Люминесцентный светильник своими руками – Схема подключения светодиодной лампы вместо люминесцентной: модернизация своими руками

Содержание

Самодельный люминесцентный светильник

В этой небольшой статье пойдет речь о том, как своими руками сделать люминесцентный светильник на основе ЭПРА для подсобных и технических помещений, которые не требуют от светильника внешней красоты и изысканного дизайна. Светильник будет предназначаться для трубчатых люминесцентных ламп с цоколем G13, длиной 1200 мм. Эти лампы имеют низкую цену и способны осветить большую площадь.

 

Для изготовления светильника необходимо:

  1. Корпус. Его можно изготовить из подручного материала. По сути, корпус – это просто деталь прямоугольной формы, из материала не поддерживающего горение (металл, текстолит, электротехническая пластмасса и т.п.).  Можно использовать старый корпус от отслужившего свой срок «древнего» светильника.
  2. ЭПРА – электронный пускорегулирующий аппарат. Его еще называют «электронный дроссель». По сравнению с обычным дросселем, ЭПРА имеет ряд преимуществ при той же цене: мгновенный старт ламп, отсутствие мерцания ламп, малая зависимость яркости ламп от перепадов напряжения питания. В данной статье рассказывается о светильнике на основе ЭПРА 2×36 Вт.
  3. Патроны G13 из расчета два патрона на одну лампу.
  4. Моножильные медные провода сечением 0,2-0,5 кв.мм. Можно использовать  и многопроволочные (гибкие), залудив концы.
  5. Подходящие винтики, гаечки для крепления всех деталей на корпусе.

 

Процесс изготовления светильника сводится к следующим операциям по креплению и подключению.

  1. Крепление патронов на необходимом расстоянии друг от друга, в зависимости от длины лампы и желаемого расстояния между лампами.
  2. Крепления ЭПРА. Так как ЭПРА при работе нагревается, то располагать его рекомендуется так, чтобы ЭПРА получал минимум дополнительного нагрева от работающей лампы. Зона минимального нагрева лампы находится ближе к ее центру.
  3. Подключение патронов к ЭПРА с помощью заранее заготовленных проводов нужной длины и согласно схеме подключения, которая обычно нарисована на корпусе ЭПРА. В патроны провода просто вставляются и удерживаются внутри пластинчатой пружиной. По этой причине, лучше использовать моножильные провода, так как многопроволочные провода (без предварительного облуживания) воткнуть практически невозможно.
  4. Крепление светильника к потолку или стене. Подключение светильника к сети питания 220 В.

 

Несмотря на то, что наличие защитного стекла для ламп низкого давления не является обязательным, лампы желательно прикрыть подходящим прозрачным материалом, во избежание случайного повреждения стеклянной колбы лампы. Фотографии изготовленного светильника и рисунок со схемой подключения прилагаются.

Для надежности, корпус светильника (слева, справа и между патронов) был усилен металлическими уголками.

Патрон G13. Вариант для винтового крепления к боковой поверхности.

Патрон G13. Вариант для бокового крепления с помощью защелок.

Патрон G13. Вариант для нижнего крепления с помощью защелок.

 

Подключение ЭПРА. Поясняющий рисунок.

 

ЭПРА на светильнике. ЭПРА расположен между лампами, ближе к их центру (в зоне минимального нагрева).

Подключение патрона G13.

Типовой патрон G13 для люминесцентной лампы подключается без применения инструментов, достаточно снять изоляцию с провода на длину около 1 см и вставить его до упора в  отверстие. Провод должен быть однопроволочным и допустимого сечения (согласно спецификации на патрон). В случае применения многопроволочного провода, его нужно облудить или опрессовать в гильзовый наконечник. Внутри патрона провод удерживается плоскопружинным контактом, изготовленным из упругого цветного металла. Патрон G13, как правило, имеет четыре отверстия для ввода проводов – по два на каждый контакт. Таким образом есть возможность не только завести провод в патрон, но и выполнить ответвление провода от патрона, что нередко требуется. При необходимости извлечь провод, необходимо тонким шилом нажать на специальный рычажок внутри корпуса, контакт при этом изгибается, высвобождая провод.


Для установки лампы в патрон, необходимо поместить контакты в прорезь одновременно с обоих концов лампы и повернуть колбу на угол 90°.


Патрон G13 в закрытом состоянии. Центральная поворотная деталь черного цвета заблокировала выход контактов лампы через прорезь в корпусе патрона.


Отверстия для проводов. Одинаковый цвет стрелок указывает на подключение к одному и тому же контакту.


Патрон G13 в разобранном виде.


Плоскопружинные контакты.


На провод давит плоская пружина, одновременно удерживая его от выдергивания.



Отверстия (желтые стрелки), необходимые при извлечении провода (фото сверху).
Площадка на плоском контакте (для наглядности показано в разобранном виде), на которую нужно надавить для высвобождения провода (фото снизу).

 

Время показало, что данный самодельный люминесцентный светильник хорошо запускается и работает в диапазоне температур окружающего воздуха от -10°… +30°C, более экстремальные температурные испытания не проводились. Светильник нечувствителен к высокой запыленности помещения и перепадам сетевого напряжения (которые могут происходить, например, во время пользования сварочным аппаратом или запуска мощного электрооборудования), отлично подходит для организации качественного освещения в мастерской или гараже. Чтобы свет был более приятен для глаз, есть смысл установить в светильник лампы разных цветовых температур (как на фотографиях выше).

Похожие статьи:

zakatayrukava.ru

Люминесцентный светильник своими руками — Всё о электрике в доме

В этой небольшой статье пойдет речь о том, как своими руками сделать люминесцентный светильник на основе ЭПРА для подсобных и технических помещений, которые не требуют от светильника внешней красоты и изысканного дизайна. Светильник будет предназначаться для трубчатых люминесцентных ламп с цоколем G13, длиной 1200 мм. Эти лампы имеют низкую цену и способны осветить большую площадь.

Для изготовления светильника необходимо:

  1. Корпус. Его можно изготовить из подручного материала. По сути, корпус – это просто деталь прямоугольной формы, из материала не поддерживающего горение (металл, текстолит, электротехническая пластмасса и т.п.). Можно использовать старый корпус от отслужившего свой срок «древнего» светильника.
  2. ЭПРА – электронный пускорегулирующий аппарат. Его еще называют «электронный дроссель». По сравнению с обычным дросселем, ЭПРА имеет ряд преимуществ при той же цене: мгновенный старт ламп, отсутствие мерцания ламп, малая зависимость яркости ламп от перепадов напряжения питания. В данной статье рассказывается о светильнике на основе ЭПРА 2×36 Вт.
  3. Патроны G13 из расчета два патрона на одну лампу.
  4. Моножильные медные провода сечением 0,2-0,5 кв.мм. Можно использовать и многопроволочные (гибкие), залудив концы.
  5. Подходящие винтики, гаечки для крепления всех деталей на корпусе.

Процесс изготовления светильника сводится к следующим операциям по креплению и подключению.

  1. Крепление патронов на необходимом расстоянии друг от друга, в зависимости от длины лампы и желаемого расстояния между лампами.
  2. Крепления ЭПРА. Так как ЭПРА при работе нагревается, то располагать его рекомендуется так, чтобы ЭПРА получал минимум дополнительного нагрева от работающей лампы. Зона минимального нагрева лампы находится ближе к ее центру.
  3. Подключение патронов к ЭПРА с помощью заранее заготовленных проводов нужной длины и согласно схеме подключения, которая обычно нарисована на корпусе ЭПРА. В патроны провода просто вставляются и удерживаются внутри пластинчатой пружиной. По этой причине, лучше использовать моножильные провода, так как многопроволочные провода (без предварительного облуживания) воткнуть практически невозможно.
  4. Крепление светильника к потолку или стене. Подключение светильника к сети питания 220 В.

Не смотря на то, что наличие защитного стекла для ламп низкого давления не является обязательным, лампы желательно прикрыть подходящим прозрачным материалом, во избежание случайного повреждения стеклянной колбы лампы. Фотографии изготовленного светильника и рисунок со схемой подключения прилагаются.

Для надежности, корпус светильника (слева, справа и между патронов) был усилен металлическими уголками.
Патрон G13. Вариант для винтового крепления к боковой поверхности.

Патрон G13. Вариант для бокового крепления с помощью защелок.

Патрон G13. Вариант для нижнего крепления с помощью защелок.

Подключение ЭПРА. Поясняющий рисунок.

ЭПРА на светильнике. ЭПРА расположен между лампами, ближе к их центру (в зоне минимального нагрева).

Коротко о сайте:

Мастер Винтик. Всё своими руками!

— это сайт для любителей делать, ремонтировать, творить своими руками! Здесь вы найдёте бесплатные справочники, программы.
На сайте подобраны простые схемы, а так же советы для начинающих самоделкиных. Часть схем и методов ремонта разработана авторами и друзьями сайта. Остальной материал взят из открытых источников и используется исключительно в ознакомительных целях.

Вы любите мастерить, делать поделки? Присылайте фото и описание на наш сайт по эл.почте или через форму .

Программы, схемы и литература — всё БЕСПЛАТНО!

Если сайт понравился, добавьте в избранное (нажмите Ctrl + D). а также можете подписаться на RSS новости и всегда получать новые статьи по ленте.
Если у вас есть вопрос по схеме или поделке? Добро пожаловать на наш ФОРУМ!
Мы всегда рады оказать помощь в настройке схем, ремонте, изготовлении поделок!

А ТАКЖЕ ЕЩЁ ИНТЕРЕСНОЕ:

Ремонт своими руками светильника с люминесцентной лампой

В прошлой статье Я подробно рассказывал, как отремонтировать своими руками компактные люминесцентные лампы, которые вкручиваются в обычный патрон для лампочек накаливания.

Сейчас Я подробно расскажу, как отремонтировать люминесцентные светильники с дросселями и стартерами или на основе электромагнитного балласта или ЭмПРА.

Рекомендую более подробно ознакомится по этому вопросу в нашей статье «Принципы работы и схемы подключения люминесцентных ламп».

Прежде чем приступать к самостоятельному ремонту:

  • Необходимо прозвонить на целостность все лампы светильника. Как это сделать читаем здесь. Важно знать, что очень часто в схемах с электромагнитным балластом, к которому подключено 4 лампы- при перегорании одной они все не будут светить. А с дросселем- не будет гореть только одна пара. В редких случаях отказ в работе происходит по вине отсутствия контакта между лампой и ее держателем (патроном). Помогает аккуратное подгибание контактов или замена.
  • Проверьте исправность электросети. Я в этих случаях проверяю наличие напряжения на клемнике, через который светильник подключается к электропроводке дома или квартиры.
  • Следует учитывать, что люминесцентная лампа из-за своих конструктивных особенностей уже может не загореться при температуре окружающей среды меньше -5° С или при периодических скачках напряжения более 7%. Примечание: если перегорела лампа- ее можно отремонтировать способом указанным здесь.
  • Если электропитание стабильное и присутствует на светильнике величиной от 200 до 240 Вольт и исправны лампы следует искать неисправность отдельных элементов схемы включения.

Я всегда ремонт люминесцентного светильника начинаю с осмотра всех элементов. иногда можно выявить визуально почернение неисправного элемента или продергиванием проводков найти отвалившийся.

Если ничего подозрительного не выявлено следует прозвонить целостность всех проводов по порядку, прикладыванием измерительных щупов с обоих сторон каждого провода. Рекомендую прочитать нашу статью «как прозвонить цепь». Далее ремонт своими руками будет отличаться от вида используемой схемы.

Причины неисправностей дроссельных светильников:

  1. Первое, что необходимо проверить- это работоспособность стартера. Для этого Я использую другой заведомо рабочий. Если нет запасного подключите его к электрической розетке через лампу накаливания, т. е. один провод от патрона с лампочкой сразу вставляем в розетку, а второй к одному контакту стартера, а со второго в розетку. Будьте аккуратны, не коснитесь не заизолированных металлических частей, находящихся под напряжением. Менять стартер необходимо на аналогичный по мощности и напряжению на 127 или 220 Вольт.
  2. Если стартер исправен- значит виноват дроссель. Прозвоните его обмотку на целостность. При необходимости опять же заменяем на аналогичный по параметрам и конструкции.

Причины неисправностей светильников на основе электронного балласта.

В без дроссельных светильниках используется всего один электронный балласт. Для его проверки Я обычно беру другой с аналогичного рабочего светильника и с соблюдением схемы подключения предварительно помеченных проводов- вставляю его в проверяемый, если не работает светильник- значит не исправен блок.

Неисправный электронный балласт не спешите выкидывать. Разберите его- возможно просто перегорел предохранитель. Меняйте только на тот, который рассчитан на аналогичную максимальную токовую нагрузку, т. е. с одинаковым диаметром плавкой вставки или медной проволочки внутри.

Если предохранитель цел- проверьте мультиметром все сопротивления, конденсаторы, обмотки и т. п. в схеме.

Самые распространенные неисправности люминесцентных светильников.

  • Лампа при включении многократно мигает. но не зажигается. Чаще всего в этом виновата неисправная лампа. Если после ее замены дефект не исчез- значит ищите замыкание в проводке светильника, или в его патроне с той стороны, где отсутствует свечение люминофора.
  • Если наблюдается продолжительное время свечение на обоих концах лампы, но сама она не зажигается. Ищите причину неисправности в стартере, проводах или патронах.
  • Если при включении появляется и исчезает на концах лампы тусклое свечение оранжевого свечения. значит в лампу попал воздух и ее следует заменить.
  • Если быстро перегорают, тускло светят или чернеют концы лампы. а также наблюдается не равномерное свечение по всей площади лампы- в этом виноват неисправный дроссель или электронный балласт.

Помните. если Вы заметили любую неисправность в работе люминесцентного светильника его необходимо немедленно обесточить приступить к ремонту, потому что поломка одного элемента схемы может повлечь за собой выход из строя и других.

Related Posts

Ремонт люминесцентных ламп своими руками: конструкция, схема

Все больше и больше в эксплуатации у населения становится компактных люминесцентных ламп (КЛЛ), в обиходе называемых энергосберегающими. Но, поскольку рынок наводнен относительно дешевой продукцией низкого качества, некоторые экземпляры не отрабатывают заявленный производителем срок службы. В итоге экономия получается призрачной: затраченные на покупку лампы деньги не оправдывают себя. Даже правильная эксплуатация КЛЛ не дает гарантии, что она прослужит долго.

Неисправные КЛЛ — многие из них можно восстановить

Иногда поломанная лампа подлежит ремонту. Детали для замены можно взять из другой КЛЛ или купить в магазине радиотоваров. Это окажется дешевле, чем приобретать новую лампу .

Устройство и принцип работы компактных люминесцентных ламп

Для успешной починки любого устройства нужно знать его конструкцию и принцип действия. Компактная люминесцентная лампа состоит из частей, указанных на рисунке.

  1. Стеклянная трубка с парами ртути и инертным газом внутри.
  2. Люминофор на внутренней поверхности трубки.
  3. Электронный балласт.
  4. Корпус
  5. Цоколь.

По краям трубки расположены электроды, похожие на нити лампы накаливания. В момент запуска через них проходит ток, разогревая материал, которым они покрыты. Свойства покрытия таковы, что при разогреве из него в окружающее пространство начинают эмиссировать свободные электроны.

Затем схема электронного балласта, называемого еще электронным пускорегулирующим аппаратом (ЭПРА), формирует между крайними электродами импульс высокого напряжения. В трубке возникает ток за счет ранее появившихся при разогреве электронов. При движении они бомбардируют атомы инертного газа в трубке, превращая их в ионы. Наличие положительно и отрицательно заряженных частиц в трубке обеспечивает возможность прохождения по ней тока.

Как только происходит пробой газового промежутка в трубке с образованием достаточного количества носителей электрического тока, напряжение на ее концах снижается.

При столкновении движущихся заряженных частиц с атомами ртути последние излучают свет в ультрафиолетовом спектре. Покрытие из люминофора преобразует свет в видимое излучение.

Электронный балласт выполняет следующие функции:

  • обеспечивает прохождение тока через электроды в момент для их разогрева;
  • формирует импульс для пробоя газового промежутка колбы;
  • поддерживает напряжение на электродах колбы, необходимое для устойчивого разряда в ней.

