются за дросселем.

    Использование транзисторов КТ8170А1

    Балласт на транзисторе КТ8170А1 состоит из двух трансиверов. У моделей имеется три фильтра для импульсных помех. За включение трансивера отвечает выпрямитель, который работает при частоте 45 Гц. У моделей используются преобразователи только переменного типа. Они работают при пороговом напряжении 200 В. Данные устройства замечательно подходят для ламп на 15 Вт. Триоды в контроллерах используются выходного типа. Показатель перегрузки может меняться, и это в первую очередь связано с пропускной способностью реле. Также надо помнить о емкости конденсаторов. Если рассматривать проводные модели, то вышеуказанный параметр у элементов не должен превышать 70 пФ.

    Использование транзисторов КТ872А

    Принципиальная схема электронного балласта на транзисторах КТ872А предполагает использование только переменных преобразователей. Пропускная способность составляет около 5 мк, но рабочая частота может меняться. Трансивер для балласта подбирается с расширителем. У многих моделей используется несколько конденсаторов разной емкости. В начале цепи применяются элементы с обкладками. Также стоит отметить, что триод разрешается устанавливать перед дросселем. Проводимость в таком случае составит 6 мк, а рабочая частота не будет выше 20 Гц. При напряжении 200 В перегрузка у балласта составит около 2 А. Для решения проблем с пониженной чувствительностью используются стабилизаторы на расширителях.

    Применение однополюсных динисторов

    Электронный балласт (2х36 схема) с однополюсными динисторами способен работать при перегрузке свыше 4 А. Недостатком таких устройств является высокий коэффициент тепловых потерь. Схема модификации включает в себя два трансивера низкой проводимости. У моделей рабочая частота составляет около 40 Гц. Кондукторы крепятся за дросселем, а реле устанавливается только с фильтром. Также стоит отметить, что у балластов имеется проводниковый транзистор.

    Конденсатор используется низкой и высокой емкости. В начале цепи применяются элементы на 4 пФ. Показатель сопротивления на этом участке составляет около 50 Ом. Также надо обратить внимание на то, что изоляторы используются только с фильтрами. Пороговое напряжение у балластов при включении равняется примерно 230 В. Таким образом, модели можно использовать для ламп разной мощности.

    Схема с двухполюсным динистором

    Двухполюсные динисторы в первую очередь обеспечивают высокую проводимость у элементов. Электронный балласт (2х36 схема) производится с компонентами на коммутаторах. При этом регуляторы используются операционного типа. Стандартная схема устройства включает в себя не только тиристор, но и набор конденсаторов. Трансивер при этом используется емкостного типа, и у него высокая проводимость. Рабочая частота элемента составляет 55 Гц.

    Основной проблемой устройств является низкая чувствительность при больших перегрузках. Также стоит отметить, что триоды способны работать только при повышенной частоте. Таким образом, лампы часто мигают, а вызвано это перегревом конденсаторов. Чтобы решить эту проблему, на балласты устанавливаются фильтры. Однако они не всегда способны справиться с перегрузками. В данном случае стоит учитывать амплитуду скачков в сети.

    4u-pro.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *