Звукопоглощающий материал для акустических систем – Доработка качества звучания мультимедиа акустики. Общие понятия по обивке, укреплению корпуса, замене проводов и установке на шипы колонок.

Содержание

Коротко об акустических системах — Основы акустики


Качество звука, которое приемлемо и предпочтительно для слуха, почти всецело зависит от того, к чему слушатель привык.


Очень немногие люди с натренированным слухом могут судить о качестве звука с разумной точностью и в объективных выражениях.


Наиболее слабым звеном звукового тракта чаще всего бывает акустическая система. И это не случайно. Спроектировать ее — технически очень сложная задача, связанная со многими физическими ограничениями. Главной проблемой обычно является воспроизведение наинизших частот звукового диапазона. На этих частотах громкоговоритель должен излучать звуковые волны достаточно большой длины. Если на частоте 300 Гц длина звуковой волны составляет немногим более метра, то на частоте 30 Гц она составляет уже 11 метров. Диффузор громкоговорителя, двигаясь вперед, создает волну сжатия. Но в то же самое время на задней стороне диффузора возникает волна разряжения, и если скорость движения диффузора невелика, то воздух просто перетекает от передней стороны диффузора к задней, не создавая звуковой волны в окружающем пространстве. Возникает так называемое акустическое короткое замыкание.


Самый простой способ улучшить воспроизведение низких звуковых частот — поместить головку громкоговорителя на акустический экран — щит большого размера. Экран эффективно действует до тех пор, пока расстояние от передней стороны диффузора до задней, измеренное в обход края экрана, будет больше половины длины звуковой волны, т.е. для упомянутой нами частоты 30 Гц нужен экран с размером стороны 5,5 метров. Конечно, если очень хочется реально воспроизвести эту частоту, можно просверлить отверстие в стене, разделяющей две смежные комнаты, вставить в это отверстие головку громкоговорителя. Ну а если серьезно? Попробуем загнуть края экрана. Получится коробка без задней стенки. Можно сделать коробку побольше, а те низкие частоты, которые все-таки воспроизводятся плохо, «поднять» в усилителе звуковой частоты. Так, в свое время, делали, чтобы понизить диапазон воспроизводимых частот до 70 — 60 Гц.


Современные акустические системы изготавливаются с закрытой задней стенкой и обрабатываются внутри звукопоглощающим материалом. Таким образом устраняется акустическое короткое замыкание на низких и улучшается качество воспроизведения на средних частотах. Однако низкий К.П.Д. головки громкоговорителя, который, как известно, даже ниже, чем у паровоза, при использовании закрытого ящика уменьшается вдвое. Конструкторам приходится решать целый ряд проблем, связанных с увеличением отдачи головок громкоговорителей.


Именно поэтому высококачественные акустические системы так сложны и дороги.


Устройство акустической системы, на первый взгляд, выглядит обманчиво простым. Две или несколько головок громкоговорителей установлены в деревянном ящике и подключены проводами к усилителю. Однако считать, что несколько установленных в ящике головок могут выполнять роль акустической системы для высококачественного воспроизведения звука — глубокое заблуждение.


Головка громкоговорителя, установленная в ящик, который играет роль акустического оформления, называется громкоговорителем. Акустической системой называется громкоговоритель, содержащий одну или несколько головок, излучающих звук в различных областях звукового диапазона частот. Головки громкоговорителей подразделяются на низкочастотные, среднечастотные, высокочастотные и широкополосные.


В зависимости от типа электроакустического преобразователя электрического сигнала в колебания воздуха, окружающего головку, головки бывают электростатическими, электромагнитными, пьезоэлектрическими, плазменными и электродинамическими. Наибольшее распространение получили электродинамические головки громкоговорителей.


Электродинамическая головка громкоговорителя с подвижной катушкой была впервые изобретена и запатентована в 1925 году фирмой General Electric и с тех пор не претерпела принципиальных изменений.


Любая электродинамическая головка подвижной системы, магнитной системы и диффузородержателя. В свою очередь, подвижная система состоит из диффузора, внешнего подвеса, центрирующей шайбы и звуковой катушки.


Диффузор является основным элементом подвижной системы. Диффузоры низкочастотных головок всегда имеют форму конуса. Среднечастотные и высокочастотные головки могут иметь диффузоры как в виде конуса (конусные головки), так и в виде сферы (купольные головки). Диффузоры конусных головок изготавливают методом литья из бумажной массы с различными добавками (шерсть, хлопок и пр.), вводимыми для получения необходимых физико-механических свойств, от которых во многом зависит качество звучания. В последнее время в производстве головок нашли широкое применение диффузоры из синтетических материалов, в частности, из полипропилена. Некоторые фирмы применяют для изготовления диффузоров конусных головок металлические сплавы, а также используют слоистые конструкции, состоящие из нескольких слоев, выполненных из материалов с разными физико-механическими свойствами. Такие сложные конструкции применяют для улучшения качества звучания громкоговорителей. С указанной целью бумажные диффузоры в процессе производства подвергают пропитке специальными составами.


Различают диффузоры с прямолинейной и криволинейной образующей конуса. Диффузоры с прямолинейной образующей проще в изготовлении и применялись в головках громкоговорителей в первые годы после их изобретения. В современных головках применяют диффузоры исключительно с криволинейной образующей из-за отсутствия в таких диффузорах так называемых параметрических резонансов, вызывающих посторонние призвуки в звучании. Для борьбы с параметрическими резонансами диффузора на поверхность конуса многие изготовители наносят серию концентрических канавок.


Диффузоры купольных головок изготавливают методом прессования из натуральных и синтетических тканей с последующей пропиткой специальными составами, а также из синтетических пленок и металлической фольги. Вторым элементом подвижной системы электродинамической головки громкоговорителя является внешний подвес, необходимый для поступательного перемещения диффузора при работе головки громкоговорителя. Подвес может быть выполнен как единое целое с диффузором в виде двух- или многозвенного гофра, а также в виде приклеенного к диффузору кольца из резины, каучука, полиуретана и других материалов. К подвесу предъявляются очень жесткие требования в части его упругих свойств. Подвес должен обладать достаточной гибкостью и сохранять линейность упругих свойств во всем диапазоне смещений подвижной системы головки громкоговорителя. Выполнение первого условия необходимо для получения низкой частоты основного (собственного) резонанса подвижной системы головки громкоговорителя, что очень важно для хорошего воспроизведения самых низких частот. Второе условие должно соблюдаться для обеспечения низких нелинейных искажений. Выполнение перечисленных условий достигается применением для изготовления подвеса соответствующих материалов и выбором подходящей его формы (формы и количества канавок, их высоты и т.п.). В современных головках громкоговорителей применяют подвесы, имеющие в сечении S-образную, тороидальную форму.


Центрирующая шайба является третьим элементом подвижной системы, оказывающим влияние на качество головки громкоговорителя. Ее назначение — обеспечить правильное положение звуковой катушки в воздушном зазоре магнитной системы головки. Для этого центрирующая шайба должна обладать минимальной гибкостью в радиальном и максимально возможной гибкостью в осевом направлении. Выполнение первого условия необходимо для обеспечения механической надежности головки (отсутствия касания звуковой катушкой стенок зазора магнитной системы), второго — для обеспечения низкой частоты ее основного резонанса. Кроме того, центрирующая шайба должна сохранять линейность характеристик упругости во всем диапазоне перемещения подвижной системы головки громкоговорителя. От этого зависит величина нелинейных искажений воспроизводимого головкой сигнала. Центрирующие, шайбы могут быть изготовлены из текстолита, картона, бумаги или ткани. Шайбы из текстолита, бумаги и картона, получившие широкое распространение в 30-40-е годы, в настоящее время полностью вытеснены гофрированными шайбами так называемого коробчатого типа, изготовленными из хлопчатобумажной или шелковой ткани с пропиткой бакелитовым лаком. По внешнему виду такие центрирующие шайбы напоминают цилиндрическую коробку с гофрированным дном и развальцованным в плоское кольцо цилиндрическим краем. Последний элемент подвижной системы  электродинамической  головки громкоговорителя — звуковая катушка. Звуковая катушка наматывается медным или алюминиевым проводом в эмалевой изоляции на бумажный или металлический каркас и пропитывается лаком для предотвращения сползания витков. При протекании тока по звуковой катушке вокруг нее создается электромагнитное поле, при взаимодействии которого с магнитным полем, создаваемым магнитной системой головки, возникает сила Лоренца, которая перемещает звуковую катушку и прикрепленный к ней диффузор в осевом направлении. Таким образом происходит излучение звука головкой.


Магнитная система является важнейшим конструктивным узлом электродинамической головки, во многом определяющим ее электроакустические параметры. Еще в конце 40-х и начале 50-х годов применялись головки с электрическим возбуждением, в магнитных системах которых для создания постоянного магнитного поля служила электрическая катушка, называемая обмоткой возбуждения. Для питания обмотки возбуждения постоянным током требовалось иметь в составе аппаратуры специальные выпрямители с очень хорошей фильтрацией выпрямленного напряжения. Обмотка возбуждения потребляла значительную мощность от источника питания и выделяла при работе головки много тепла. Эти и другие недостатки стали причиной быстрого вытеснения головок с электромагнитным возбуждением головками с возбуждением постоянным магнитом. Все без исключения современные электродинамические головки имеют магнитную систему с постоянным магнитом. Магниты бывают керновыми и кольцевыми. Материалом для изготовления керновых магнитов служат сплавы кобальта и различные марки ферритов. Кольцевые магниты бывают только ферритовыми. Большинство современных электродинамических головок имеют кольцевые ферритовые магниты. В последнее время для изготовления магнитов стали применять специальные сплавы с очень хорошими магнитными свойствами, содержащие редкоземельные металлы. Это позволило существенно повысить чувствительность головок без увеличения их габаритных размеров и веса. Конструкция магнитной системы определяется формой применяемого магнита. Если магнит имеет форму кольца, то магнитная система состоит из двух кольцевых фланцев и цилиндрического керна.


Диаметр керна меньше диаметра отверстия в верхнем фланце. Таким образом образован воздушный зазор, в котором перемещается звуковая катушка. При применении кернового магнита в виде сплошного или полого конуса магнитная система представляет собой закрытый или полуоткрытый магнитопровод. Закрытый магнитопровод состоит из стального стакана, в центре дна которого располагается магнит с полюсным наконечником и кольцевого верхнего фланца. Отверстие верхнего фланца и полюсной наконечник образуют воздушный зазор, в котором находится звуковая катушка. В полуоткрытом магнитопроводе вместо стакана применяется металлическая скоба, а верхний фланец имеет прямоугольную форму. Для изготовления керна, полюсных наконечников и фланцев применяются специальные марки сталей, к магнитным свойствам которых предъявляются весьма жесткие специфические требования. Форма полюсных наконечников и керна оказывает существенное влияние на величину магнитной индукции в воздушном зазоре магнитной системы головки и равномерность распределения в нем магнитного потока. От этого зависит чувствительность и уровень нелинейных искажений головки. От размеров керна и полюсных наконечников, а также от величины воздушного зазора зависит и степень нагрева, а значит, и термоустойчивость звуковой катушки. Поэтому в мощных низкочастотных головках применяют полюсные наконечники и керны большого диаметра, а также стремятся увеличивать насколько возможно величину воздушного зазора (при увеличении зазора уменьшается чувствительность головки и для ее сохранения необходимо применение более мощного магнита). В последнее время для улучшения охлаждения звуковой катушки некоторые фирмы стали выпускать головки с заполнением воздушного зазора магнитной системы специальной ферромагнитной жидкостью.


Диффузородержатель соединяет подвижную и магнитную системы электродинамической головки громкоговорителя в единую механически прочную конструкцию. Диффузородержатель имеет окна для выхода воздуха, заключенного между ним и диффузором. При отсутствии окон воздух будет воздействовать на подвижную систему в качестве дополнительной акустической нагрузки, уменьшая отдачу головки и ухудшая ее частотную характеристику в области низких частот. Диффузородержатели изготавливают методом штамповки из специальной конструкционной стали, отливают методами точного литья из легких сплавов, а также прессуют из пластмассы.


Технологические методы изготовления диффузородержателей определяются мощностью и размерами головок. Конструкция диффузородержателя должна обеспечивать вибрационную устойчивость головки для устранения паразитных призвуков в звучании. С этой точки зрения более предпочтительны литые диффузородержатели.


Динамические головки громкоговорителей, как правило, не применяют без акустического оформления, необходимого для получения удовлетворительных результатов. Причина этого заключается в том, что при колебаниях диффузора головки без оформления сгущения воздуха, образуемые одной его стороной, нейтрализуются разряжениями, образуемыми другой стороной. Применение какого-либо акустического оформления удлиняет путь колебаний воздуха между фронтальной и тыльной сторонами диффузора и полной нейтрализации колебаний не происходит. Это особенно важно на низких частотах, где размеры диффузора малы по сравнению с длиной волны акустического излучения.


Корпус акустической системы помимо выполнения своей основной функции — формирования ее амплитудно-частотной характеристики (АЧХ) в области низких частот вносит значительные искажения в воспроизводимый сигнал из-за вибрации стенок и колебаний находящегося в нем воздуха. С уменьшением толщины стенок уменьшается величина звукового давления на низких частотах, увеличивается неравномерность АЧХ в области средних частот, возрастают уровень нелинейных искажений и длительность переходных процессов. Эти факторы вызывают так называемые «ящичные» призвуки, ухудшающие качество звучания. Поэтому конструированию корпусов в практике разработки высококачественных акустических систем уделяется самое серьезное внимание. Существуют два источника вибраций, вызывающих излучение звука стенками корпуса акустической системы:


  • возбуждение колебаний находящегося в корпусе воздуха тыльной стороной диффузора установленной в нем головки громкоговорителя и передача колебаний через воздух стенкам корпуса;

  • непосредственная передача вибраций от диффузородержателя головки передней стенке корпуса, а от нее боковым и задней стенкам.


Для уменьшения вибраций стенок конструкторы акустических систем применяют различные методы звукозвукопоглощения, а также виброизоляции и вибропоглощения. Один из широко применяемых способов звукопоглощения состоит в заполнении внутреннего объема корпуса минеральной ватой, специальным синтетическим волокном, шерстью, супертонким стекловолокном и другими материалами. Эффективность звукопоглощающих материалов оценивают коэффициентом звукопоглощения А, равным отношению величины поглощенной энергии Wпогл к величине падающей энергии Wпад. Величина этого коэффициента зависит от частоты, толщины и плотности материала. Для увеличения величины коэффициента звукопоглощения на низких частотах увеличивают толщину звукопоглотителя, а также плотность заполнения им корпуса акустической системы. Однако наличие в корпусе чрезмерного количества звукопоглощающего материала приводит к снижению величины звукового давления на низших частотах и воспроизведению «сухого», невыразительного баса.


Звукоизоляция корпуса акустической системы определяется как количеством и физическими свойствами находящегося внутри него звукопоглощающего материала, так и звукоизолирующими свойствами его стенок. Задача разработчиков акустических систем состоит в том, чтобы максимально увеличить звукоизоляцию корпуса путем грамотного выбора его конструкции и материала стенок. Один из распространенных методов повышения звукоизоляции состоит в увеличении жесткости и массы стенок корпуса. Поэтому некоторые фирмы применяют для изготовления корпусов акустических систем мрамор, пенобетон и даже кирпич. Такие корпуса обеспечивают хорошую звукоизоляцию (до 30 дБ), однако имеют слишком большую массу. Более практичны корпуса, стенки которых изготовлены из двух слоев фанеры или древесностружечных плит с заполнением промежутка между ними песком, дробью или звукопоглощающим материалом. Для снижения амплитуды вибраций стенок корпуса используют вибропоглощающие покрытия в виде листовой резины, жесткой пластмассы, битумных мастик и т.п., наносимые на его внутренние поверхности.


Для уменьшения паразитного звукоизлучения корпуса в области средних и высоких частот применяют конструктивные меры, направленные на повышение собственных резонансных частот стенок корпуса. С этой целью увеличивают толщину стенок и применяют для их изготовления материалы с повышенной жесткостью и пониженной плотностью (к таким материалам относятся вспененные пластмассы, пенобетон с синтетическими наполнителями, древесностружечные плиты с наполнителем из латекса и др.), применяют стяжки или распорки между стенками, устанавливают ребра жесткости. Увеличение длины с одновременным уменьшением ширины стенок корпуса также способствует повышению его собственных резонансных частот. Именно это является одной из причин того, что большинство современных высококачественных акустических систем имеет корпус в виде колонны.


Для борьбы с прямой передачей вибраций от диффузородержателя головки передней стенке, а от нее и другим стенкам корпуса применяют сплошные резиновые прокладки, устанавливаемые между диффузородержателем и передней стенкой, локальные опорные виброизоляторы для крепежных винтов, амортизирующие прокладки между передней и боковыми стенками корпуса, развязку диффузородержателя от передней стенки путем его опоры на дно корпуса и другие способы. На качестве звучания сказывается и внешняя конфигурация корпуса (его форма, наличие отражающих звук выступов и впадин, величина радиуса скругления углов и т.д.), от которой зависит степень проявления дифракционных эффектов, вызывающих нарушение тембральной окраски и стереофонической звуковой картины. Многочисленные экспериментальные исследования показали, что переход от прямоугольных корпусов с острыми углами к корпусам гладкой формы (например, в виде сферы) позволяет существенно уменьшить неравномерность АЧХ звукового давления в области средних и высших частот. Поэтому многие фирмы-изготовители высококачественных акустических систем устанавливают средне- и высокочастотные головки громкоговорителей в блоки обтекаемой формы в виде сфер, цилиндров, кубоидов со скругленными углами, изолированные от акустического оформления низкочастотных головок.


Для уменьшения неравномерности АЧХ низкочастотного громкоговорителя переднюю стенку прямоугольного корпуса акустических систем выполняют как можно более узкой (насколько позволяют размеры низкочастотной головки). При этом частоты дифракционных пиков и провалов на его АЧХ расположены, как правило, выше частоты среза разделительного фильтра. Уменьшение ширины передней стенки корпуса способствует также расширению диаграммы направленности акустической системы. Глубина корпуса существенно влияет на величину «задержанных» резонансов, которые, по-видимому, и служат причиной давно установленного опытным путем факта, что акустические системы с плоским корпусом субъективно звучат хуже по сравнению с акустическими системами, имеющими достаточно глубокий корпус.

baseacoustica.ru

Доработка качества звучания мультимедиа акустики. Общие понятия по обивке, укреплению корпуса, замене проводов и установке на шипы колонок.

Доработка акустики своими руками.

В статье опубликованы общие понятия по улучшению звучания. Это не инструкция и не гайд, все действия вы выполняете на свой страх и риск.

У вас на руках есть пара колонок, а может и не пара. Активных либо пассивных. Напольных или полочных. Может быть вообще сабвуфер, а не колонки.

Данная статья поможет вам узнать о способах улучшения качества звучания вашей акустики без лишних затрат. Будут описаны самые эффективные методы доработки акустики, которые легко воплотить в жизнь своими руками. Это можно назвать шлифовкой того, чего не смог воплотить производитель, в силу целесообразности производства и его окупаемости.

Все инструкции и советы из данной статьи, подойдут для любой акустики с фазоинвертором, включая сабвуферы и напольные колонки. Многие советы также подойдут и для акустических систем другого типа.

Итак начнём.

 

Обивка корпуса звукопоглощающим материалом и укрепление конструкции.

Сначала выясним, для каких целей производится данная процедура.

Корпус колонки – это резонатор, как и в любом другом музыкальном инструменте. Вибрации, которые передаются от излучателя (динамика), расходятся по стенкам корпуса. Сталкиваясь друг с другом, они создают резонанс, который состоит из волн различной частоты. Эти волны, получили название «паразитные» и относятся к искажениям различной частоты, в зависимости от объёма, материала, толщины и компоновки корпуса.

Паразитные частоты – сильно ухудшают восприятие звуковой сцены и получается искажённый, далёкий от оригинала звук. В некоторых случаях, возникает преобладание определённой частоты над другими, что может даже немного раздражать (гул например), не говоря уже о том, что звуковой тракт будет воспроизводиться не правильно.

Именно для избавления от паразитных вибраций и проводят обивку звукопоглощающим материалом внутри корпуса колонки.

Перед проведением данной процедуры – нужно ещё раз осмотреть крепость конструкции внутри корпуса. Ведь чем корпус менее подвержен движениям и вибрациям, тем меньше будет возникать паразитных частот, при вибрации одной соединительной части об другую.

Вскрытие колонок.

Разобрать колонку очень просто.

Если это активная акустика, то на активной колонке нужно открутить усилительный блок сзади, который прикручен на шурупах.

Вынимать блок нужно очень аккуратно, без резких движений. Если есть штекеры, которые отстёгиваются, отсоедините их и положите усилительный блок рядом, не перетягивая при этом провода. На пассивных колонках – нужно просто открутить шурупы на СЧНЧ динамике и осторожно вынуть его не повредив провода.

*Все эти операции нужно проводить аккуратно и без резких движений, во избежание повреждения проводов и схем.

Укрепление корпуса.

Эту модификацию стоит проводить, если вы сомневаетесь в прочности конструкции вашей акустики и внутри корпуса нет дополнительных конструкций жёсткости (укрепляющих планок, «пробок» на стенах, стяжек между стенами). Почти всегда, колонки нуждаются в дополнительном укреплении.

Для данной процедуры потребуются небольшие 1х1 — 1х2см брусья и резиновый клей. Брусья будем приклеивать вдоль углов, на которых нет брусьев, что укрепит прилегание боковых стенок друг к другу. Отмеряем и отрезаем, прикладываем и прикидываем, намазываем обильно клеем брус и место, к которому он будет приклеиваться. Обклеиваем все углы, на которых производитель сэкономил дерева. Естественно используем брусья как распорки, а не просто клеем.

Так же стоит проложить балки вдоль длинных стенок колонки, если таковые отсутствуют. Как показано на рисунке, либо по диагонали. Балки должны плотно прилегать по краям.

Ещё желательно сделать горизонтальные распорки между стенками, это значительно укрепит конструкцию. Особенно актуально для крупных АС с длинными стенками (к примеру Microlab Solo 7).

После данной процедуры, мы получаем более крепкую конструкцию, которая создаёт меньше резонанса стенок, а также меньше вибраций при микро-трении и прикосновении стенок друг к другу.

Обивка звукопоглощающим материалом.

*Это самый действенный метод, который в большей степени повлияет на улучшение качества звучания вашей акустики. Практически во всей акустике Hi—End класса, применяется обивка звукопоглощающим материалом для поглощения паразитных частот.

Для проведения данной процедуры, нам потребуется двусторонний скотч и звукопоглощающий материал.

Для какой цели это делается.

Всё это действо, проводится с целью уменьшить отражение звуковых волн от корпуса акустики с фазоинвертором. Если этого не сделать, то часто вместо баса, из него будут вылетать непонятные гудящие и свистящие звуки. Обивка даёт более ровный и сбалансированный бас, который становится более мягким и лучше различимым на слух. Она убирает гудящие, резонирующие звуки, которые возникают в корпусе акустики из-за столкновения звуковых волн. Это так же, позволяет немного расширить нижний диапазон воспроизводимых частот.

В качестве звукопоглотителей, лучше всего подходят такие материалы как синтепон (можно найти на любом вещевом рынке, а можно найти и в старой куртке 🙂 ), войлок, рулонная вата или самый интересный материл – вата, звукопоглощающая – типа “URSA”, к тому же она негорючая. Только не утеплительная стекловата из кварцевого песка, а домашняя для установки перегородок. Если достать данные материалы проблематично, в крайнем случае можно использовать рулонный поролон, достать который можно в любом ХозМаге. Но всё же его использование, крайне нежелательно. Не забываем, что синтепон, войлок, вату  перед проклейкой нужно распушить.

Для начала, вынимаем тот звукопоглощающий материал, который положил во внутрь производитель, если таковой имеется.

Что мы делаем.
1) Проклеиваем двусторонним скотчем, как можно большую площадь внутри колонки, насколько это возможно. Сразу же отклеиваем защитную бумагу.
2) Вырезаем или растягиваем звукопоглощающий материал так, чтобы голые стенки были полностью закрыты, в том числе (особенно) углы.
3) Прокладываем материалом все полости, чтобы деревянные стенки были полностью запечатаны. Толщина слоя, должна быть не более 2 см, иначе это может значительно уменьшить объём внутри корпуса, что не лучшим образом скажется на глубине басовой составляющей.

Предупреждение.

В местах, которые нагреваются, лучше не перебарщивать. Это касается мест рядом с трансформатором и блоком усилителя. Между ними, и звукопоглощающим материалом лучше оставить пустое пространство в 1-2 см. Поэтому, лучший материал – это негорючая звукопоглощающая вата типа «URSA», которая к примеру, может остаться после ремонта. Её можно использовать без ограничений.

Нужно стараться закрепить материал как можно тщательней. Ведь вы не хотите, чтобы при больших движениях масс воздуха внутри корпуса, вата или синтепон скакали внутри или ещё хуже – вылетали из фазоинвертора 🙂

Доработка фазоинвертора.

Для уменьшения дребезжаний и возможного свиста из фазоинвертора, стоит сделать 2 вещи.

1. Обмотайте фазоинвертор звукопоглощающим материалом, по типу «шуба» одним слоем. Оставьте 1 см голого пространства на конце фазоинвертора. Плотно закрепите «шубу» тонкими резинками, обмотав их вокруг фазоинвертора, как показано на рисунке выше.

2. Ровно отрежьте кусачками, любые защитные решётки внутри трубы фазоинвертора. Пользы от них никакой, а вот лишних призвуков и свистов – очень много. Если на конце наклеена сеточка, то её так же лучше удалить. Это позволит воздуху проходить легче, что увеличит общую скорость реакции динамика.

Установка акустики на шипы.

Попробуйте при воспроизведении музыки нажать на динамик на некоторое время. Вы услышите, что он зафальшивит и проглотит добрую половину частот. Происходит это потому, что палец поглощает вибрации, не давая динамику отдать их в воздух.

Корпус колонки – это продолжение динамика. При соприкосновении с полом, столом, полкой или другими вещами, корпус колонки отдаёт часть своих вибраций этим предметам, как в примере с пальцем.

Для того, чтобы акустика качественно отдавала в воздух звуковые волны, физически не рассеивая их об пол и предметы с которыми она соприкасается создавая искажения, применяются шипы.

Шипы крепятся как ножки. Для этого, на нижней стенке просверливаются 4 небольших отверстия (не сквозных), в которые они вкручиваются. Купить их можно во многих магазинах бытовой электроники, где продаётся акустика и аксессуары к ней, или же заказать через интернет. Под акустикой с шипами, должен быть твёрдый материал – керамическая плитка, паркет или другой. Главное чтобы ножки имели как можно меньшее с ним соприкосновение и не утапливались.

Принцип действия шипов заключается в том, что они сильно уменьшают площадь соприкосновения колонки с поверхностью, на которой она стоит. Благодаря этому, звуковые волны которые подаются на корпус  начинают звучать, а не угасать о пол, паркет или полку. Искажения сводятся к минимуму, басовая составляющая становится более различимой на слух и гораздо более детализированной.

Важное примечание.

Шипы, имеет смысл использовать для акустики с приличным весом и приличного размера. Шипы стоит использовать преимущественно для напольной акустики весом более 12 кг. Или для сабвуферов весом 5 кг и более. В более мелкой акустике эффект будет, но не такой заметный.

 

Замена проводов на усилительной части акустики. Для активной акустики.

Часто, производитель экономит на таких вещах как качество проводов от кроссовера до динамика и от платы до кроссовера. Толщина, как и качество провода – напрямую влияет на качество звучания. Чем толще провод, тем глубже бас и отчётливей средние частоты. Данную модификацию в первую очередь стоит проводить на сабвуферах, из-за большей энергии, которая течёт по этим самым проводам.

1. Подбираем подходящий провод на замену, естественно медь самого высокого качества что есть в наличии. Желательно не ВВГ (цельный), так как сигнал при прохождении через такой провод меняется. Лучше взять жилу ПВС (плетёный) из бескислородной меди. Толще не всегда лучше, нужно что то среднее, в зависимости от мощности акустики.

2. Отпаиваем и отрезаем старые провода. Если на другом конце кронштейн, то по возможности припаиваем провода к самим клеммам на плате. Если это невозможно, отрезаем кронштейн под корень, вынимаем клемки, припаиваем к ним провода и вставляем обратно в кронштейн. Так же обматываем клеммы динамика и кроссовера и обильно пропаиваем. Пропаивать ОБЯЗАТЕЛЬНО!

3. Убеждаемся в качестве пайки.

Так же стоит обратить внимание на соединительный провод между колонками.

Производитель, редко подсовывает что-то толковое. Лучший вариант из самых доступных – плетёный провод с прозрачной изоляцией, которыми комплектуются, к примеру —  SVEN Royal или Microlab SOLO 6 и выше.

Подобный провод, можно так же купить в магазинах электрики. Это как недорогой вариант замены хлипких проводов, которые идут в комплекте с акустикой. Для напольных вариантов, лучше всего подойдут акустические провода с более толстым сечением и более качественной, бескислородной медью. Такие можно купить в любом магазине, где продаются домашние кинотеатры, или же на рынке электроники.

Пара слов о проводах от источника звука к акустике.

Провода, которые идут от источника звука к колонкам (обычно тюльпаны) или ресиверу, должны быть хорошего качества.

Очень желательно, чтобы они были экранированы от помех линий питания, сотовых сетей и радио. Для этого, производители проводов оборачивают их слоем фольги, либо оплетают алюминиевой или медно нитью. Отличить их несложно — они значительно толще, чем не экранированные.  Так же, качественные провода, должны быть с позолоченными штекерами для меньшего сопротивления и меньших потерь сигнала на штекерах. Купить такие провода можно на радио рынке либо в магазинах, где продаются домашние кинотеатры.

Примечание.

Для того чтобы от смены проводов был ощутимый эффект – советуем производить их замену на акустике с ценовой планкой 100$ и выше (для 2.0). Либо, если используемый производителем провод действительно плохого качества.

Используйте сетевые фильтры.

Хорошие сетевые фильтры, которые оборудованы высокочастотными подавителями, неплохо умеют убирать так называемый белый шум и другие помехи, вызванные некачественным питанием и помехами в сети.

Зачастую, в схемах встроенных усилителей, не бывает качественной схемы подавления помех, что приводит к искажениям, шуму из колонок и разным звукам, когда начинает работать холодильник либо электро — розжиг газовой плиты у соседей  🙂

Помните то, что дешёвые фильтры – никак не спасут вас от помех. Такие способны защищать технику от импульсных токов, которые возникают к примеру при ударе молнии в проводку, и только.

В фильтрах, которые нам нужны – должен быть подавитель (фильтр) высокочастотных помех. Они также бывают полезны для ресиверов и усилителей, как для защиты, так и для лучшей помехоустойчивости.

Хорошие фильтры делают компании ZiS Pilot (начиная с серии GL), APC.

 

Если колонки гудят или из них идёт посторонний звук.

Причины обычно две:

  • Некачественный источник сигнала, либо кабель.
  • Некачественные входные конденсаторы во встроенной усилительной части (если колонки активные).

В первом случае, нужно проверить кабель, посмотреть вставлены ли разъёмы полностью в штекера и проверить целостность кабелей. Также нужно отвести провода от других, особенно от кабелей питающей сети и радио, так как они создают вокруг себя магнитные поля.

Во втором случае, нужно вскрыть колонку с усилительной частью. Обычно она тяжелее и имеет радиатор.

Далее нужно найти конденсаторы схемы фильтрации питающей сети. Обычно их два и они самые крупные. Их стоит выпаять и заменить на новые, качественные и с большим максимальным напряжением и ёмкостью. Также стоит посмотреть не вздулись и не потекли ли (коричневая или жёлтая засохшая жидкость рядом) другие. Если да, то на замену без раздумий.

Также можно заменить и другие крупные конденсаторы, так как на мультимедиа акустике качеством они не выделяются.

 

Другие полезные советы по улучшению качества звука вашей акустики, без каких то модификаций.

Правильная расстановка акустики.

Для достижения максимально возможного качества звучания, акустику нужно правильно расставлять по комнате.

От правильной расстановки акустики зависит 30% успеха в достижении правильной звуковой картины.

_________________________

1. Высокочастотные динамики (ВЧ) – должны быть на одном уровне с ухом слушателя для лучшего позиционирования в пространстве.

2. Порт фазоинвертора ничем не должен быть закрыт. Расстояние от стены или другого препятствия должно быть более 15 см, чтобы низкие частоты не терялись на выходе и ничего, не препятствовало их распространению по комнате.

3. Передние динамики должны быть расставлены на 30 градусов, от точки взгляда слушателя и направлены строго на него.

Задние, на 30 градусов от боковой точки слушателя (от 90 градусов) Только в этом случае обеспечивается лучшая глубина звуковой картины.

4. Оптимальное расстояние, на котором должны стоять динамики от слушателя – 2 метра для напольных колонок и 1 метр для полочных.

5. Исключите посторонние источники звука. Это может быть открытое окно, не тихий системный блок и так далее. Все эти звуки – мешают восприятию звука и могут даже великолепный звук – сделать неразборчивым и мало детализированным.

 

Заключение.

Ещё раз повторим действия:

1. Укрепить общую конструкцию.

2. Обить корпус звукопоглощающим материалом внутри.

3. Доработать фазоинвертор.

4. Установить акустику на шипы.

5. Заменить провода внутри и снаружи на более качественные. Подключить через хороший сетевой фильтр.

6. Правильно расставить акустику, исключить источники шума.

7. Слушать.

Большинство данных советов, подойдут как для активной акустики, так и для пассивной.

Творите и удивляйтесь, как лучшую сторону изменяется звучание.

Удачной модификации!

www.xtechx.ru

«Анатомия» акустических систем: материалы и акустическое оформление — Статьи и советы

Это новый цикл статей посвящён акустическим системам. В связи с тем, что тема крайне обширная, мы решили создать серию публикаций, отражающих критерии выбора при покупке АС. Эта статья посвящена акустическим свойствам материалов корпуса и акустическому оформлению. Пост будет особенно полезен для тех, кто стоит перед выбором АС, а также даст информацию для людей, которые хотят создать собственные АС в процессе своих DIY экспериментов.

Существует мнение, что одним из решающих факторов, влияющих на звук АС, является материал корпуса. Эксперты PULT считают, что значение этого фактора часто преувеличивают, однако, он является действительно важным, и списывать со счетов его нельзя. Не менее важным фактором (в ряду множества других), определяющим звучание АС, является акустическое оформление.

Материал: от пластмассы до гранита и стекла

Пластик – дешево, сердито, но резонирует

Пластик зачастую используется при производстве бюджетных АС. Пластмассовый корпус лёгок, существенно расширяет возможности дизайнеров, благодаря литью можно реализовать практически любые формы. Различные типы пластмасс очень серьёзно отличаются по своим акустическим свойствам. В производстве высококачественной домашней акустики большой популярностью пластик не пользуется, при этом востребован для профессиональных образцов, где важна низкая масса и мобильность устройства.

(для большинства пластмасс коэффициент звукопоглощения составляет от 0,02 – 0,03 при 125 Гц до 0,05 – 0,06 при 4 кГц)

С 90 %-ной вероятностью, если вы столкнулись с домашней акустикой из пластика – это либо бюджетный вариант для не слишком искушенных пользователей, либо образец, сравнимый по стоимости с аналогами из МДФ и ДСП. Пластиковый корпус устройства недостаточной толщины и плотности начнёт резонировать и дребезжать при увеличении громкости до 60 – 90 %. В качественных АС, с рассчитанной толщиной и подходящими акустическими свойствами материала, «паразитные» среднечастотные резонансы сводятся к минимуму, однако, стоимость подобных АС практически равна аналогам из других материалов. Выжать из бюджетной пластиковой АС глубокий и адекватный низ не поможет даже умопомрачительная эквализация.

Типичный представитель «пластикового братства» в домашней акустике с достойными характеристиками и привлекательной ценой: Полочная акустика JBL Jembe black

Дерево – от вырубки до золотых ушей

Благодаря хорошим поглощающим свойствам дерево считается одним из лучших материалов для изготовления колонок.

(коэффициент звукопоглощения древесины в зависимости от породы составляет от 0,15 – 0,17 при 125 Гц до 0,09 при 4 кГц)

Массив и шпон для производства АС применяются сравнительно редко и, как правило, востребованы в HI-End сегменте. Постепенно деревянные АС исчезают с рынка в связи с низкой технологичностью, нестабильностью материала и запредельно высокой стоимостью.

Интересно, что для создания действительно качественных АС такого типа, отвечающих требованиям самых искушенных слушателей, технологи должны отбирать материал ещё на этапе вырубки, как при производстве акустических музыкальных инструментов. Последнее связано со свойствами древесины, где важно всё, начиная от местности, где произрастало дерево, заканчивая уровнем влажности помещения, где оно хранилось, температурой и длительностью сушки et cetera. Последнее обстоятельство затрудняет DIY разработку, при отсутствии специальных знаний любитель, создающий деревянную АС, обречен действовать методом проб и ошибок.

Как обстоит дело на самом деле, и соблюдаются ли описанные условия, производители такой акустики не сообщают, а соответственно, любая деревянная система требует внимательного прослушивания перед покупкой. С высокой степенью вероятности, две АС одной модели из одной породы будут немного отличаться в звучании, что особенно важно для некоторых притязательных слушателей.

Доступны колонки из массива ценных пород единицам, стоимость их астрономическая. Всё, что вашему покорному слуге приходилось слышать, звучит превосходно. Однако, на мой субъективно-прагматичный взгляд, несоразмерно стоимости. Порой, хорошо рассчитанные корпуса из фанеры и MDF, обладают не меньшей музыкальностью, но для многих аудиофилов «не дерево»= «не true hi-end», а кому-то «не дерево» попросту статус не позволяет или дизайн интерьера портит.

Одна из лучших деревянных систем в нашем каталоге эта:

Напольная акустика Sonus Faber Stradivari Homage graphite (цена соответствующая)

ДСП – толщина, плотность, влажность

Древесно-стружечная плита по стоимости сравнима с пластиком, при этом не обладает рядом недостатков, которые присущи пластиковым корпусам. Наиболее существенной проблемой ДСП является низкая прочность, при достаточно высокой массе материала.

Звукопоглощение в ДСП неоднородное и в ряде случаев возможно возникновение низко- и среднечастотных резонансов, хотя вероятность их появления ниже, чем у пластика. Эффективно гасить резонансы могут плиты толщиной более 16 мм, которые достигают необходимой плотности. Следует отметить, что, как и в случае с пластиком, свойства конкретной плиты ДСП имеет большое значение. Важно учитывать плотность и влажность материала, так как разные ДСП плиты отличаются по этим параметрам. Не редко толстые, плотные ДСП плиты применяются при создании студийных мониторов, что говорит о востребованности материала в производстве профессиональной техники.

На заметку, товарищам из DIY-братии для создания АС хорошо подойдёт ДСП с плотностью не менее 650 — 820 кг/м³ (при толщине плиты 16 – 18 мм) и влажностью не более 6-7%. Не соблюдение этих условий существенно отразится на качестве звука и надёжности АС.

Среди достойных ДСП вариантов домашних АС наши эксперты выделяют: Cerwin-Vega SL-5M

MDF: от мебели к акустике

Сегодня МДФ (Medium Density Fiberboard, древесно-волокнистая плита средней плотности) используется повсеместно, в число прочего, МДФ — один из наиболее распространённых современных материалов для производства акустики.

Причиной популярности МДФ стали физические свойства материала, а именно:

  • Плотность 700 — 800 кг/м³

  • Коэффициент звукопоглощения 0,15 при 125 Гц – 0,09 при 4 кГц

  • Влажность 1-3 %

  • Механическая прочность и износоустойчивость

Материал дешев в производстве, обладает акустическими свойствами, сравнимыми с характеристиками древесины, при этом устойчивость плит к механическим повреждениям несколько выше. У МДФ достаточная акустическая жесткость корпуса АС, а звукопоглощение соответствует параметрам, необходимым для создания HI-FI акустики.

Визуальное отличие МДФ от ДСП

Среди MDF акустики масса замечательных систем, оптимальными по соотношению цена/качество являются следующие:

→ Magnat Tempus 33 mocca — полочная


→ Focal Chorus 726 — напольная

Алюминиевые сплавы – дизайн и точные расчёты

Наиболее распространенным металлом при производстве АС является алюминий, а также сплавы на его основе. Некоторые авторы и эксперты полагают, что алюминиевый корпус позволяет снижать резонансы, а также улучшать передачу высоких частот. Коэффициент звукопоглощения алюминиевых сплавов не высок, и составляет около 0,05, что, впрочем, значительно лучше, чем у стали. Для снижения вибрации корпуса, повышения звукопоглощения и предотвращения вредных резонансов производители применяют сэндвич-панели, где между 2-мя алюминиевыми листами помещается прослойка из высокомолекулярных полиэтиленовых смол или других материалов низкой плотности, например, вискоэластика.

В случае с бюджетными АС из алюминия, производители, не редко, делают ставку на дизайн, в ущерб звучанию: в результате акустические характеристики оставляют желать лучшего. Иногда пользователи такой акустики жалуются на жесткое, искаженное звучание, вызванное недостаточным звукопоглощением корпуса. В связи с тем, что волны хорошо отражаются и плохо поглощаются, очень большое значение в металлической акустике приобретает точный расчет конструкции корпуса, подбор излучателей, используемые фильтры, а также качество соединений отдельных деталей.

Среди достойно звучащих алюминиевых колонок особенно впечатляет звук:

→ Piega Tmicro 4 alu/black (цена внушительная, но не запредельная)

Камень – гранитные плиты по цене золотых слитков

Камень один из самых дорогих материалов для производства акустических корпусов. Безупречное отражение и практическая невозможность появления вибрационных резонансов делают эти материалы востребованным в среде особо притязательных слушателей.

Большинство пород имеют стабильный коэффициент звукопоглощения, который, например для гранита, составляет 0,130 для всего спектра звуковых частот, а для известняка 0,264. Производителями особо ценятся пористые породы камня, в которых выше звукопоглощение.

Использование каменных плит для изготовления DIY- акустики почти невозможно, так как это требует не только недюжинных познаний в акустике и камнеобработке, но и крайне дорогостоящего оборудования (домашних 3-D фрезеров для камня пока никто не выпускает).

Для производства серийных АС применяются такие породы, как гранит, мрамор, сланец, известняк, базальт. Эти породы обладают схожими акустическими свойствами, а при соответствующей обработке становятся настоящими произведениями искусства. Не редко каменные корпуса применяются для создания ландшафтной акустики, в таких случаях в необработанном камне создаётся полость для размещения излучателя, в которой устанавливаются элементы крепления (как правило, производится под заказ).

У камня 2 основные проблемы: стоимость и масса. Цена каменной АС может быть выше любой другой, обладающей схожими характеристиками. Масса некоторых образцов напольных систем может достигать 40 и более кг.

Прозрачность стекла и качество звука

Оригинальным решением является создание АС из стекла. В этом деле пока серьезно преуспели только две компании Waterfall и SONY. Материал интересен с дизайнерской точки зрения, акустически стекло создаёт определённые проблемы, главным образом в виде резонансов, которые вышеназванные компании научились решать, существуют даже референсные варианты.

Цены на прозрачное чудо тоже сложно назвать демократичными, последнее связано с низкой технологичностью и высокой стоимостью производства.

Из впечатлявших звуком стеклянных образцов: Waterfall Victoria Evo

Акустическое оформление — ящики, трубки и рупоры

Не меньшую значимость для точной передачи звука в АС имеет акустическое оформление. Наиболее распространённые типы (закономерно, что, те или иные типы могут комбинироваться в зависимости от конкретной модели, например фазоинверторая часть колонки отвечает за низко-и среднечастотный диапазон, а для высоких сооружен рупор).

Фазоинвертор – главное длинна трубы

Фазоинвертор — один из наиболее распространённых типов акустического оформления. Такой способ позволяет, при правильном расчете длинны трубы, сечения отверстия и объема корпуса получить высокий КПД, оптимальное соотношение частот, усилить низкие. Суть фазоинвертерного принципа в том, что на тыльной части корпуса размещается отверстие с трубой, которая позволяет создать низкочастотные колебания синфазные волнам, создающимся фронтальной стороной диффузора. Чаще всего фазоинверторный тип применяется при создании 2.0 и 4.0 систем.

Для облегчения расчетов при создании собственной АС удобно использовать специальные калькуляторы, один из удобных привожу по ссылке.

В философии HI-END cуществуют крайне радикальные бескомпромиссные суждения о фазоинверторных системах, привожу одно из них без комментариев:

«Враг №1 это, конечно, нелинейные усилительные элементы в звуковом тракте (дальше уж каждый сам, в меру образования, понимает какие элемты более линейны, а какие менее). Враг №2 это фазоинвертор. фазоинвертор призван пустить пыль в глаза, должен позволить маленькой дешевой колоночке записать в паспорт 50… 40… 30, а что мелочится даже и 20 Гц по уровню -3дБ! Но к музыке нижний диапазон частот фазоинвертора перестает иметь отношение, точнее сказать сам фазоинвертор это дудочка, поющая свою собственную мелодию.»

Закрытый ящик – гроб для лишних низких

Классический вариант для многих производителей – обычный закрытый ящик, с выведенными на поверхность диффузорами динамиков. Такой тип акустики достаточно прост для расчетов, при этом КПД таких устройств не блещет. Также ящики не рекомендуют любителям характерно выраженных низких, так как в закрытой системе без дополнительных элементов, способных усилить низы (фазоинвертор, резонатор), спектр частот от 20 до 350 Гц выражен слабо.

Многие меломаны предпочитают закрытый тип, так как для него характерна относительно ровная АЧХ и реалистичная «честная» передача воспроизводимого музыкального материала. Большинство студийных мониторов создаются именно в этом акустическом оформлении.

Band-Pass (закрытый ящик-резонатор) – главное, чтобы не гудел

Band-Pass получил распространение при создании сабвуферов. В этом типе акустического оформления излучатель скрыт внутри корпуса, при этом внутренности ящика соединяются с внешней средой трубами фазоинверторов. Задача излучателя – возбуждение колебаний низкой частоты, амплитуда которых многократно возрастает благодаря трубам фазоинверторов.

При правильно рассчитанной конструкции такого типа, не должно возникать таких паразитных отзвуков как низкое гудение, гула и т.п., чем не редко грешат бюджетные системы этого типа.

Открытый корпус – без лишних стен

Сравнительно редкий сегодня тип акустического оформления, при котором задняя стенка корпуса многократно перфорирована, либо полностью отсутствует. Такой тип конструкции используется для того, чтобы снизить количество элементов корпуса, влияющих на частотную характеристику АС.

В открытом ящике наиболее существенное влияние на звук оказывает передняя стенка, что снижает вероятность искажений, вносимых остальными деталями корпуса. Вклад боковых стенок (если таковые присутствуют в конструкции), при их не большой ширине, минимален и составляет не более 1-2 Дб.

→ Legacy Audio Whisper XDS BE maple

Рупорное оформление – проблемные чемпионы по громкости

Рупорное акустическое оформление чаще используется в комбинации с другими типами (в частности для оформления высокочастотных излучателей), однако, существуют и оригинальные на 100 % рупорные конструкции.

Главным достоинством рупорных АС является высокая громкость, при комбинации с чувствительными динамиками.

Большинство экспертов не без оснований скептически относятся к рупорной акустике, причин несколько:

  • Конструктивная и технологическая сложность, а соответственно, высокие требования к сборке

  • Почти невозможно создать рупорную АС с равномерной АЧХ (исключение – устройства стоимостью от 10 килобаксов и выше)

  • В связи с тем, что рупор не резонирующая система, исправить АЧХ нельзя (минус для DIY –щиков вознамерившихся скопировать Hi-end рупор)

  • В связи с особенностями формы волн рупорной акустики, объемность звучания достаточно низкая

  • В подавляющем большинстве сравнительно низкий динамический диапазон

  • Дает большое количество характерных призвуков (некоторыми аудиофилами считается достоинством).

Наиболее востребованными рупорные системы стали именно в среде аудиофилов, находящихся в поисках «божественного» звука. Тенденциозный подход позволил архаичному рупорному оформлению получить вторую жизнь, а современные производители смогли найти оригинальные решения (эффективные, но крайне дорогие) распространённых рупорных проблем.

→ Klipsch Reference R-28F black

Продолжение следует…

Дата публикации: 28.02.2017

www.pult.ru

Акустические системы


Акустические системы — устройства для воспроизведения звука.


Акустические системы бывает однополосными (один широкополосный излучатель, например, динамическая головка) и многополосными (две и более головок, каждая из которых создаёт звуковое давление в своей частотной полосе).


При установки акустики помещения должны удовлетворять ряду требований: пожарным, гигиеническим, акустическим, и т.д. Только выполнение всех требований способно сделать помещение безопасным и функциональным. В данном разделе остановимся на системах для создания акустического комфорта.В настоящее время значительно расширился перечень помещений, в которых акустические требования чрезвычайно важны. Помимо концертных залов, кинотеатров, лекционных помещений, акустика применяется в бассейнах и ресторанах, дискотеках и офисах, в помещениях «домашних кинотеатров» и т.д.


Акустические системы состоят из акустического оформления (например, «закрытый ящик» или «система с фазоинвертором» и др.) и вмонтированных в него излучающих головок (обычно динамических).


Однополосные системы не получили широкого распространения ввиду трудностей создания излучателя, одинаково хорошо воспроизводящего сигналы разных частот. Высокие интермодуляционные искажения при значительном ходе одного излучателя вызваны эффектом Доплера.


Многополосные акустические системы — спектр слышимых человеком звуковых частот разбивается на несколько перекрываемых между собой диапазонов посредством фильтров (комбинации резисторов, конденсаторов и индуктивностей, или с помощью цифрового кроссовера). Каждый диапазон подаётся на свою динамическую головку, которая имеет наилучшие характеристики в этом диапазоне. Таким образом, достигается наиболее высококачественное воспроизведение слышимых человеком звуковых частот (20—20 000 Гц).


Для персональных компьютеров акустичка обычно выполняется совместно с усилителем звуковых частот (т. н. «активные системы акустические ») и подключаются к звуковой карте на системном блоке компьютера.


Виды акустических систем.


По типу излучателей


Большинство акустических систем для воспроизведения звука используют динамические головки, но существуют ещё другие, менее распространённые излучатели, например:


  1. Изодинамические (ортодинамические, излучатели Хейла)

  2. Ленточные

  3. Плазменные

  4. Электростатические.

  5. Пьезокерамические


По типу усиления


  1. Пассивные: в корпус многополосной колонки смонтированы группы излучателей, подключенные через пассивный кроссовер частот одной общей парой проводов к отдельному усилителю.

  2. Пассивные Bi/Tri-wired: в корпус многополосной колонки смонтированы группы излучателей, каждая из которых подключена через пассивный кроссовер своей парой проводов к собственному усилителю.

  3. Активные: в корпус многополосной колонки смонтированы усилитель и группы излучателей, подключенные к нему через пассивный кроссовер.

  4. Активные Bi/Tri-amped: в корпус многополосной колонки смонтированы активный фильтр и группы усилителей по числу полос пропускания, подключенные к соответствующим группам излучателей.


Акустические материалы


Подразделяются на звукопоглощающие материалы и звукоизоляционные прокладочные материалы. Звукопоглощающие материалы применяются в основном в звукопоглощающих облицовках производственных помещений и технических устройств, требующих снижения уровня шумов (промышленные цехи, машинописные бюро, установки вентиляции и кондиционирования воздуха и др.), а также для создания оптимальных условий слышимости и улучшения акустических свойств помещений общественных зданий (зрительные залы, аудитории, радиостудии и пр.).


Звукопоглощающая способность материалов обусловлена их пористой структурой и наличием большого числа открытых сообщающихся между собой пор, максимальный диаметр которых обычно не превышает 2 мм (общая пористость должна составлять не менее 75% по объёму). Большая удельная поверхность материалов, создаваемая стенками открытых пор, способствует активному преобразованию энергии звуковых колебаний в тепловую энергию вследствие потерь на трение. Эффективность звукопоглощающих материалов оценивается коэффициентом звукопоглощения a, равным отношению количества поглощённой энергии к общему количеству падающей на материал энергии звуковых волн.


Звукопоглощающие материалы


Звукопоглощающие материалы имеют волокнистое, зернистое или ячеистое строение и могут обладать различной степенью жёсткости (мягкие, полужёсткие, твёрдые). Мягкие звукопоглощающие материалы изготовляются на основе минеральной ваты или стекловолокна с минимальным расходом синтетического связующего (до 3% по массе) или без него. К ним относятся маты или рулоны с объёмной массой до 70 кг/м3, которые обычно применяются в сочетании с перфорированным листовым экраном (из алюминия, асбестоцемента, жёсткого поливинилхлорида) или с покрытием пористой плёнкой. Коэффициент звукопоглощения этих материалов на средних частотах (250—1000 Гц) от 0,7 до 0,85.

Смотрите также:

3D кинотеатр
акустическая обработка помещения
Домашние кинотеатры в интерьере
Новый многозальный кинотеатр «СИНЕМА ПАРК STARLIGHT на Багратионовской»
Ремонт в Кинотеатре «Орленок»

www.kinocreativ.ru

материалы и акустическое оформление / СоХабр

Это новый цикл постов посвящён акустическим системам. В связи с тем, что тема крайне обширная, мы решили создать серию статей, отражающих критерии выбора при покупке АС. Это пост посвящен акустическим свойствам материалов корпуса и акустическому оформлению. Пост будет особенно полезен для тех, кто стоит перед выбором АС, а также даст информацию для людей, которые хотят создать собственные АС в процессе своих DIY экспериментов.

Существует мнение, что одним из решающих факторов, влияющих на звук АС, является материал корпуса. Эксперты PULT считают, что значение этого фактора часто преувеличивают, однако, он является действительно важным, и списывать со счетов его нельзя. Не менее важным фактором (в ряду множества других), определяющим звучание АС, является акустическое оформление.

Предупреждаю, в материале есть ссылки на товары не в качестве откровенной джинсы, но в качестве примеров (надеюсь никого не заденет), всё строго в рамках темы.

Материал: от пластмассы до гранита и стекла

Пластик – дешево, сердито, но резонирует

Пластик зачастую используется при производстве бюджетных АС. Пластмассовый корпус лёгок, существенно расширяет возможности дизайнеров, благодаря литью можно реализовать практически любые формы. Различные типы пластмасс очень серьёзно отличаются по своим акустическим свойствам. В производстве высококачественной домашней акустики большой популярностью пластик не пользуется, при этом востребован для профессиональных образцов, где важна низкая масса и мобильность устройства.

(для большинства пластмасс коэффициент звукопоглощения составляет от 0,02 – 0,03 при 125 Гц до 0,05 – 0,06 при 4 кГц)


С 90 %-ной вероятностью, если вы столкнулись с домашней акустикой из пластика – это либо бюджетный вариант для не слишком искушенных пользователей, либо образец, сравнимый по стоимости с аналогами из МДФ и ДСП. Пластиковый корпус устройства недостаточной толщины и плотности начнёт резонировать и дребезжать при увеличении громкости до 60 – 90 %. В качественных АС, с рассчитанной толщиной и подходящими акустическими свойствами материала, «паразитные» среднечастотные резонансы сводятся к минимуму, однако, стоимость подобных АС практически равна аналогам из других материалов. Выжать из бюджетной пластиковой АС глубокий и адекватный низ не поможет даже умопомрачительная эквализация.
Типичный представитель «пластикового братства» в домашней акустике с достойными характеристиками и привлекательной ценой: Полочная акустика JBL Jembe black

Дерево – от вырубки до золотых ушей

Благодаря хорошим поглощающим свойствам дерево считается одним из лучших материалов для изготовления колонок.

(коэффициент звукопоглощения древесины в зависимости от породы составляет от 0,15 – 0,17 при 125 Гц до 0,09 при 4 кГц)

Массив и шпон для производства АС применяются сравнительно редко и, как правило, востребованы в HI-End сегменте. Постепенно деревянные АС исчезают с рынка в связи с низкой технологичностью, нестабильностью материала и запредельно высокой стоимостью.
Интересно, что для создания действительно качественных АС такого типа, отвечающих требованиям самых искушенных слушателей, технологи должны отбирать материал ещё на этапе вырубки, как при производстве акустических музыкальных инструментов. Последнее связано со свойствами древесины, где важно всё, начиная от местности, где произрастало дерево, заканчивая уровнем влажности помещения, где оно хранилось, температурой и длительностью сушки et cetera. Последнее обстоятельство затрудняет DIY разработку, при отсутствии специальных знаний любитель, создающий деревянную АС, обречен действовать методом проб и ошибок.
Как обстоит дело на самом деле, и соблюдаются ли описанные условия, производители такой акустики не сообщают, а соответственно, любая деревянная система требует внимательного прослушивания перед покупкой. С высокой степенью вероятности, две АС одной модели из одной породы будут немного отличаться в звучании, что особенно важно для некоторых притязательных слушателей с золотыми ушами с большими деньгами.
Доступны колонки из массива ценных пород единицам, стоимость их астрономическая. Всё, что вашему покорному слуге приходилось слышать, звучит превосходно. Однако, на мой субъективно-прагматичный взгляд, несоразмерно стоимости. Порой, хорошо рассчитанные корпуса из фанеры и MDF, обладают не меньшей музыкальностью, но для многих аудиофилов «не дерево»= «не true hi-end», а кому-то «не дерево» попросту статус не позволяет или дизайн интерьера портит.
Полагаю, что одна из лучших деревянных систем в нашем каталоге эта:
Напольная акустика Sonus Faber Stradivari Homage graphite(цена соответствующая)

Фанера – почти дерево, если не пролетела над Пекином

Фанера, применяющаяся для производства акустических корпусов, имеет от 10 до 14 слоёв и почти не уступает дереву по акустическим свойствам, в частности по звукопоглощению, при этом несколько дешевле древесины, более технологична при обработке, легче ДСП и MDF. Многослойная фанера хорошо гасит нежелательные вибрации, благодаря структуре материала.

(коэффициент звукопоглощения 12-ти слойной фанеры составляет от 0,1– 0,2 при 125 Гц до 0,07 при 4 кГц)

Как и древесина – фанера применяется в достаточно дорогостоящих, а иногда и в элитных штучных продуктах. Стоимость фанерных АС не на много ниже тех, что произведены из массива, и вполне сопоставимы с ними по качеству.
В ряде случаев корпуса, заявленные производителем как «фанерные», изготовлены из ДСП и MDF. Поэтому низкие цены на АС с фанерным или деревянным корпусом должны насторожить. Ряд небольших азиатских производителей, регулярно меняющих названия и торгующих в основном в сети, создают комбинированные корпуса, включая несколько небольших, но заметных фанерных (деревянных) элементов, а основную часть изготавливают из ДСП.
Среди АС, созданных из фанеры, могу особо выделить эту: полочная акустика Yamaha NS-5000

ДСП – толщина, плотность, влажность

Древесно-стружечная плита по стоимости сравнима с пластиком, при этом не обладает рядом недостатков, которые присущи пластиковым корпусам. Наиболее существенной проблемой ДСП является низкая прочность, при достаточно высокой массе материала.
Звукопоглощение в ДСП неоднородное и в ряде случаев возможно возникновение низко- и среднечастотных резонансов, хотя вероятность их появления ниже, чем у пластика. Эффективно гасить резонансы могут плиты толщиной более 16 мм, которые достигают необходимой плотности. Следует отметить, что, как и в случае с пластиком, свойства конкретной плиты ДСП имеет большое значение. Важно учитывать плотность и влажность материала, так как разные ДСП плиты отличаются по этим параметрам. Не редко толстые, плотные ДСП плиты применяются при создании студийных мониторов, что говорит о востребованности материала в производстве профессиональной техники.

На заметку, товарищам из DIY-братии для создания АС хорошо подойдёт ДСП с плотностью не менее 650 — 820 кг/м³ (при толщине плиты 16 – 18 мм) и влажностью не более 6-7%. Не соблюдение этих условий существенно отразится на качестве звука и надёжности АС.


Среди достойных ДСП вариантов домашних АС наши эксперты выделяют: Cerwin-Vega SL-5M

MDF: от мебели к акустике

Сегодня МДФ (Medium Density Fiberboard, древесно-волокнистая плита средней плотности) используется повсеместно, в число прочего, МДФ — один из наиболее распространённых современных материалов для производства акустики.
Причиной популярности МДФ стали физические свойства материала, а именно:

  • Плотность 700 — 800 кг/м³
  • Коэффициент звукопоглощения 0,15 при 125 Гц – 0,09 при 4 кГц
  • Влажность 1-3 %
  • Механическая прочность и износоустойчивость

Материал дешев в производстве, обладает акустическими свойствами, сравнимыми с характеристиками древесины, при этом устойчивость плит к механическим повреждениям несколько выше. У МДФ достаточная акустическая жесткость корпуса АС, а звукопоглощение соответствует параметрам, необходимым для создания HI-FI акустики.
Визуальное отличие МДФ от ДСП
Среди MDF акустики масса замечательных систем, по моему мнению, оптимальными по соотношению цена/качество являются следующие:

→ Yamaha NS-BP182 piano black — полочная

→ Focal Chorus 726 — напольная

Алюминиевые сплавы – дизайн и точные расчёты

Наиболее распространенным металлом при производстве АС является алюминий, а также сплавы на его основе. Некоторые авторы и эксперты полагают, что алюминиевый корпус позволяет снижать резонансы, а также улучшать передачу высоких частот. Коэффициент звукопоглощения алюминиевых сплавов не высок, и составляет около 0,05, что, впрочем, значительно лучше, чем у стали. Для снижения вибрации корпуса, повышения звукопоглощения и предотвращения вредных резонансов производители применяют сэндвич-панели, где между 2-мя алюминиевыми листами помещается прослойка из высокомолекулярных полиэтиленовых смол или других материалов низкой плотности, например, вискоэластика.
В случае с бюджетными АС из алюминия, производители, не редко, делают ставку на дизайн, в ущерб звучанию: в результате акустические характеристики оставляют желать лучшего. Иногда пользователи такой акустики жалуются на жесткое, искаженное звучание, вызванное недостаточным звукопоглощением корпуса. В связи с тем, что волны хорошо отражаются и плохо поглощаются, очень большое значение в металлической акустике приобретает точный расчет конструкции корпуса, подбор излучателей, используемые фильтры, а также качество соединений отдельных деталей.
Среди достойно звучащих алюминиевых колонок меня особенно впечатлил звук:

→ Canton CD 310 white high gloss (цена внушительная, но не запредельная )

Камень – гранитные плиты по цене золотых слитков

Камень один из самых дорогих материалов для производства акустических корпусов. Безупречное отражение и практическая невозможность появления вибрационных резонансов делают эти материалы востребованным в среде особо притязательных слушателей.

Большинство пород имеют стабильный коэффициент звукопоглощения, который, например для гранита, составляет 0,130 для всего спектра звуковых частот, а для известняка 0,264. Производителями особо ценятся пористые породы камня, в которых выше звукопоглощение.

Использование каменных плит для изготовления DIY- акустики почти невозможно, так как это требует не только недюжинных познаний в акустике и камнеобработке, но и крайне дорогостоящего оборудования (домашних 3-D фрезеров для камня пока никто не выпускает).


Для производства серийных АС применяются такие породы, как гранит, мрамор, сланец, известняк, базальт. Эти породы обладают схожими акустическими свойствами, а при соответствующей обработке становятся настоящими произведениями искусства. Не редко каменные корпуса применяются для создания ландшафтной акустики, в таких случаях в необработанном камне создаётся полость для размещения излучателя, в которой устанавливаются элементы крепления (как правило, производится под заказ).

У камня 2 основные проблемы: стоимость и масса. Цена каменной АС может быть выше любой другой, обладающей схожими характеристиками. Масса некоторых образцов напольных систем может достигать 40 и более кг.

Прозрачность стекла и качество звука

Оригинальным решением является создание АС из стекла. В этом деле пока серьезно преуспели только две компании Waterfall и SONY. Материал интересен с дизайнерской точки зрения, акустически стекло создаёт определённые проблемы, главным образом в виде резонансов, которые вышеназванные компании научились решать, существуют даже референсные варианты.
Цены на прозрачное чудо тоже сложно назвать демократичными, последнее связано с низкой технологичностью и высокой стоимостью производства.

Из впечатлявших звуком стеклянных образцов могу порекомендовать: Waterfall Victoria Evo

Акустическое оформление — ящики, трубки и рупоры

Не меньшую значимость для точной передачи звука в АС имеет акустическое оформление. Я расскажу о наиболее распространённых типах (закономерно, что, те или иные типы могут комбинироваться в зависимости от конкретной модели, например фазоинверторая часть колонки отвечает за низко-и среднечастотный диапазон, а для высоких сооружен рупор).

Фазоинвертор – главное длинна трубы

Фазоинвертор — один из наиболее распространённых типов акустического оформления. Такой способ позволяет, при правильном расчете длинны трубы, сечения отверстия и объема корпуса получить высокий КПД, оптимальное соотношение частот, усилить низкие. Суть фазоинвертерного принципа в том, что на тыльной части корпуса размещается отверстие с трубой, которая позволяет создать низкочастотные колебания синфазные волнам, создающимся фронтальной стороной диффузора. Чаще всего фазоинверторный тип применяется при создании 2.0 и 4.0 систем.
Для облегчения расчетов при создании собственной АС удобно использовать специальные калькуляторы, один из удобных привожу по ссылке.

В философии HI-END cуществуют крайне радикальные бескомпромиссные суждения о фазоинверторных системах, привожу одно из них без комментариев:

«Враг №1 это, конечно, нелинейные усилительные элементы в звуковом тракте (дальше уж каждый сам, в меру образования, понимает какие элемты более линейны, а какие менее). Враг №2 это фазоинвертор. фазоинвертор призван пустить пыль в глаза, должен позволить маленькой дешевой колоночке записать в паспорт 50… 40… 30, а что мелочится даже и 20 Гц по уровню -3дБ! Но к музыке нижний диапазон частот фазоинвертора перестает иметь отношение, точнее сказать сам фазоинвертор это дудочка, поющая свою собственную мелодию.»

Закрытый ящик – гроб для лишних низких

Классический вариант для многих производителей – обычный закрытый ящик, с выведенными на поверхность диффузорами динамиков. Такой тип акустики достаточно прост для расчетов, при этом КПД таких устройств не блещет. Также ящики не рекомендуют любителям характерно выраженных низких, так как в закрытой системе без дополнительных элементов, способных усилить низы (фазоинвертор, резонатор), спектр частот от 20 до 350 Гц выражен слабо.
Многие меломаны предпочитают закрытый тип, так как для него характерна относительно ровная АЧХ и реалистичная «честная» передача воспроизводимого музыкального материала. Большинство студийных мониторов создаются именно в этом акустическом оформлении.

Band-Pass (закрытый ящик-резонатор) – главное, чтобы не гудел

Band-Pass получил распространение при создании сабвуферов. В этом типе акустического оформления излучатель скрыт внутри корпуса, при этом внутренности ящика соединяются с внешней средой трубами фазоинверторов. Задача излучателя – возбуждение колебаний низкой частоты, амплитуда которых многократно возрастает благодаря трубам фазоинверторов.
При правильно рассчитанной конструкции такого типа, не должно возникать таких паразитных отзвуков как низкое гудение, гула и т.п., чем не редко грешат бюджетные системы этого типа.

Открытый корпус – без лишних стен

Сравнительно редкий сегодня тип акустического оформления, при котором задняя стенка корпуса многократно перфорирована, либо полностью отсутствует. Такой тип конструкции используется для того, чтобы снизить количество элементов корпуса, влияющих на частотную характеристику АС.
В открытом ящике наиболее существенное влияние на звук оказывает передняя стенка, что снижает вероятность искажений, вносимых остальными деталями корпуса. Вклад боковых стенок (если таковые присутствуют в конструкции), при их не большой ширине, минимален и составляет не более 1-2 Дб.

Рупорное оформление – проблемные чемпионы по громкости

Рупорное акустическое оформление чаще используется в комбинации с другими типами (в частности для оформления высокочастотных излучателей), однако, существуют и оригинальные на 100 % рупорные конструкции.
Главным достоинством рупорных АС является высокая громкость, при комбинации с чувствительными динамиками.
Большинство экспертов не без оснований скептически относятся к рупорной акустике, причин несколько:

  • Конструктивная и технологическая сложность, а соответственно, высокие требования к сборке
  • Почти невозможно создать рупорную АС с равномерной АЧХ (исключение – устройства стоимостью от 10 килобаксов и выше)
  • В связи с тем, что рупор не резонирующая система, исправить АЧХ нельзя (минус для DIY –щиков вознамерившихся скопировать Hi-end рупор)
  • В связи с особенностями формы волн рупорной акустики, объемность звучания достаточно низкая
  • В подавляющем большинстве сравнительно низкий динамический диапазон
  • Дает большое количество характерных призвуков (некоторыми аудиофилами считается достоинством).


Наиболее востребованными рупорные системы стали именно в среде аудиофилов, находящихся в поисках «божественного» звука. Тенденциозный подход позволил архаичному рупорному оформлению получить вторую жизнь, а современные производители смогли найти оригинальные решения (эффективные, но крайне дорогие) распространённых рупорных проблем.

На этом пока всё. Продолжение, как водится, следует, а «вскрытие» обязательно покажет…НА будущее анонсирую: излучатели, мощность/чувствительность/объём помещения.

sohabr.net

Звукопоглощающие конструкции в Москве


На сегодняшний день создание акустического комфорта очень важно. В зависимости от назначения помещения, помещение должно соответствовать некоторым требованиям. Шумоподавляющие системы должны быть в таких помещениях, как: кинотеатры, концертные и лекционные залы, бассейны, дискотеки, так как зачастую такие заведения находятся в жилых районах и чтобы не мешать спокойствию граждан, владельцы прибегают к использованию звукопоглощающих систем.


Рассмотрим особенности материалов, которые способны поглощать звуковые волны, исходящие из акустических систем или других источников звука. Возможности поглощения звука материалом зависят от их структуры. Если говорить конкретней, то для того, чтобы Ваши стены, потолок или пол могли поглотить звуковые волны, то показатель общей пористости материала должен быть не менее 75%.


Стандартные материалы, используемые при строительстве, имеют очень низкий показатель пористости, поэтому с вышеупомянутой задачей они никак не справятся. Например, коэффициент звукопоглощения таких материалов как бетон или кирпич равен 0,05. Для дерева этот показатель составляет от 0,1 до 0,15. Ковровое покрытие с ворсом имеет коэффициент от 0,2 до 0,25. Исходя из этого, рассматривать обычные материалы с точки зрения поглощения ими звука – просто неразумно. Для таких целей подойдут только специальные материалы.



В изделиях, которые способны поглощать звуковые волны, колебания звука трансформируются в тепловую энергию. Такой результат получается вследствие трения. Другими словами, когда звук попадает в поры материала, это провоцирует движение молекул воздуха. Отсюда и возникает трение молекул, которое, постепенно производит тепловую энергию.


Уровень поглощения звука измеряют коэффициентом «α» (альфа). Этот коэффициент равен отношению неотражённой энергии, поглощённой поверхностью, к падающей энергии в единицу времени. Этот показатель всегда будет меньше чем 1, и больше чем 0.


Способные к звукопоглощению материалы имеют особенную структуру – зернистую, ячеистую либо волокнистую. Их различают по степени жёсткости. Так, существуют:


  • Твёрдые материалы (α = 0,5; объёмная масса – 300-400 кг/м³).Произведены из минваты (суспензированной либо гранулированной), а также пористые вещества, содержащие пемзу, вермикулит и другие.


  • Полужесткие материалы (α = 0,5-0,75; объёмная масса – 80-130 кг/м³). В эту группу входят: пенополиуретан, пенополистироп, а также стекловолокнистые и минераловатные плиты.


  • Мягкие материалы (α = 0,7-0,95; объёмная масса – до 70 кг/м³). Рулоны и маты из стекловолокна и минваты. Сюда также относится вата, войлок и похожие вещества.


Из всех представленных вариантов, конечно же, чаще всего используют последний – мягкие материалы. Во-первых, потому, что они лучше всех поглощают звуковые волны. Во-вторых, при их использовании не так сильно уменьшается площадь помещения.


Наиболее популярные изделия представлены как отечественными производителями, так и зарубежными компаниями:


  • «SAIND-GOBAINISOVED»производство – Польша, Россия и Финляндия;


  • «ФЛАЙДЕРЕР-ЧУДОВО»тмUrsa, РФ;


  • «PAROC»производство – Финляндия;


  • «ROCKWOOL»производство – Дания.


Производятся они на основе минваты или же стекловолокна, и обычно ими утепляют строительные конструкции. Основными преимуществами этих изделий являются: высокие звукопоглощающие возможности, лёгкость материала, гидрофобность. Также из немаловажных достоинств можно отметить высокий уровень огнестойкости таких материалов и паропроницаемость. В них не заводятся вредители и не появляется плесень. Из специальных материалов можно выделить минераловатные «Шуманет-БМ». Эти изделия производятся на основе базальтового волокна.


Существуют следущие группы звукопоглощающей материалов:


  • пористые;


  • пористые звукопоглощающие конструкции с перфорированными экранами;


  • резонансные конструкции;


  • штучные или объемные;


  • слоистые материалы с звукоизоляционной поверхностью конструкции.


Для снижения звуков и шума в фойе, коридорах, лестничных пролетах, чаще всего пользуются пористыми звукопоглощающими панели. Они производятся в виде плит из пористых минеральных материалов, таких как: каолин, пемза, вермикулит, шлаки и пользуются такими звукопоглощающими конструкциями в комбинации с цементом и подобными вяжущими веществами.                     



Для того чтобы добиться хорошей звукоизоляции при наличии низких частот (к такому шуму могут относиться барабанные установки, разные звуковые эффекты кинолент), необходимо использовать специальную систему под названием «комната-в комнате». Это актуально для защиты соседних помещений от излишнего шума. Данная конструкция представляет собой плавающий пол, установленный на поверхности, обладающей свойством поглощения звука. Также к ней относится покрытие всех стен и потолка каркасом с виброразвязанными функциями. Для примера на пол монтируется конструкция плавающего пола с акустическим эффектом. При этом соседи внизу сразу станут надежно защищены от таких звуков, как шаги, перемещение мебели и т.д. Следует отметить, что данная система вполне демократична по стоимости. Важным фактом является то, что куда легче устранить шум в том помещении, откуда он исходит, чем звукоизолировать все пространство, куда он приходит.


Если имеется цель провести работы по звукоизоляции низких частот, то нужно обратить внимание на промежуток между стенами и слоями. Чем он больше, тем меньше шума будет распространяться в помещении. Слои должны быть плотными. А вот их количество особого значения не имеет.


Если осуществить звукоизоляции только одного элемента помещения, например, только потолка, то задача выполнена не будет в должной степени. Результат будет зависеть от выражения опосредованного распределения звука по остальным элементам ограждения (стенам, полу). Если шум не создает излучений на них, то звукоизоляция одного элемента решает проблему. Если вы слышите шум на других элементах, то облицовывать звукоотражающими материалами придется и их. Перед началом работ следует составить план с размерами толщин каждой стены. На нем необходимо обозначить места, где прослушивается шум. Специалисты сразу же получат информацию о том, где именно в помещении располагаются мета повышенного излучения шума, а также примут правильные меры для решения поставленной задачи.


Основная задача работ по звукоизоляции – это поглотить звук, чтобы он не отразился от поверхностей и не вернулся снова в помещение. Для ориентировки используется специальный коэффициент по звукопоглощению. Эта величина варьируется от 0 до 1. Если коэффициент равен 0, то звук будет отражаться от поверхности в полной мере. В противоположенном случае, когда значение приравнивается к 1, звук поглощается полностью. Для облицовки поверхностей применяются специальные материалы. Они должны обладать соответствующим уровнем по звукопоглощению. И данный коэффициент у них не может быть меньше 0,4.


К такого рода материалам относятся:


  • Конструкции, выполненные из множества слоев

  • Объемные конструкции

  • Пористые материалы, а также состоящие из волокон

  • Пористые материалы, имеющие экраны с перфорацией

  • Резонансные материалы


Чем коэффициент звукопоглощения больше, тем больше будет и класс.


Рассмотрим материалы, имеющие в составе волокна. Акустические колебания рассеивают свою энергию в них за счет следующих причин. В первую очередь, в волокнах присутствует много воздуха. Частицы, которые находятся в нем, начинают колебаться, между ними возникает трение. Также присутствует и трение самого воздуха о материал волокон, которого тоже предостаточно. Волокна соприкасаются друг с другом, энергия начинает постепенно рассеиваться за счет этого. А это означает, что высокие и средние частоты отлично будут поглощаться такими материалами. Значение коэффициента у них находится в диапазоне от 0,4 до 1. Однако для низких частот достичь такого же значения коэффициента будет куда сложнее.


Конструкции для поглощения шума


В таких общественных местах, как театр, кинозал, студия и т.д., все элементы ограждений облицовывают специальными материалами для звукопоглощения. Это делается для повышения акустических свойств помещений. Обычно в таких случаях используют материалы с волокнами или с порами. Кроме того, для аналогичных целей их применяют в больницах, детских дошкольных учреждениях, в школах.


Для достижения максимального эффекта при наличии низких частот необходимо повысить толщину слоев материала или выдержать расстояние между ограждающей конструкцией и звукопоглощающим материалом.



Если планируется использовать непокрашенный звукопоглощающий материал на основе волокон, а также не имеющий сверху слой ткани, то его можно покрыть сверху защитным слоем с перфорацией.


Между волокнистым материалом и экраном располагают специальный холст, который пропускает воздух. Это делается для того, чтобы в воздух не попадали части волокон. Материалы, применяемые для звукоизоляции, с нанесенным сверху покрытием с перфорацией, неплохо справляются со своей задачей, причем это применимо ко всем частотным диапазонам. Регулировать частотные свойства при поглощении шума можно при помощи выбора материалов, изменения их толщин, формы, размеров, промежутков между отверстиями перфорации. Конструкции для звукопоглощения, которые имеют металлический экран с перфорацией, также применяются в качестве покрытий от вандалов.


Так же наша компания предлагает:

www.kinocreativ.ru

Материалы для увеличения акустического комфорта.

Предназначение звукопоглощающих материалов – снижать уровень фоновых шумов в помещении до санитарных норм, препятствовать образованию эха и обеспечивать прекрасную слышимость, «впитывая» шумы на средних и низких частотах.

Обеспечение акустического комфорта – это не только защита помещений от вредных вибраций и всех видов шумов, но и достижение прекрасной слышимости, и отсутствие эха в самих помещениях.

Специально для решения этих задач компания «Вольф Бавария» разработала современные звукопоглощающие материалы PhoneStar серии SK.

Особенности звукопоглощающих материалов

В первую очередь стоит отметить отличия звукопоглощающих материалов от звукоизолирующих. Последние надежно защищают помещения от ударных, воздушных и структурных (распространяющихся по перекрытиям) шумов, исходящих извне.


 

Задачи звукопоглощающих материалов


  • Снижение фоновых (внутренних) шумов непосредственно в самих помещениях до санитарных норм в 30-50 Дб для жилых домов и офисов и в 80 Дб для производственных цехов.
  • Избавление от эффекта ревербации, то есть от эха, многократно отражающегося от стен, потолков и прочих препятствий.
  • Коррекция акустики, так как у звукопоглощающих материалов есть способность «впитывать» шумы на заданных частотах (например, только низких и средних) или в широком диапазоне частот.
 

Главная отличительная особенность звукопоглощающих материалов – сложная пористая структура, в которой звуковые волны «увязают», рассеиваясь, угасая и частично преобразуясь в тепло.

Хороший звукопоглощающий материал минимум на 75% состоит из открытых пор. Наиболее эффективными в данном отношении считаются листы и изделия из мягких звукопоглотителей и акустические плиты, способные «впитать» до 95% звуковых волн.

Однако использование для отделки исключительно звукопоглощающих материалов нецелесообразно, поэтому они используются в сочетании с шумоизоляционными материалами защищенными стандартными облицовочными материалами (ГКЛ, ГВЛ, панелями серии GW). Все звукопоглощающие материалы и изделия должны монтироваться последним финишным слоем внутри помещения и ни в коем случае не должны быть закрыты звукоизоляционными или отделочными материалами, так как в этом случае эффективность таких материалов значительно снижается. Возможно использование звукопоглощающих материалов в качестве картин и фотографий – нанесенных на звукопоглощающий материал или в качестве различных изделий выполненных из звукопоглощающего материала.

Где применяются?

Использование звукопоглощающих материалов необходимо в следующих случаях:

  • в концертных и спортивных залах, лекториях, тирах, общественных и частных кинотеатрах;
  • в студиях звукозаписи, теле – и радиостудиях;
  • в переговорных и кабинетах руководителей;
  • для «гашения» звуков шагов в вестибюлях и фойе общественных зданий;
  • и везде, где требуется великолепная акустика и/или строгое соблюдение конфиденциальности.

В квартирах и частных домах монтаж звукопоглощающих материалов может понадобиться в детских, домашних кабинетах, библиотеке или спальне, а также в тех случаях, когда кто-то в семье всерьез увлекается музыкой.

Еще одна область применения – шумоизоляция технических и подсобных помещений, например, машинных отделений лифтов, вентиляционных камер, насосных станций, чиллеров.

Преимущества звукопоглощающих материалов

Немецкий строительный концерн «Вольф Бавария» предлагает надежные и эффективные решения в области обустройства звукоизоляционных систем как для жилых, так и для промышленных предприятий. В том числе – современные звукопоглощающие материалы PhoneStar серии SK: акустические панели, различные звукопоглощающие изделия и элементы декора.

Дополнительно для монтажа предлагаются вибро – и звукопоглощающие крепежные элементы: подвесы Wolf Universal, виброразвязывающие шайбы, пластиковые дюбель-гвозди с сердечником из стекловолокна, звукопоглощающая клейкая лента и герметик Wolf Flex.


 

Преимущества звукопоглощающих систем PhoneStar серии SK


  • Высокий индекс звукопоглощения – 0,7-0,9 (при принятом максимуме в 1).
  • Высокая экологичность – никаких токсичных веществ и примесей, опасных для здоровья человека.
  • Легкость в обработке и монтаже.
  • Устойчивость к повышенной влажности и перепадам температур.
  • Долговечность – срок эксплуатации составляет 20-30 лет.
 

Профессиональные материалы для звукопоглощения, разработанные инженерами-акустиками «Вольф Бавария», абсолютно универсальны и обеспечат акустический комфорт в помещениях любых размеров, предназначений и самых сложных или нестандартных форм.

 

По всем вопро

phonestar.msk.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о