Схема балласта сначала превращает переменное напряжение питающей сети в постоянное. Это необходимо для работы электронной схемы лампы. Затем при помощи автогенератора формируется переменное напряжение частотой десятков тысяч герц. За счет этого уменьшаются габаритные размеры ЭПРА и коэффициент пульсаций светового потока лампы.

Типовая схема КЛЛ

Выпрямитель состоит из четырех диодов, включенных по мостовой схеме. В цепь питания включается обрывной резистор или предохранитель. В качестве сглаживающего фильтра применяется электролитический конденсатор в паре с дросселем.

Дополнительно последовательно со схемой выпрямителя устанавливается ограничительный резистор. Его назначение – уменьшить бросок тока, возникающий при подключении питания, когда конденсатор фильтра выпрямителя еще разряжен. В дешевых изделиях ограничительный резистор и дроссель сглаживающего фильтра отсутствуют.

Запуск происходит за счет терморезистора, включенного между электродами лампы. В холодном состоянии его сопротивление невелико. После подачи напряжения по нему протекает ток, разогревающий и электроды, и сам терморезистор. При нагревании сопротивление его увеличивается, ток через цепь накала уменьшается до минимальной величины. Он остается таким до тех пор, пока лампу не отключат и резистор не остынет. После этого схема вновь готова к запуску.

Теперь рассмотрим порядок отыскания неисправностей в КЛЛ и методы их устранения.

Внешний осмотр люминесцентной лампы

Для начала лампу нужно разобрать. Для этого рассоединяем половинки корпуса, вставив плоскую отвертку в пазы его соединительного шва. Действуя отверткой как рычагом и передвигая ее по шву, добиваемся раскрытия защелок, скрепляющих половинки между собой.

КЛЛ в разобранном виде

Затем осматриваем печатную плату и детали, установленные на ней. Проверяем качество пайки – выводы деталей не должны шевелиться в плате при покачивании. Осматриваем дорожки на целостность, проверяем надежность пайки проводов к контактам колбы.

На деталях и плате не должно быть следов копоти от замыканий, а вздувшийся электролитический конденсатор требует замены.

Диагностика нитей накаливания

О возможном обрыве нитей накаливания свидетельствует потемнение внутренней поверхности колбы в местах их расположения. Для диагностики измеряется сопротивление нитей мультиметром – оно составляет около 10 Ом. Если одна из нитей оборвана, лампу можно заставить работать, припаяв параллельно контактам нити резистор с сопротивлением 10 Ом .

Старт КЛЛ с таким резистором возможен за счет электронов, выделяемых вблизи исправного электрода. Однако запускаться она будет хуже. так как носителей на этом этапе станет меньше, а их движение – эффективным только при определенном направлении питающего трубку тока.

Можно сразу же проверить терморезистор в цепи накала. Его сопротивление в холодном состоянии должно соответствовать указанному на корпусе.

Если оборваны обе нити, лампу придется утилизировать. Но электронные компоненты выбрасывать не стоит, они еще пригодятся для ремонта других ламп.

Неисправности выпрямителя

Диагностика электронной схемы лампы начинается с проверки целостности предохранителя (обрывного резистора). Найти его не сложно – он последовательно соединен с одним из проводов цоколя и расположен недалеко от диодов выпрямителя. Предохранитель не перегорает сам по себе. его обрыв – следствие короткого замыкания в защищаемой цепи.

В этом же районе расположен и ограничительный резистор. Его сопротивление невелико – несколько единиц Ом. Но иногда на плате вместо него производители устанавливают перемычку.

Диоды выпрямителя проверяются мультиметром по очереди, для чего один из выводов каждого из них отпаивается от платы. Для проверки мультиметр устанавливают в режим измерения сопротивления и касаются его щупами диода, меняя полярность их подключения. В одном направлении диод проводит ток, и его сопротивление равно сотням Ом, а в другом – бесконечности. Если это не так или в обратном направлении диод имеет некоторое сопротивление, то его меняют.

Электролитический конденсатор фильтра питания проверяется мультиметром: щупы подключаются к выводам в соответствии с указанной на корпусе полярностью. При коротком замыкании между выводами, отсутствии зарядного тока или не желании его уменьшаться до бесконечности, конденсатор меняется. Однако гарантированный способ убедиться в его исправности – выпаять и временно заменить новым. Рабочее напряжение конденсатора – 400 В, напряжения питания мультиметра недостаточно для его объективной проверки.

При наличии в схеме фильтра питания дросселя его тоже нужно проверить на целостность.

Поиск неисправностей в схеме генератора

Приоритетное направление поиска – полупроводниковые элементы. В схеме генератора импульсов КЛЛ это транзисторы, диоды и динистор.

Динистор – это полупроводниковый прибор, который имеет большое сопротивление в обоих направлениях до тех пор, пока напряжение на его выводах не превысит величину порогового значения.

Проверить исправность динистора в домашних условиях можно, заменив таким же или аналогом, имеющим одинаковое напряжение открытия. Косвенно неисправность элемента определяется мультиметром, если измеренное сопротивление детали хотя бы в одном направлении не равно бесконечности.

Биполярные транзисторы также проверяются мультиметром. Для этого поочередно измеряется сопротивление между базой и коллектором, базой и эмиттером в обоих направлениях. В одном направлении транзистор «открыт» и сопротивление выводов относительно базы порядка сотни Ом. Во всех остальных комбинациях подключения щупов мультиметра оно равно бесконечности. Между коллектором и эмиттером оно равно бесконечности всегда.

Если полупроводниковые элементы исправны, проверяется исправность оставшихся деталей – конденсаторов и резисторов .

Оцените качество статьи. Нам важно ваше мнение:

Источники: http://www.mastervintik.ru/kak-svoimi-rukami-sdelat-lyuminescentnyj-svetilnik/, http://olimp23.com/poleznye-sovety/remont-svoimi-rukami-svetilnika-s-lyuminescentnoj-lampoj, http://electric-tolk.ru/remont-lyuminescentnyx-lamp/

electricremont.ru

Как сделать люминесцентный светильник своими руками?

Изготовить люминесцентный светильник своими руками в часы досуга сможет практически любой мастер, имеющий представление об основах электротехники. Лампы выпускаются с различным спектром, что позволяет установить освещение наиболее комфортного типа.

В том случае, если заводской светильник не подходит для вашего аквариума, то не стоит спешить заказывать его у мастера, можно собрать его своими руками.

Светильник для аквариума своими руками

Чтобы обеспечивать запуск и дальнейшую работу для люминесцентных ламп, требуется громоздкая, но несложная система электроники. Можно использовать в работе и бездроссельную схему, места она занимает значительно меньше, но по отзывам о ней не слишком надежна.

Получившийся в итоге осветительный прибор должен иметь такие размеры, чтобы закрыть всю верхнюю часть аквариума. Это будет способствовать меньшему испарению из него воды, также в прикрытый аквариум попадет гораздо меньше мусора. Выпрыгнуть на пол обитателям будет затруднительно.

Схема подключения люминесцентного светильника.

Освещение такого прибора не будет неприятно бить в глаза, оставаясь локально над аквариумом. Для тех же целей можно использовать обыкновенную лампу, ввернутую в отражатель, но такая конструкция может испортить интерьер. Для изготовления светильника специально под аквариум понадобятся:

  • люминесцентные лампы;
  • оргстекло;
  • герметик;
  • клей;
  • провод с таймером и вилкой;
  • изоляционная лента;
  • пластик для каркаса.

Пластик, по сравнению с металлом или деревом, обладает целым рядом преимуществ. Он не подвержен коррозии и не разбухнет от влаги, не сгниет со временем, а его электробезопасность не вызывает сомнений. Обрабатывать, а затем очищать этот материал достаточно легко.

Советы по изготовлению

Конструкция светильника может быть продумана самостоятельно, а можно взять за образец ранее кем-то придуманные вещи. Не очень удобна в обиходе монолитная конструкция, снимающаяся целиком. Удобнее сделать каркас со съемными верхними крышками.

Рамку по периметру надежнее изготовить двухслойной, сделав внутреннюю рамку несущим элементом и установив на него еще одну, верхнюю, декоративную. Наружный слой должен быть шире внутреннего, так как в него будет вставлена верхняя крышка, а снизу он будет прикрывать ребра жесткости, доставая до воды.

Электрика должна быть надежно изолирована от воды и скапливающегося конденсата. Это спасет хозяев не только от частых ударов током, но и от починок системы. На концы каждой лампы должны быть надеты герметичные наконечники, спасающие их поверхность от соприкосновения с влагой. Делаются они из подручных средств, таких как манжеты или пыльники от старого автомобиля. При этом нужно следить за тем, чтобы резина сохраняла свои свойства, не растрескивалась, и периодически менять их.

К каркасу в нижней части монтируется на клей соответствующего размера прямоугольник из оргстекла, а сверху устанавливается пластиковая крышка с люминесцентными лампами и пусковым устройством, закрепленном на ней. Эта крышка должна легко подниматься для ремонта и техобслуживания светильника.

Если пластик у крышки черный, с внутренней стороны его оклеивают белой или светоотражающей пленкой, с белой поверхностью никаких манипуляций не требуется.

Край корпуса даже при очень тщательной подгонке скорее всего будет выступать за край аквариума хотя бы на 1-2 мм. Эти места требуется герметизировать, так как там будет скапливаться много конденсата, который потребуется вытирать, чтобы он не стекал вниз. На края аквариума для этого достаточно нанести слой силиконового герметика, предварительно обезжирив стекло.

dekormyhome.ru

Люминесцентный светильник своими руками: советы по изготовлению

Изготовить люминесцентный светильник своими руками в часы досуга сможет практически любой мастер, имеющий представление об основах электротехники. Лампы выпускаются с различным спектром, что позволяет установить освещение наиболее комфортного типа.

В том случае, если заводской светильник не подходит для вашего аквариума, то не стоит спешить заказывать его у мастера, можно собрать его своими руками.

Светильник для аквариума своими руками

Чтобы обеспечивать запуск и дальнейшую работу для люминесцентных ламп, требуется громоздкая, но несложная система электроники. Можно использовать в работе и бездроссельную схему, места она занимает значительно меньше, но по отзывам о ней не слишком надежна.

Получившийся в итоге осветительный прибор должен иметь такие размеры, чтобы закрыть всю верхнюю часть аквариума. Это будет способствовать меньшему испарению из него воды, также в прикрытый аквариум попадет гораздо меньше мусора. Выпрыгнуть на пол обитателям будет затруднительно.

Схема подключения люминесцентного светильника.

Освещение такого прибора не будет неприятно бить в глаза, оставаясь локально над аквариумом. Для тех же целей можно использовать обыкновенную лампу, ввернутую в отражатель, но такая конструкция может испортить интерьер. Для изготовления светильника специально под аквариум понадобятся:

  • люминесцентные лампы;
  • оргстекло;
  • герметик;
  • клей;
  • провод с таймером и вилкой;
  • изоляционная лента;
  • пластик для каркаса.

Пластик, по сравнению с металлом или деревом, обладает целым рядом преимуществ. Он не подвержен коррозии и не разбухнет от влаги, не сгниет со временем, а его электробезопасность не вызывает сомнений. Обрабатывать, а затем очищать этот материал достаточно легко.

Вернуться к оглавлению

Советы по изготовлению

Конструкция светильника может быть продумана самостоятельно, а можно взять за образец ранее кем-то придуманные вещи. Не очень удобна в обиходе монолитная конструкция, снимающаяся целиком. Удобнее сделать каркас со съемными верхними крышками.

Рамку по периметру надежнее изготовить двухслойной, сделав внутреннюю рамку несущим элементом и установив на него еще одну, верхнюю, декоративную. Наружный слой должен быть шире внутреннего, так как в него будет вставлена верхняя крышка, а снизу он будет прикрывать ребра жесткости, доставая до воды.

Электрика должна быть надежно изолирована от воды и скапливающегося конденсата. Это спасет хозяев не только от частых ударов током, но и от починок системы. На концы каждой лампы должны быть надеты герметичные наконечники, спасающие их поверхность от соприкосновения с влагой. Делаются они из подручных средств, таких как манжеты или пыльники от старого автомобиля. При этом нужно следить за тем, чтобы резина сохраняла свои свойства, не растрескивалась, и периодически менять их.

К каркасу в нижней части монтируется на клей соответствующего размера прямоугольник из оргстекла, а сверху устанавливается пластиковая крышка с люминесцентными лампами и пусковым устройством, закрепленном на ней. Эта крышка должна легко подниматься для ремонта и техобслуживания светильника.

Если пластик у крышки черный, с внутренней стороны его оклеивают белой или светоотражающей пленкой, с белой поверхностью никаких манипуляций не требуется.

Край корпуса даже при очень тщательной подгонке скорее всего будет выступать за край аквариума хотя бы на 1-2 мм. Эти места требуется герметизировать, так как там будет скапливаться много конденсата, который потребуется вытирать, чтобы он не стекал вниз. На края аквариума для этого достаточно нанести слой силиконового герметика, предварительно обезжирив стекло.

moyagostinaya.ru

Как своими руками сделать люминесцентный светильник?

В этой небольшой статье пойдет речь о том, как своими руками сделать люминесцентный светильник на основе ЭПРА для подсобных и технических помещений, которые не требуют от светильника внешней красоты и изысканного дизайна. Светильник будет предназначаться для трубчатых люминесцентных ламп с цоколем G13, длиной 1200 мм. Эти лампы имеют низкую цену и способны осветить большую площадь.


Для изготовления светильника необходимо:

  1. Корпус. Его можно изготовить из подручного материала. По сути, корпус – это просто деталь прямоугольной формы, из материала не поддерживающего горение (металл, текстолит, электротехническая пластмасса и т.п.). Можно использовать старый корпус от отслужившего свой срок «древнего» светильника.
  2. ЭПРА – электронный пускорегулирующий аппарат. Его еще называют «электронный дроссель». По сравнению с обычным дросселем, ЭПРА имеет ряд преимуществ при той же цене: мгновенный старт ламп, отсутствие мерцания ламп, малая зависимость яркости ламп от перепадов напряжения питания. В данной статье рассказывается о светильнике на основе ЭПРА 2×36 Вт.
  3. Патроны G13 из расчета два патрона на одну лампу.
  4. Моножильные медные провода сечением 0,2-0,5 кв.мм. Можно использовать и многопроволочные (гибкие), залудив концы.
  5. Подходящие винтики, гаечки для крепления всех деталей на корпусе.

Процесс изготовления светильника сводится к следующим операциям по креплению и подключению.

  1. Крепление патронов на необходимом расстоянии друг от друга, в зависимости от длины лампы и желаемого расстояния между лампами.
  2. Крепления ЭПРА. Так как ЭПРА при работе нагревается, то располагать его рекомендуется так, чтобы ЭПРА получал минимум дополнительного нагрева от работающей лампы. Зона минимального нагрева лампы находится ближе к ее центру.
  3. Подключение патронов к ЭПРА с помощью заранее заготовленных проводов нужной длины и согласно схеме подключения, которая обычно нарисована на корпусе ЭПРА. В патроны провода просто вставляются и удерживаются внутри пластинчатой пружиной. По этой причине, лучше использовать моножильные провода, так как многопроволочные провода (без предварительного облуживания) воткнуть практически невозможно.
  4. Крепление светильника к потолку или стене. Подключение светильника к сети питания 220 В.

Не смотря на то, что наличие защитного стекла для ламп низкого давления не является обязательным, лампы желательно прикрыть подходящим прозрачным материалом, во избежание случайного повреждения стеклянной колбы лампы. Фотографии изготовленного светильника и рисунок со схемой подключения прилагаются.
Для надежности, корпус светильника (слева, справа и между патронов) был усилен металлическими уголками.
Патрон G13. Вариант для винтового крепления к боковой поверхности.

Патрон G13. Вариант для бокового крепления с помощью защелок.

Патрон G13. Вариант для нижнего крепления с помощью защелок.

Подключение ЭПРА. Поясняющий рисунок.

ЭПРА на светильнике. ЭПРА расположен между лампами, ближе к их центру (в зоне минимального нагрева).

 Источник: zakatayrukava.ru




П О П У Л Я Р Н О Е:

  • Как сделать дефлектор для дымохода?
  • С помощью дефлектора на дымовой трубе можно не только увеличить тягу (для печей), но и избавиться от задувания пламени ветром (для газовых котлов).

    А если у Вас из печи идёт дым в помещение, значит, что-то не было учтено при её проектировании или кладке… можно увеличить тягу дымовой трубы с помощью ДЕФЛЕКТОРА.

    Подробнее…

  • Как и где недорого заказать печатные платы?
  • Печатная плата — необходимый элемент в любой радиотехнике, от сотового телефона до телевизора. На ней установлены микросхемы, транзисторы, резисторы, конденсаторы и т.д. Все элементы соединяются между собой дорожками согласно принципиальной схеме.

    Раньше схемы телевизоров и радиоприёмников собирались навесным монтажом и печатных плат там не было. Сейчас даже небольшое устройство удобнее спаять, затем настраивать и ремонтировать на печатной плате.

    Подробнее…

  • Способ подключения трёхфазного двигателя к однофазной цепи
  • Трехфазные асинхронные электродви­гатели с короткозамкнутым ротором обыч­но подключают к однофазной сети по схе­ме, показанной на рис. 1. Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:



Популярность: 6 430 просм.

www.mastervintik.ru

Светильник для дачи своими руками из люминесцентной лампы (фото и схема) | Своими руками

Реклама

Желание сэкономить навело Владислава Борзова из г. Иваново на мысль сделать недорогой, но эффективный светильник для дачи. Главные критерии — надёжность, высокая светоотдача и простота обслуживания.


Читайте также:  Диммер для светодиодных ламп своими руками – схемы и устройство


Дачный светильник своими руками

Для освещения дачных помещений и построек требуется много светильников с различными характеристиками, в том числе и уличного назначения. Но, к сожалению, такие приборы недешевы. Поразмыслив и изучив техническую литературу, я решил сделать светильник на основе люминесцентной лампы с дроссельно-стартёрной схемой зажигания.

Для изготовления светильника помимо люминесцентной лампы мне понадобились ламподержатели и кронштейны крепления к ним, балластный дроссель, стартёр, клеммная колодка, неполярный конденсатор, провод ПВ-1, фанера для основания лампы и саморезы (фото 1).

Самые распространённые схемы включения люминесцентных ламп приведены на рис. 1 и 2. Работает устройство так. При включении всё напряжение сети прикладывается к стартёру, в котором возникает разряд, вызывающий замыкание биметаллических контактов. Ток резко возрастает и при этом ограничивается только внутренним сопротивлением дросселя — в результате рабочий ток в лампе моментально разогревает её электроды.

Одновременно с этим остывают биметаллические контакты стартера, цепь размыкается. В момент разрыва цепи дроссель благодаря самоиндукции создаёт высоковольтный импульс (до 1 кВ), который приводит к разряду в газовой среде лампы и её зажиганию. Напряжение на лампе составляет половину сетевого и недостаточно для повторного замыкания электродов стартёра.

Конденсатор, который включен параллельно входу схемы для повышения коэффициента мощности лампы, является компенсирующим конденсатором для увеличения cos ф.

Собирая светильник, я сначала сделал фанерное основание (фото 2). После покраски и просушки основания я прикрутил к нему кронштейны, балласт, клеммную колодку и конденсатор (фото 3). Вставив ламподержатели в кронштейны, смонтировал схему светильника. Соединительные провода закрепил строительным степлером через изоляционные кембрики. Корпус балласта соединил с заземляющей клеммой колодки, закрепил компенсирующий конденсатор. Установив стартёр (фото 4), подключил питание лампы к сети — и лампа загорелась! Первую собранную самостоятельно лампу я приспособил в сарае с дровами (фото 5). А светильники стал делать не только с одной, но и с двумя лампами (фото 6).

В заключение ещё раз остановлюсь на причинах, по которым я решил делать светильники по дроссельно-стартёрной схеме. Первая — простота конструкции. Вторая — надёжность и доступность элементов. Третья — невысокая цена деталей.


Ссылка по теме: LED лампа вместо энергосберегающей


Лампа для дачи своими руками – схема и фото

©Владислав Борзов, г. Иваново

Реклама

Ниже другие записи по теме «Как сделать своими руками — домохозяину!»

  • Светильник из керамической плитки своими руками (фото+схема) Ночник своими руками из керамической…
  • Светильник из перегоревшей светодиодной лампы своими руками Экономичный светильник из энергосберегающей лампы…
  • Ночник из светодиодов своими руками Как сделать ночной светильник своими…
  • Светильник с подставкой в гараж своими руками Удобная подсветка своими руками за…
  • Светильник для аквариума своими руками (+ фото) Светильник поплавок своими руками Для аквариума…
  • Светильник-аквариум своими руками Аквариум с подсветкой из старой…
  • Необычные абажуры своими руками Светильник с заплаткойНашла по дороге…

    Подпишитесь на обновления в наших группах.

    Будем друзьями!


  • kak-svoimi-rukami.com

    Светодиодный светильник своими руками из люминесцентного

    Технический прогресс двигается вперед с огромной скоростью. Источники света становятся все экономичней и миниатюрнее. Промежуточным звеном между светодиодными лампами и накаливания стали люминесцентные лампочки. Энергосберегайки были достаточно экономичны и долговечны, но зажигались не сразу и требовали времени на прогрев.

    У меня на даче в прихожей стоял тонкий плоский люминсцентный светильник толщиной 3 см. Зажигался он очень тускло, уже успеешь раздеться, а он только начинает разгораться, в общем потемки одни. Так как потолок был низкий и отделан потолочной плиткой, толстый ставить было нельзя, головой его быстро снесут. Выбрасывать тоже жалко, выглядит симпатично.

    И вот появились в продаже диодные лампы (лет 8 назад), но толщина в 30мм не позволяла за сунуть светодиодку. Поэтому она была разобрана и начинка интегрирована в новое тело.

    Содержание

    • 1. Характеристики донора
    • 2. Разборка донора
    • 3. Как сделать светодиодный светильник своими руками?
    • 4. Проверяем нагрев
    • 5. Результат модернизации
    • 6. Ремонт светодиодных светильников своими руками

    Характеристики донора

    5 месяцев назад ради светодиодных модулей и драйверов в местном магазине были куплены светодиодки ASD на 11W за 103р. штука. Реальная мощность у них оказалась всего 8,5W. При этом они имели ряд значительных недостатков:

    1. корпус жутко вонял пластиком при нагреве;
    2. слишком маленький радиатор внутри;
    3. светодиоды без матовой колбы грелись до 95°, а с ней еще больше;
    4. в корпусе не было отверстий для вентиляции.

    Начинка была хорошая за невысокую цену, но на радиаторе и пластике сильно сэкономили. Часть были разобраны на комплектующие, часть модернизированы и поставлены в кладовку и на лестничную площадку. Еще хочу поставить их в подъезде после того, как поставлю систему видеонаблюдения. А то шпана все таки утащила одну кукурузу, которая освещала домофон.

    Разборка донора

    Сковорода с источником света

    Повторим вышеуказанный процесс модернизации с обычным круглым матовым светильником. Многие из читателей вообще никак не разбираются в светодиодах и не знают принцип работы. А паяльник в руках когда-то держали и очень хочется избавиться от энергосберегаек.

    Сделать светодиодный светильник своими руками очень просто. Не надо заморачиваться с поиском пластинки со светодиодами и подбором драйвера к нему. Просто купите диодную лампу на 220В, там уже все есть, продаются везде.

    Сперва демонтируем колбу, она бывает из пластика и стекла. Стекло у меня не получалось снять, вклеено сильно и всегда трескалось. Пластик обычно прочный поликарбонат, ломать сложно. Чтобы определить материал, попробуйте поцарапать, стекло не царапается.

    Затем достаём модуль с 20 светодиодами SMD 5730 и драйвер с питанием от сети 220V. Белую термопасту обязательно сохраняем, вытирать не надо, она будет использована дальше.

    Как сделать светодиодный светильник своими руками?

    Перед установкой модуля в корпус светильника, необходимо убрать слой краски, для непосредственного контакта с металлом. Обводим пластинку из алюминия и шкурим этот квадрат.

    Сверлим 2 отверстия для крепления пластины, подбираем пару болтов с гайками.

    Перепаиваем провода питания, переносим с задней части на переднюю, чтобы они не мешали плотно прижимать.

    Плату драйвера изолируем в целях предотвращения замыканий и соблюдения техники безопасности, ведь на ней 220 Вольт. Защитимся от поражений электрическим током при непосредственном прикосновении, и чтобы на корпусе не было фазы, если корпус металлический.

    Смазываем дополнительно термопастой. У меня контакт с зашкуренным местом получился плохой, железо не очень толстое и деформировалось. Особенно когда кернил и сверлил. Пятно контакта проверяется по отпечатку пасты, чем больше, тем лучше. У меня получился контакт примерно на 30%, может и этого будет достаточно. Оказалось супруга во время приборки маленький пакетик с белым пластилином (термопаста) выбросила и мазать оказалось нечем. может хватит того, что осталось при разборке.

    Проверяем нагрев

    ..

    Светодиодный накладной светильник включаем на 30 минут в открытом виде без крышки. Желательно чтобы нагрев не превышал 80°, в светодиодной лампе для дома модуль грелся до 95°. Так как изделие бюджетное, то качественные леды они туда точно не поставили, которые могут длительно работать при таком нагреве.

    Если даже будет выше 80°, то это не так страшно, ведь он стоит в кладовке, работаю максимум по 30 минут в день. Таким образом он проработает не 100, а всего 30-50 лет, что тоже очень не плохо.

    Конечно, хватило бы и штатного радиатора лампочки, который изначально стоит в ней в абсолютно замкнутых условиях без циркуляции воздуха. На открытом воздухе он охлаждался бы гораздо лучше, и вполне мог обеспечить приемлемую температуру около 80-85°.

    Алюминиевый радиатор можно было одеть на керамический патрон с цоколем E27. Можно расправить из цилиндрической формы в плоскую. Но при разгибании алюминий не выдерживает деформации и начинает ломаться, соответственно теплопроводность в таком узком месте становится еще хуже.

    Замеры показали в среднем 79,5°, это хороший показатель. Для объективности данных провел еще 10 замеров через различные промежутки времени. Всё в норме.

    Результат модернизации

    После сборки корпуса изделие получает законченный вид и готово к настенному монтажу, накладным образом.

    Ремонт светодиодных светильников своими руками

    Чтобы вам было проще разобраться в конструкции светодиодного светильника, считайте, что он конструктивно аналогичен диодной лампе. Как правило, имеет те же недостатки:

    1. перегрев LED;
    2. плохой контакт пластины с диодами и радиатора;
    3. плохая сборка;
    4. блок питания с плохой стабилизацией тока;
    5. слишком маленькая система охлаждения;
    6. колба сделана из матового пластика с низкой светопропускаемостью.

    Чтобы определить неисправный элемент своими руками, вам потребуется замерять напряжение на проводах, идущих к диодному модулю:

    1. если напряжение есть, значит неисправен один из диодов в последовательной цепи;
    2. напряжения нет, значит проблема в драйвере, источнике тока.

    Если есть опыт то можно перепаять самостоятельно. Если опыта нет, то можно обратится к соседу или мастеру.

    led-obzor.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован.