Как найти фазу мультиметром: Как легко и быстро определить фазу и ноль мультиметром, если нет индикаторной отвертки или она сломалась | Мастерская Самоделок

Содержание

Как легко и быстро определить фазу и ноль мультиметром, если нет индикаторной отвертки или она сломалась | Мастерская Самоделок

Часто при ремонте проводки возникает необходимость найти фазу и ноль в розетке. Сделать это достаточно просто при помощи индикаторной отвертки, но бывают такие случаи, когда ее просто нет или же сломалась, а определить где фаза, а где ноль нужно прямо сейчас. Не все знают, что сделать это можно и без индикаторной отвертки.

Надо определить, где фаза, а где ноль.

Надо определить, где фаза, а где ноль.

В данной статье я расскажу, как легко и быстро определить фазу и ноль мультиметром. Модель мультиметра здесь роли не играет, подойдет любой, у которого есть функция измерения напряжения.

Будем определять фазу и ноль мультиметром.

Будем определять фазу и ноль мультиметром.

Первым делом необходимо переключить мультиметр в режим измерения переменного напряжения и выставить предел до 600 вольт. На моем мультиметре пределы выставляются автоматически, поэтому я просто выбираю режим измерения переменного напряжения.

Выставляю режим измерения переменного напряжения.

Выставляю режим измерения переменного напряжения.

Важно не перепутать режим измерения напряжения V с режимом измерения тока A, поэтому внимательно смотрим на выбранную надпись сверху.

Далее минусовым щупом мультиметра касаемся пальца руки.

Держим палец на минусовом щупе.

Держим палец на минусовом щупе.

В таком положении, держа минусовой щуп на пальце, вставляем плюсовой щуп в один из полюсов розетки.

Напряжение на приборе почти 5 вольт.

Напряжение на приборе почти 5 вольт.

Если значение напряжения на мультиметре колеблется в районе 5-6 вольт, это значит, что щуп находится в нулевом полюсе розетки, простыми словами, на нуле.

Затем вставляем щуп в другой полюс и смотрим на показания мультиметра.

Напряжение на приборе 100 вольт.

Напряжение на приборе 100 вольт.

Если напряжение на мультиметре от 50 и вплоть до 200 вольт, это значит, что щуп находится в фазном полюсе розетки, то есть в фазе.

Вот так легко и быстро можно найти фазу и ноль при помощи мультиметра, если вдруг сломалась индикаторная отвертка или ее просто нет. Также не стоит бояться, что при поиске фазы таким способом минусовой щуп ударит током, этого не произойдет из-за слишком высокого сопротивления самого прибора.

Кому понравилась статья, ставьте лайки, пишите комментарии и подписывайтесь на канал.

возможные способы, особенности использования каждого из них

Проведение простейших электромонтажных работ, связанных с обслуживанием домашней электросети, требует обязательного понимания, как определить фазу и ноль. Особенностью некоторых приборов является чёткое соблюдение месторасположения проводов питания, нарушение которого приведёт к некорректной работе или поломке. Провести такую проверку довольно просто при наличии определённых навыков и сравнительно недорогих инструментов или даже без них. Существует несколько способов и далее разбираемся с каждым из них.

Определение фазы в розетке индикаторной отвёрткойИсточник rudesign24.ru

Кратко про домашнюю электросеть

Как правило, к частному многоэтажному жилью подводится однофазная электросеть на 220В и 50Гц. К общим распределительным щиткам многоэтажек проложены мощные трёхфазные линии, перераспределённые затем по одной фазе и нулю на каждого потребителя (квартиру).

При возведении и обустройстве нового жилья практикуют также прокладку заземлительного контура, т.к. он необходим для безопасной эксплуатации большинства мощных бытовых приборов.

Соответственно подводка к розетке либо лампочке, как правило, содержит обязательно два проводка – фазу и ноль, и может дополняться жилой заземления.

Обеспечение частных домов осуществляется по такому же принципу, но довольно часто практикуется трёхфазный подвод с напряжением в 380В прямо к жилью. Более того, некоторые элементы потребления, например котлы отопления либо станки из домашней мастерской, требуется именно это мощное напряжение.

Однако даже в этом случае пользовательскую сеть перераспределяют, совершая равномерное разделение нагрузки на однофазные линии. Стандартная домашняя розетка питается исключительно от двух или трёх (с заземлением) жил.

Домашняя электрификация. Распределительный щитокИсточник elektromontazh.ru

Применение заземляющего провода в бытовой электросети однозначно рекомендуется всеми специалистами, особенно для частных построек.

Нахождение фазы и нуля без инструментария

Единственный вариант, как определить фазу без приборов, считается не достаточно точным, т. к. это маркирование проводки различными цветами, не всегда соответствующее стандартам.

В идеале вся кабельная продукция обязана соответствовать требованиям международного стандарта IEC 60446-2004 г., разработанного и для производителей и для специалистов, осуществляющих монтажные работы с электропроводкой.

В однофазной сети определяется все без труда. Нулевая рабочая жила изолируется, как правило, синим или голубым материалом. Расцветка защитного заземления представлена обычно в жёлто-зелёном варианте с полосками. Выделение фазы производится любым (отличным от перечисленных) цветом, например, это может быть коричневый.

Может показаться, что описанный способ является достаточно простым и универсальным. Однако он условен, т.к. описанное «окрашивание» применяется не всегда. Особенно это касается зданий старой советской постройки, изоляция проводов в которых осуществлялась однотипно – в белом цвете.

Важно! При работе с уже проложенной кем-то проводкой с разноцветной изоляцией по стандартам, нельзя быть до конца уверенным, что монтаж специалистами был проведён в строгом соответствии правилам. Не стоит исключать возможных ошибок, допущенных предыдущими «мастерами», как правило, приглашёнными со стороны по принципу «чтоб дешевле».
Стандартная цветовая маркировка электропроводкиИсточник profazu.ru

Нередко встречается кабельная продукция, провода в которой абсолютно не соответствуют общепринятой расцветке. Без наличия схемы прокладки, содержащей описание, такие цветовые разметки не смогут ничем помочь.

Следовательно, существующую проблему, как определить где фаза, а где ноль, нужно решать по-другому, используя необходимые приборы.

Поиск фазы и нуля различными приборами

Альтернативных способов разобраться с проводами без специальных приборов не существует. Описанные где-либо варианты являются, как правило, не надёжными, а потому не рекомендуются, т.к. могут привести к нежелательным последствиям.

Потому следует рассмотреть способы, как проверить фазу и ноль, гарантированно надёжно и без опасности для здоровья и жизни.

Проверка проводов розеткиИсточник sense-life.com

Использование индикаторной отвёртки

Простейшим методом, подходящим практически каждому обывателю, является применение индикаторной отвёртки, называемой по-простому «контролькой».

Внешний вид такой отвёртки слабо отличается от самой обыкновенной, исключением будет только внутренняя начинка. Однако не рекомендуется пользоваться её жалом, как стандартным, вкручивая или выкручивая винты. Как правило, это приводит к сокращению сроков эксплуатации устройства.

Как определить фазу и ноль простейшей индикаторной отвёрткой:

  • следует жало отвёртки соприкоснуть с контактом;
  • затем к металлическому оголовью ручки прикоснуться пальцем;
  • загорание светодиода внутри ручки говорит о том, что этот контакт является фазным, а отсутствие света – это ноль;

Описанным методом можно определить фазовые контакты розетки, выключателя либо другого электроустройства.

Работа с «индикатором» предполагает соблюдения мер безопасности:

  • в процессе проверки при соприкосновении прибора с контактами запрещены касания руками к нижним частям «контрольки»;
  • перед началом проведения проверки необходимо очистить отвёртку, чтобы исключить вероятность случайного пробоя изоляции;

Правила использования неоновой индикаторной отвёртки (определения фазы, нуля, разрыва провода) подробно показаны в этом видео:


Цвета проводов в электрике: как маркируются и как определить назначение провода без маркировки
  • при работе по определению наличия или отсутствия рабочего напряжения в электросети, с целью обеспечения личной безопасности, следует предварительно провести проверку работоспособности индикаторной отвёртки на приборах гарантированно находящихся под напряжением.
Информация! Не нужно путать индикаторный вариант отвёртки с прибором, используемым для прозвонки. Они схожи, но конструкция последнего предполагает использование батареек. И применение такого устройства не предполагает касания пальца к оголовью при проверке контактов, т.к. это приведёт к свечению, независимо от вида провода.

Использование мультиметра или тестера

Чтобы разобраться, как найти фазу и ноль мультиметром, следует для начала правильно выбрать нужный режим прибора – определение показателей переменного напряжения. Как правило, это сектор, находящийся справа от кнопки выключения и имеющий название «ACV». Там следует выбрать показатель превышающий напряжение сети (220В). Обычно это деление со значением «750», но может быть и другая цифра. Главное, чтоб она была выше измеряемого.

Изображение рабочей панели стандартного мультиметра с обозначением секторовИсточник lifehacker. ru
Как найти проводку в стене: с профессиональным оборудованием и подручными средствами

Замеры можно произвести разными методами:

  1. Один из щупов следует соприкоснуть с контактом розетки или выключателя, а второй зажать между двух пальцев. При отражении на шкале тестера незначительных показаний (ниже 10В) контакт будет нулевым. Подтверждается это прикосновением кончиком щупа ко второму контакту. Значения должны вырасти до нескольких десятков (или свыше сотни) Вольт. Следовательно, этот контакт будет фазным.
  2. Для тех, кто боится соприкасаться лично со щупом, существует другой вариант. Кончик первого стержня по-прежнему вставляется в одно из отверстий розетки, а окончанием другого необходимо дотронуться до стены, на которой располагается эта розетка. Результатом станут показатели идентичные, описанным в предыдущем методе.
  3. Ещё одним способом является соприкосновение одного из щупов с гарантированно заземлённой поверхностью (корпусом электрощитка либо каким-либо оборудованием), а второго – с измеряемым контактом. Фазным будет тот провод, касание к которому изменит показания напряжения на мультиметре до значения 220В.

Как правильно и безопасно пользоваться мультиметром, показано в этом видео:


Как пользоваться мультиметром: понятно для каждого

Работа с тестером также предполагает соблюдения определённых правил по обеспечению безопасности:

  • использование первого метода измерения (с зажимом щупа пальцами) требует обязательной предварительной проверки правильности включения прибора (режимы «~V» или «ACV»), т.к. ошибка может привести к удару электрическим током;
  • некоторыми «опытными» электриками определение фазы осуществляется методом так называемой «контрольной лампочки», который является запрещённым правилами и категорически не рекомендуется для использования, особенно рядовыми неискушёнными пользователями.

При использовании тестера часто допускается ряд ошибок, которые могут привести к поломке. Так, попытка измерения переменного высоковольтного напряжения гарантированно приведёт к выходу прибора из строя. Также следует внимательно следить за правильностью выставленных на устройстве диапазонов. Желание определить показатели переменного напряжения, оставив по невнимательности постоянную шкалу, повлечёт гарантированную поломку.

Вариант цифрового универсального мультиметраИсточник aks.ua
Монтаж проводки в доме – пример схем, подбор мощности, расценки на работы

Коротко о главном

Вопрос о том, как определить, где фаза, а где ноль в проводах, достаточно распространён и важен для многих обывателей, ведь не во всех случаях требуется вызов электрика. Для определения потребуются минимальные навыки использования простых измерительных приборов, знания основ электромонтажных работ и выполнение элементарных правил безопасности. Фактически все сводится к знанию цветомаркировки проводки в электрокабелях, приобретению и обучению использования индикаторной отвёртки или мультиметра (тестера).

Как найти фазу и ноль неоновой лампой. Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов? Конструкция индикаторной отвертки

Монтаж внутренней электропроводки, самостоятельная установка выключателей и розеток часто бывает сопряжена с необходимостью определения фазного и нулевого проводов. Процесс этот не сложен в том случае, если вы имеете представление о возможных способах и правилах безопасной работы с электричеством. Решению этих вопросов мы посвятили сегодняшнюю статью.

Предварительно следует вспомнить немного теории. Всем известно, что для работы домашних электроприборов необходима самая малость – наличие в электросети напряжения 220 вольт. Для подвода электричества непосредственно к применяются два (в современных домах – три) провода. Первый из них является фазным, второй – нулевым и третий – заземление, предохраняющее пользователя от удара током в случае нарушения работы изоляции прибора. Для чего рядовому жителю многоэтажки или загородного дома необходимо уметь определять ноль и фазу?

Эти знания могут понадобиться, например, при самостоятельной замене выключателя, который рекомендуется устанавливать именно на фазный провод. Это дает возможность выполнять ремонт осветительного прибора без отключения электроэнергии во всей квартире. Кроме этого монтаж розетки для подсоединения различных бытовых приборов, особенно тех, работа которых связана с использованием проточной воды, а так же имеющих металлические корпуса. Для их подключения кроме традиционных фазы и нуля требуется задействовать и третий провод – заземление.

Поиск фазы индикатором

В наши дни есть несколько способов определения фазы без привлечения профессионального электрика. Первый из них предполагает применение так называемого пробника, или фазоиндикатора. Он представляет собой неширокую плоскую отвертку с пластиковой рукояткой, в которой заключен световой сигнализатор – полупроводниковая или неоновая лампочка.

Технология определения фазы этим прибором проста. Достаточно лишь прикоснуться жалом отвертки к исследуемому оголенному проводу или погрузить его в одно из штепсельных отверстий розетки.

При наличии напряжения на проводе или в гнезде сигнализатор фазной отвертки отзовется несильным свечением. Но это произойдет лишь при правильном использовании прибора – один из пальцев руки, в которой вы держите приспособление, должен быть прижат к металлическому торцу рукоятки. В этом случае вы замыкаете цепь между проводом и землей, но опасаться этого не стоит, так как напряжение резко понижается отверткой и не принесет пользователю никакого вреда.

Определение фазы тестером

Второй вариант определения фазного провода предполагает использование более продвинутого прибора – тестера или мультиметра. Он позволяет измерять различные электрические величины постоянного или переменного тока. Используя вращающийся переключатель настройте прибор на измерение разности потенциалов переменного тока. Один из щупов прибора плотно зажмите в руке, а вторым прикоснитесь к исследуемому проводу или углубите его в отверстие в розетке. В случае попадания на нулевой провод табло мультиметра покажет набор нулей или небольшое напряжение, не превышающее обычно двух вольт. При контакте с проводником фазы цифры на дисплее прибора будут выше.

Существует и третий вариант, который можно отнести к самым ненадежным. Дело в том, что в настоящее время по правилам монтажа внутридомовых и промышленных электросетей все провода имеют определенную цветовую маркировку в зависимости от их назначения. Так, для подключения к фазе должен использоваться черный или коричневый проводник, к нулю – синий или голубой, а заземляющий проводник окрашивается частично в желтый цвет, а частично в зеленый.

К сожалению, особенности нашей страны и многих безответственных электриков часто приводят к игнорированию установленных правил, что может привести к неприятным последствиям. Не стоит полностью полагаться на профессионализм и мастерство рабочих, занимавшихся монтажом электросетей в вашем доме. Лучше воспользоваться указанными выше способами. Кроме этого до 2011 года маркировка проводов была отличной от ныне существующей. Так, для заземления использовался провод, окрашенный в черный цвет.

Определив фазный провод, и аккуратно отогнув его, переходим к определению нулевого провода и провода заземления. Особенность присоединения их к внутриквартирному щитку не предполагает ввод заземляющего проводника непосредственно в корпус входного устройства. В том случае, если вы имеете доступ к щитку, можете уточнить цвет проводника, проходящего мимо установленных в нем автоматов и определить его окраску.

В том случае, если доступ к щитку не возможен или при желании перестраховаться, можно воспользоваться простейшим приспособлением, которое всегда есть у любого электрика – лампочка с патроном и присоединенными к нему проводами. Присоединив или просто касаясь одним из проводов, отходящих от лампочки к фазному проводу, второй провод по очереди замкните на два оставшихся, предназначенных к определению. При контакте с нулем лампочка должна загореться. Контакт с заземляющим проводом обычно такого эффекта не имеет.

В противовес простейшему приспособлению можно воспользоваться описанным уже мультиметром. Поочередно измерьте разность потенциалов (напряжение) между известным фазным и остальными проводами. Величина пары ноль-фаза должна значительно превышать показатель пары фаза-земля.

Уважаемые читатели, комментируйте статью, задавайте вопросы, подписывайтесь на новые публикации — нам интересно ваше мнение:)

Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке .

Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов — как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.


На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.

Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.

Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.



В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года , который жестко регламентирует цветовую маркировку электрических проводов.

Согласно этому стандарту для квартирной электросети:

Рабочий ноль (нейтраль или ноль) — Синий провод или сине-белый

Защитный ноль (земля или заземление) — желто-зеленый провод

Фаза — Все остальные цвета среди которых — черный, белый, коричневый , красный и т.д.

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет . Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.


Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).


КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:


ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ


Самый простой способ обнаружения фазного провода — это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире — будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост — при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.


Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.


ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ


Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы . Способ неоднозначный, но действенный, требующий особой осторожности.

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста — поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.


Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.


Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения:

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.


После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

— Если лампа не загорится (при наличии или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод — ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

— Если после смены положения лампа ненадолго вспыхнет , при этом сразу сработает или диф. автомат (если они есть), значит оставшийся свободным провод — НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

— Если линия не защищена или дифференциальным автоматом, и свет будет гореть в двух положениях . В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.


Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.

А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях . Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Как известно, электричество, которое поставляется к нам в дом, является трёхфазным. Напряжение между любыми двумя выходами составляет 380 В. В то же время, мы знаем, что используемое в бытовых приборах напряжение, равно 220 В. Как одно преобразуется в другое?

Важную роль здесь играет нулевой провод. Если замерять напряжение между одной из фаз и этим проводом, то оно как раз и будет равно 220 В. В более современных розетках, предусмотрен дополнительно ещё один нулевой выход — это так называемый защитный ноль.

Возникает естественный вопрос о том, какова разница между двумя упомянутыми нулями? Первый из них, «рабочий ноль» (его мы стараемся определить) — это нейтральный контакт на трёхфазной установке генераторной подстанции, подключённый к нейтральному контакту трёхфазной установке в доме или отдельном подъезде.

Он может быть при этом, вообще не заземлён. Основное назначение состоит в создании замкнутой электрической цепи при питании бытовых приборов. Во втором случае, речь идёт именно о . Его обычно называют «защитное заземление».

В связи с достаточно сложной природой переменного тока, есть некоторые типичные взгляды на нулевой провод и на заземление, которые могут не соответствовать реальному положению вещей:

  1. «На нулевом вообще нет напряжения.» Это не так. Он подключён к нулевому разъёму на подстанции и предназначен для создания разности потенциалов на выходе. Иногда он находится под напряжением.
  2. «Если есть заземление, то короткого замыкания точно не будет.» В большинстве случаев, это так. Но при слишком быстром нарастании тока, он может не успеть вовремя уйти через заземление.
  3. «Если в кабеле две жилы одинаковые, а третья отличается, то это наверняка земля.» Так должно быть, но иногда это не так.

Способы определения

Цифровой мультиметр

Определение нуля и фазы путём использования мультиметра. Этот прибор очень полезен для работ с электричеством. Он включает в себя различные возможности. Он может быть и амперметром и вольтметром или омметром.

Также, могут быть, в зависимости от конкретного типа, и другие возможности (например, измерение частоты). Эти приборы могут быть как аналоговыми, так и цифровыми.

Использование индикаторной отвёртки. В этой отвёртке имеется прозрачная ручка. Если вставить её в розетку определённым образом, то при попадании на фазу загорится лампочка.

Есть несколько конструкций таких отвёрток. В самом простом случае, при тестировании нужно прикоснуться к концу ручки. Без этого огонёк не загорится.

При визуальном тестировании, назначение проводов можно определить по их расцветке.

Использование специального фазового . Это небольшой цифровой прибор, который помещается в ладони. Один из проводов нужно держать в руке, другим проверяют фазу.

Пошаговые инструкции

Расскажем более подробно о том, как производить такие работы.

При использовании мультиметра, нужно правильно установить его рабочий диапазон. Он должен составлять 220 В для переменного напряжения.

С его помощью можно решить две задачи:

  1. Определить, где фаза, а где «рабочий ноль» или заземление.
  2. Определить, где, собственно, заземление , а где нулевой выход.

Расскажем сначала о том, как выполнить первую задачу. Перед началом, нужно правильно выставить рабочий диапазон прибора. Сделаем его больше, чем 220 В. Два щупа подключены к гнёздам «COM» и «V».

Берём второй из них и прикасаемся к тестируемому отверстию розетки. Если там фаза, то на мультиметре высветится небольшое напряжение. Если фазы там нет, то будет показано нулевое напряжение.

Во втором случае, рабочее напряжение должно составлять 220В. Один провод вставляем туда, где есть фаза. Другим тестируем остальные. При попадании на заземление, будет показано ровно 220 В, в другом случае, напряжение будет немного меньше.

Использование фазового тестера

Один провод держим аккуратно пальцами, другой используем для тестирования. Если в розетке попадаем на фазу, то цифры на индикаторе будут гораздо больше нуля. При попадании на ноль, на экране также будет показан ноль или незначительная величина напряжения.

Это устройство удобно как общедоступностью на рынке радиоизмерительного оборудования, так и тем, что измерения производятся с достаточно высокой точностью.

Использование индикаторной отвёртки

Она представляет собой на вид обычную отвёртку, но с небольшим отличием. У неё прозрачная ручка с маленькой лампочкой внутри. Это, на первый взгляд, достаточно примитивное устройство, на самом деле очень удобно.

Его достаточно просто вставить в отверстие розетки, прикоснувшись при этом пальцем к противоположному концу отвёртки. Если есть фаза, то лампочка загорится. Если там нулевой провод или заземление, то она гореть не будет. Важно помнить, что категорически запрещено в процессе измерения прикасаться к металлической части отвёртки. Это может привести к удару током.

В некоторых случаях, фазу и нулевой провод можно определить без каких-либо приборов или приспособлений. Это можно сделать, если правильно прочесть маркировку. Это ненадёжный способ, но в некоторых случаях он может оказаться полезным.

При работе в современных домах, правила такой маркировки обычно соблюдаются.

Итак, в чём же они состоят:

  1. Тот провод, где находится фаза , обычно имеет коричневый или чёрный цвет.
  2. Нулевой, принято обозначать проводом, имеющим голубой цвет.
  3. Зелёным или жёлтым цветом обозначается провод, который служит для заземления.

Эти правила могли быть другими в предыдущие периоды времени. Также, в последующем они могут измениться. Поэтому, описанный способ годится только для предварительного тестирования назначения проводов.

Как различить заземление и нулевой провод при отключённой фазе?


Предположим, что ток в сети отсутствует. Есть ли какое-нибудь различие в этом случае между заземлением и нулевым проводом? На первый взгляд может показаться что они очень похожи друг на друга.

На самом деле, их функции всё же различаются. Заземление предназначено для аварийных ситуаций. Через него электрический заряд уходит в землю. Нулевой провод — это часть электрической цепи для питания бытовых электроприборов в доме.

Здесь, ток, в отличие от заземления, присутствует. Как же можно различить их? При отключённой фазе нужно просто измерить ток между этим проводом и точно известным заземлением. Если это нулевой провод, то ток, хотя и небольшой, в этом случае будет. Если же тут заземление, то никакого тока здесь быть не может.

В каких случаях может понадобиться?


При огромном разнообразии существующих электрических приборов, существует разница в том, какое электрическое питание им нужно. В различных случаях, такие вопросы решаются по-разному.

Иногда, для этого используются специальные устройства – переходники. В некоторых случаях, является необходимым просто правильно сделанное подключение к розетке. В частности, при подключении электрической кухонной плиты, есть необходимость при подключении правильно определить, где в розетке фаза, а где «рабочий ноль».

В этом, и в аналогичных случаях, без такой информации обойтись невозможно.

Другая ситуация, где это необходимо — это разного рода ремонтные работы. При их проведении, нужно знать точно, какой провод под напряжением (он должен или быть отключён или надёжно заизолирован), а какой — нет.

При подключении многих бытовых приборов, действительно не важно с какой стороны будет фаза , а вот для выключателя это может иметь значение. Поясним это.«Фаза» должна подаваться на выключатель, а «ноль» пусть будет подключён напрямую к лампам в люстре.

При этом, в процессе замены лампы в люстре, при выключенном выключателе, человека не ударит током даже в том случае, когда он случайно прикоснётся к .

Очень часто при выполнении в квартире, доме, гараже или на даче ремонтных либо монтажных работ, связанных с электричеством, возникает необходимость отыскать ноль и фазу. Это нужно для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже если они не имеют специального технического образования, представляют себе, что для этого есть специальные индикаторы. Мы рассмотрим вкратце этот метод, а также расскажем вам об ещё одном приборе, без которого не обходится ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Понятия ноля и фазы

Перед тем, как определить фазу ноль, хорошо бы вспомнить самую малость физики и разобраться, что это за понятия и зачем их находят в розетке.

Все электросети (и бытовые, и промышленные) подразделяются на два типа – с постоянным и переменным током. Со школы помним, что ток – это передвижение электронов в определённом порядке. При постоянном токе электроны передвигаются в каком-то одном направлении. При переменном токе это направление постоянно меняется.

Нас больше интересует переменная сеть, которая состоит из двух частей:

  • Рабочей фазы (как правило, её называют просто «фазой»). На неё подаётся рабочее напряжение.
  • Пустой фазы, именуемой в электричестве «нулём». Она необходима, чтобы создать замкнутую сеть для подключения и работы электрических приборов, служит также для заземления сети.

Когда мы включаем приборы в однофазную сеть, то особой важности нет, где именно пустая или рабочая фаза. А вот когда монтируем в квартире электрическую проводку и подсоединяем её к общей домовой сети, это знать необходимо.

Разница между нолем и фазой на видео:

Простейшие способы

Существует несколько способов, как найти фазу и ноль. Рассмотрим их вкратце.

По цветовому исполнению жил

Наиболее простым, но в то же время и самым ненадёжным способом, является определение фазы и ноля по цветам изоляционных оболочек проводников. Как правило, фазная жила имеет чёрное, коричневое, серое или белое цветовое исполнение, а ноль делают голубым либо синим. Чтобы вы были в курсе, бывают ещё жилы зелёные или жёлто-зелёные, так обозначаются проводники защитного заземления.

В этом случае никаких приборов не нужно, глянули на цвет провода и определили – фаза это или ноль.

Но почему этот метод самый ненадёжный? А нет никакой гарантии, что во время монтажа электрики соблюдали цветовую маркировку жил и ничего не перепутали.

Цветовая маркировка проводов на следующем видео:

Индикаторной отвёрткой

Более правдивым методом является применение индикаторной отвёртки. Она состоит из не токопроводящего корпуса и встроенных в него резистора с индикатором, который представляет собой обыкновенную неоновую лампочку.

Например, при подключении выключателя главное не перепутать ноль с фазой, так как этот коммутационный аппарат работает только на разрыв фазы. Проверка индикаторной отвёрткой заключается в следующем:

  1. Отключите общий вводной автомат на квартиру.
  2. Зачистите ножом проверяемые жилы от изоляционного слоя на 1 см. Разведите их между собой на безопасное расстояние, чтобы полностью исключить возможность соприкосновения.
  3. Подайте напряжение, включив вводной автомат.
  4. Жалом отвёртки прикоснитесь к оголённым проводникам. Если при этом загорится индикаторное окошко, значит, провод соответствует фазному. Отсутствие свечения говорит о том, что найденный провод – нулевой.
  5. Нужную жилу наметьте маркером либо кусочком изоленты, после чего снова отключите общий автомат и проведите подсоединение коммутационного аппарата.

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за прибор?

Мультиметр (электрики его ещё называют тестером) представляет собой комбинированный прибор для электрических измерений, который объединил в себе множество функций, основные из которых омметр, амперметр, вольтметр.

Эти приборы бывают разными:

  • аналоговыми;
  • цифровыми;
  • переносными лёгкими для каких-то базовых измерений;
  • сложными стационарными с большим количеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и померить на участке цепи ток, напряжение, сопротивление, проверить электрическую цепь на целостность.

Прибор представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные позиции (вокруг него находится восемь секторов). В самом верху (в центре) имеется сектор «OFF», когда переключатель установлен в это положение, значит, прибор выключен. Чтобы выполнять замеры напряжения понадобится установить переключатель в сектора «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

В комплект мультиметра входят ещё два измерительных щупа – чёрный и красный. Чёрный щуп подсоединяется в нижнее гнездо с маркировкой «СОМ», такое подключение является постоянным и используется при проведении любых измерений. Красный щуп в зависимости от замеров вставляется в среднее или верхнее гнездо.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Несколько правил по использованию мультиметра

Перед тем, как определить фазу и ноль мультиметром, ознакомьтесь с несколькими правилами, которые необходимо соблюдать при работе с прибором:

  • Никогда не пользуйтесь мультиметром во влажной среде.
  • Не применяйте неисправные измерительные щупы.
  • В момент проведения замеров не меняйте измерительные пределы и не переставляйте положение переключателя.
  • Не измеряйте параметры, значение которых выше чем верхний измерительный предел прибора.

Как замерять напряжение мультиметром – на следующем видео:

Обратите внимание на важный нюанс в использовании мультиметра. Поворотный переключатель изначально всегда необходимо устанавливать на максимальное положение, чтобы избежать повреждения электронного прибора. А уже в дальнейшем, если показания оказываются ниже, переключатель переставляется на низкие отметки для получения максимально точных замеров.

Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль . Оставшиеся три свободных конца обмоток называются Фазами .

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.


На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого .

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки . Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты , и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик , а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.


Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.


Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя . Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!


Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник


для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Для этого нужно к одному из выводов любой неоновой лампочки , даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.


Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор .

Почему индикатор светится


при прикосновении к нулевому проводу

Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.

Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты , установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.

При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя , телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.

Как найти фазу и ноль с помощью контрольки электрика

Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон . К патрону подсоединены два проводника из многожильного провода длиной около 50 см.

Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.

Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.


Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.


Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста . Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.

Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.

Поиск фазы при наличии нулевого и заземляющего проводников

Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.

Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.

Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.

Поиск фазы и нуля контролькой

Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.

Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.

Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.


В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.

Поиск фазы и ноля вольтметром или мультиметром

Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.

Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.

Поиск фазы и ноля с помощью картошки

Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.

Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.

Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.

Рекомендуем также

Как измерить частоту с помощью мультиметра? два пути

Измерение частоты цифровым мультиметром

Частота — это количество циклов, выполненных за одну секунду времени. Существуют различные виды мультиметров, которые могут измерять частоту. Переменный ток и другие электрические сигналы имеют частоту, влияющую на работу устройства. Используя мультиметр, мы можем измерять несколько величин, таких как напряжение, ток, сопротивление, емкость, частота, температура, непрерывность и т. д., а также тестировать электрические и электронные компоненты, такие как резисторы, конденсаторы, диоды, транзисторы, кабели и провода и т. д.

В этой статье мы собираемся изучить, как мультиметр измеряет частоту и какие факторы влияют на его показания.

Принцип работы

Цифровой мультиметр, способный измерять частоту, имеет схему обнаружения пиковых значений. Измеритель измеряет время между двумя последовательными пиками (пиками формы сигнала) с помощью схемы обнаружения пиков. он обнаруживает пик формы входного сигнала и запускает таймер. При обнаружении следующего пика сигнала таймер останавливается.Измеритель вычисляет частоту, используя время между двумя гребнями сигнала.

Похожие сообщения:

Измерение частоты

Любой цифровой мультиметр, способный измерять частоту, имеет надпись «Гц» в любом месте на циферблате и на портах, куда вставляются датчики. Он также может иметь то же место на циферблате, что и «VAC» или «V~».

Существует два метода измерения частоты мультиметром. Если у вашего мультиметра есть специальное место на циферблате, следуйте этому методу.

Метод 1
  • Включите прибор, переключив кнопку ВКЛ/ВЫКЛ.
  • Поверните циферблат на «Hz», он находится на циферблате вместе с любой другой функцией, такой как «VAC или V~». Нажав кнопку «Shift», вы получите доступ к дополнительной опции и начнете измерение частоты. На дисплее появляется «Гц», подтверждая, что измеритель переключился на измерение частоты.

  • Некоторые мультиметры имеют специальное место для измерения частоты на циферблате, на котором написано «Гц».
  • Сначала вставьте черный щуп в порт «COM».
  • Затем вставьте красный щуп в порт с надписью «Гц».

  • Сначала подключите черный провод, а затем красный провод к точке измерения.
  • Обратите внимание на показания дисплея.
  • Если ваш мультиметр имеет разные диапазоны, уменьшите диапазон, чтобы получить точные показания. Большинство мультиметров имеют кнопку «автоматический диапазон» для выбора правильного диапазона на основе показаний.
  • Когда закончите, отсоедините сначала красный провод, а затем черный провод.
  • Удалите черный и красный провода из портов счетчиков.
  • Выключите мультиметр или поверните циферблат в положение «измерение напряжения», чтобы избежать любого потенциального повреждения в случае быстрого повторного использования.

Похожие сообщения:

Метод 2:

Некоторые мультиметры имеют отдельную кнопку для «Гц». Для таких счетчиков выполните следующую процедуру.

  • Включите прибор, переключив кнопку ВКЛ/ВЫКЛ.
  • Поверните циферблат в положение «VAC или V~».
  • Выберите максимальный диапазон напряжения, если мультиметр не имеет функции автоматического выбора диапазона.

  • Сначала вставьте черный щуп в порт «COM».
  • Затем вставьте красный щуп в порт, на котором написано «V Ω» или «Hz».
  • Сначала подключите черный провод, а затем красный провод к точке измерения. Замена проводов не влияет на показания.
  • Нажмите кнопку «Гц», чтобы переключиться на измерение частоты.
  • Обратите внимание на показания дисплея.
  • Если возможно, уменьшите диапазон, чтобы получить точные показания. Функция автоматического выбора диапазона выбирает правильный диапазон на основе показаний.
  • Когда закончите, отсоедините сначала красный провод, а затем черный провод.
  • Удалите черный и красный провода из портов счетчиков.
  • Выключите мультиметр или поверните циферблат в положение «измерение напряжения», чтобы избежать любого потенциального повреждения в случае быстрого повторного использования.

Похожие сообщения:

Проблемы, возникающие при измерении частоты

Существует множество проблем, которые могут повлиять на показания частоты мультиметра.Мы можем уменьшить некоторые из них, чтобы получить точное значение.

Диапазон измерителя

В техническом описании мультиметра указана самая низкая и самая высокая частота, которую мультиметр может точно измерить. Если входная частота падает ниже диапазона, мультиметр может отображать показания, близкие к фактическим показаниям, но недостаточно точные. То же самое произойдет с более высокой частотой выше диапазона. Измерители могут не соответствовать фактической частоте и отображать более низкие показания или показывать перегрузку «OL».

Поэтому необходимо знать диапазон измерителя и примерную частоту входного сигнала.

Искажение входного сигнала

Если входной сигнал имеет частотные искажения, это может повлиять на показания мультиметра и вызвать погрешность показаний. Показания также могут колебаться. Сигнал можно отфильтровать от шума с помощью фильтра нижних частот.

Похожие сообщения:

Сигнальное излучение

Иногда мультиметр может снимать показания частоты без касания щупами линии.это может произойти из-за неэкранированных линий, которые действуют как антенны для излучения EMI (электромагнитных помех). Счетчик улавливает сигнал, усиливает и измеряет его и отображает показания. Это может быть или не быть точным. Поэтому лучше всего физически подключить щупы к проводу.

Почему мы измеряем частоту?

Измерение частоты важно, потому что цепи и машины предназначены для работы на определенных частотах. Они работают либо на фиксированной частоте, либо на переменной частоте, где от нее зависит выходной сигнал.

Одним из таких примеров является электродвигатель переменного тока, скорость которого прямо пропорциональна частоте сетевого питания. Двигатель или трансформатор, предназначенные для работы на частоте 50 Гц, будут работать на более высокой скорости, если они подключены к сети с частотой 60 Гц. Точно так же двигатель с частотой 60 Гц и трансформатор будут работать медленнее, если они будут работать от сети с частотой 50 Гц. Вот вам интересный вопрос 🙂 Возможна ли работа трансформатора 50Гц на частоте 5Гц или 500Гц?.

Полезно знать: Частоту нельзя измерить с помощью аналогового мультиметра. Для измерения частоты в различных диапазонах, даже до 100 кГц и более, можно использовать только специальные цифровые мультиметры со специальными функциями (например, специальной кнопкой Auto Hz или отдельным разъемом Com).

Похожие сообщения:

ECE 291 — Лабораторная работа 5: ИЗМЕРЕНИЯ ПЕРЕМЕННОГО ТОКА; АМПЛИТУДА И ФАЗА


ЗАДАЧИ

Понимание реактивного сопротивления в электрических цепях и измерения разности амплитуд и фаз двух сигналов с помощью цифрового осциллографа.

ПРЕЛАБ

  1. Рассчитайте ток и напряжение на всех компонентах схемы, показанной ниже, для В с = 1 В, f = 1 кГц, R = 10 кОм, C = 10 нФ и L = 50 мГн.
  2. Каковы разности фаз синусоидального переменного тока? напряжение и ток на резисторе, конденсаторе, катушке индуктивности и на источнике питания, питающем цепь, состоящую из этих трех компонентов, соединенных последовательно (как на рис. 6 ниже)?
Инжир. Цепь RLC серии 6

ЛАБОРАТОРИЯ

Необходимое оборудование со склада: руководство по эксплуатации осциллографа, макетная плата, ведет. Вам также понадобится комплект деталей, который не поставляется на складе.

Соберите цепь, состоящую из катушки индуктивности L, конденсатора C и резистора R, соединенных последовательно, как показано на рис. 6. Источник напряжения V s представляет собой генератор сигналов, подающий синусоидальный сигнал. Выберите C близко к 10 нФ, R близко к 10 кОм и используйте катушку 50 мГн из комплекта деталей.Измерьте значения этих компонентов перед сборкой. Мост для измерения L и C расположен перед прилавком складского помещения.

1.       Установить частоту

Установите частоту генератора примерно на 1 кГц. Конкретное значение частоты не критично, при условии, что вы знаете, что это такое. Точно измерьте. С помощью цифрового вольтметра измерьте напряжения на трех элементах цепи (R, L и C), а также на источнике напряжения (генераторе сигналов). . Обратите внимание, что вы не можете выполнить эти измерения с помощью осциллографа. Вольтметр здесь работает, потому что ни один из его выводов не заземлен. Обратите также внимание на то, что относительно низкая частота, используемая в этом измерении, находится в пределах рабочего диапазона этого прибора.

Соответствуют ли измеренные значения напряжения закону напряжения Кирхгофа? Объяснять!

2.     Сравнить напряжения

Сравните напряжения В с и В R с помощью двухканального цифрового осциллографа, прикрепив щупы между точками 0-1 и 0-3.Измерьте амплитуды и определите разность фаз в градусах. После измерений на частоте около 1 кГц повторите для другой частоты (например, 5 кГц). Обратите внимание, что ваши измерения определяют разность фаз между напряжением источника В с и током, который пропорционален В R . (Здесь жирные буквы символов напряжения обозначают комплексные величины, которые дают информацию как об амплитудах, так и о фазах)

3.Измерение фазы

Измерьте разность фаз между напряжением и током катушки индуктивности. Используйте два щупа: один для напряжения, пропорционального току (точки 0 и 1), другой для напряжения между R и L (точки 0 и 2). Используя удобную функцию цифрового осциллографа, теперь вы можете вычесть два сигнала и одновременно просмотреть напряжение на L и R, а также определить их разность фаз.

ОТЧЕТ

  • Четко представить все результаты.Сравните результаты измерений амплитуды и фазы в 1. и 2. с расчетами частот и значений компонентов, использованных в лаборатории.
  • Применяется ли закон Кирхгофа для напряжений к цепям переменного тока .
  • Согласуются ли результаты измерения 3 с теорией?

3000 MPR Цифровой мультиметр и тестер чередования фаз

ЖК-дисплей на 4000 точек.
Авто ранжирование.
Напряжение, сопротивление, ток, непрерывность, измерение диода.
Может измерять сопротивление/изоляцию до 200,0 МОм.
Проверяет широкий спектр трехфазных источников питания (80~750 В переменного тока).
Индикация чередования фаз: по часовой стрелке и против часовой стрелки на ЖК-дисплее.
ЖК-дисплей покажет переменное напряжение между фазами и чередование фаз.
Широкий диапазон для проверки емкости: 0~40000 мкФ (40,00 мФ).
REL / Функция автоматического обнуления. Функция МАКС/МИН.Функция ВАГц.
Частота: 40,00 МГц.
Функция удержания данных. Индикация превышения диапазона. Обнаружение низкого заряда батареи.
Автоматическое отключение через 15 минут.
Удобная подставка для просмотра.

Напряжение постоянного тока
Диапазоны: 400 мВ / 4 В / 40 В / 400 В / 1000 В
Разрешение: 0,1 мВ/1 мВ/10 мВ/100 мВ/1 В
Точность: ±(0,5%показания+3значка) 90 150 Входное сопротивление: 10 МОм

Напряжение переменного тока
Диапазоны: 400 мВ / 4 В / 40 В / 400 В / 750 В
Разрешение: 0. 1 мВ / 1 мВ / 10 мВ / 100 мВ / 1 В
Точность: ±(1,0%показания+5знач.) 90 150 Входное сопротивление: 10 МОм

Частота
Диапазоны: 4000 кГц / 40,00 кГц / 400,0 кГц / 4000 МГц / 40,00 МГц
Разрешение: 1 Гц / 10 Гц / 100 Гц / 1 кГц / 10 кГц 90 150 Точность: ±(1,0%показания+2значения)

Непрерывность
Диапазоны: 400 Ом
Порог слышимости: Менее 30 Ом

Диод
Диапазоны: 2 В
Точность: ±(1.5% показ.+3знач.)

Чередование фаз
Входное напряжение: 80 ~ 750 В переменного тока
Диапазон частот: 40~80Гц
Структура схемы: полностью электронная (не механическая)

Общий
Индикация низкого заряда батареи: «BATT»
Размеры: 188 мм (Д) x 90 мм (Ш) x 54 мм (Г)
Вес (с батареей): прибл. 346 г
Источник питания: 1,5 В (ААА) × 2

Стандарт безопасности
EN 61010-1 CAT III 600 В
EN 61326-1

Как измерить частоту с помощью мультиметра

Если ваш цифровой мультиметр предлагает настройку частоты (Гц — это символ) на циферблате :

  1. Поверните циферблат на Гц. Обычно она делит место на циферблате по крайней мере с одной другой функцией. Некоторые измерители вводят частоту через дополнительную функцию, доступ к которой осуществляется нажатием кнопки и установкой поворотного переключателя в положение переменного или постоянного тока.
  2. Сначала вставьте черный щуп в разъем COM.
  3. Затем вставьте красный провод в гнездо V Ω. Когда закончите, отсоедините выводы в обратном порядке: сначала красный, затем черный.
  4. Сначала подсоедините черный щуп, а затем красный щуп. Когда закончите, отсоедините выводы в обратном порядке: сначала красный, затем черный.
  5. Считайте результат измерения на дисплее. Аббревиатура Гц должна отображаться справа от показаний.

Если ваш цифровой мультиметр предлагает частоту (Гц) кнопка:

  1. Поверните циферблат на переменное напряжение ( ). Если напряжение в цепи неизвестно, установите диапазон на максимальное значение напряжения.
    Примечание: Большинство цифровых мультиметров включаются в режиме автоматического выбора диапазона, автоматически выбирая диапазон измерения в зависимости от имеющегося напряжения.
  2. Сначала вставьте черный щуп в разъем COM.
  3. Затем вставьте красный провод в гнездо V Ω.
  4. Подключите измерительные провода к цепи. Положение измерительных проводов произвольное. Когда закончите, отсоедините выводы в обратном порядке: сначала красный, затем черный.
  5. Считайте значение напряжения на дисплее.
  6. Пока мультиметр все еще подключен к цепи, нажмите кнопку Hz.
  7. Считайте значение частоты на дисплее.Символ Гц должен появиться на дисплее справа от измерения.
Обзор измерения частоты

Цепи и оборудование могут быть спроектированы для работы на фиксированной или переменной частоте. Они могут работать ненормально, если работают на частоте, отличной от указанной.

Пример: Двигатель переменного тока, предназначенный для работы на частоте 60 Гц, работает медленнее, если частота ниже 60 Гц, или быстрее, если частота превышает 60 Гц. Для двигателей переменного тока любое изменение частоты вызывает пропорциональное изменение скорости двигателя. Пятипроцентное снижение частоты приводит к пятипроцентному снижению скорости двигателя.

Некоторые цифровые мультиметры включают дополнительные режимы, связанные с измерением частоты:

  • Режим счетчика частоты: Измеряет частоту сигналов переменного тока. Его можно использовать для измерения частоты при поиске и устранении неисправностей электрического и электронного оборудования.
  • MIN MAX Режим записи: Позволяет записывать измерения частоты за определенный период времени.Он обеспечивает ту же функцию с напряжением, током и сопротивлением.
  • Режим автоматического выбора диапазона: Автоматически выбирает диапазон измерения частоты. Если частота измеряемого напряжения выходит за пределы диапазона измерения частоты, цифровой мультиметр не может отображать точное измерение. Обратитесь к руководству пользователя для конкретных диапазонов измерения частоты

В некоторых цепях искажения на линии могут быть достаточными, чтобы помешать точному измерению частоты. Пример: частотно-регулируемые приводы переменного тока (ЧРП) могут создавать искажения частоты.

При тестировании частотно-регулируемых приводов используйте настройку фильтра нижних частот в расширенных мультиметрах для получения точных показаний. Для мультиметров без настройки фильтра нижних частот поверните циферблат в положение напряжения постоянного тока, затем снова нажмите кнопку Hz, чтобы измерить частоту при настройке напряжения постоянного тока. Если измеритель позволяет проводить измерение частоты с развязкой, вы также можете попробовать изменить диапазон напряжения, чтобы компенсировать шум.

Источник: Fluke

Читайте также: Как проверить диод

Метод вольтметра крест-накрест — базовое управление двигателем

При проверке предохранителей в цепи питания трехфазного двигателя используем метод перекрестного вольтметра.

Контакты двигателя с номинальной мощностью должны быть разомкнуты, а трехфазный разъединитель должен быть замкнут, чтобы получить правильные показания.

На стороне линии предохранителей необходимо выполнить три набора измерений, чтобы убедиться в наличии напряжения. Измерьте на каждой паре клемм линии (L1–L2; L2–L3; L3–L1). На приведенной ниже диаграмме это означает использование вольтметра для проверки между точками 1-3; 3-5; 5-1. Если какой-либо из этих тестов дает показания, отличные от междуфазного напряжения, проверьте входное напряжение на входе.Если все три показания дают междуфазное напряжение, то мы знаем, что в цепи питания присутствует напряжение до предохранителей. Следующий тест подтвердит, в хорошем ли состоянии предохранители.

Трехфазные предохранители, перегорел предохранитель C

. На приведенной выше диаграмме все три показания дают линейное напряжение. Чтобы проверить состояние предохранителей, мы измеряем расстояние от стороны линии одного предохранителя до стороны нагрузки другого предохранителя.

Используя схему выше, это означает использование вольтметра для проверки между точками 1-4; 3-6; 5-2. Показания, которые мы получаем:

  • 1-4 = сетевое напряжение, поэтому предохранитель B исправен
  • 3-6 = ноль вольт, поэтому предохранитель C перегорел
  • 5-2 = сетевое напряжение, поэтому предохранитель А исправен

Поскольку предохранители A и B находятся в хорошем состоянии, практически отсутствует разность потенциалов между точками 1 и 2 и между точками 3 и 4 соответственно, поэтому вольтметр показывает линейное напряжение с обеих сторон предохранителя.

При разомкнутых силовых контактах и ​​перегоревшем предохранителе С провод вольтметра, подключенный к точке 6, полностью изолирован от любой другой части цепи и поэтому испытывает нулевую разность потенциалов.

Этот метод называется методом перекрестного вольтметра, потому что нет необходимости проверять напряжение через предохранитель. Если предохранитель в хорошем состоянии, как предохранители A и B, то мы проводим измерения в точках с равным потенциалом, а если предохранитель перегорел, то наш второй провод вольтметра изолирован от цепи, снова не давая нам разности потенциалов. Из этих измерений нельзя получить никакой полезной информации.

Как измерить трехфазное напряжение мультиметром? – Цвета-Нью-Йорк.ком

Как измерить трехфазное напряжение мультиметром?

Для проверки входного напряжения поместите один из щупов мультиметра на L1, а другой на L2. Дайте мультиметру отобразить напряжение, а затем повторите тесты, проверяя L1 и L3, затем L2 и L3. Если трансформатор исправен, показания напряжения должны быть одинаковыми после каждого испытания.

Сколько наборов измерений необходимо для проверки трехфазного источника питания?

Трехфазный, трехпроводной (метод трех ваттметров – установите анализатор на трехфазный, четырехпроводный режим.Для измерения общей мощности в четырехпроводной системе требуется три ваттметра. Измеренные напряжения являются истинными напряжениями между фазой и нейтралью.

Какая мощность в трехфазной цепи?

В трехфазных цепях (симметричная нагрузка) мощность определяется как сумма различных мощностей в трехфазной системе. т. е. его единицами являются киловатт (кВт) или ватт (Вт). Единицей полной мощности является киловольт-ампер (кВА) или вольт-ампер (ВА).

Какое напряжение трехфазной сети?

208 вольт

3 фазы 400В или 415В?

Для трехфазного питания напряжение составляло 415 В +/- 6%, разброс от 390 В до 440 В.Большинство континентальных уровней напряжения были 220/380 В. Все они основаны на напряжениях питания 240/415 В, которые применялись в течение многих лет и будут применяться и впредь.

Что подразумевается под 3 фазами?

Трехфазное электроснабжение обеспечивает три переменного тока с тремя отдельными электрическими службами. Каждая ветвь переменного тока достигает максимального напряжения, разделенного только на 1/3 времени полного цикла. Другими словами, выходная мощность трехфазной сети остается постоянной и никогда не падает до нуля.

Какие существуют два типа трехфазного источника питания?

Две наиболее распространенные конфигурации трехфазных систем известны как «звезда» и «треугольник».

Сколько проводов в 3 фазах?

четыре провода

Почему мы используем трехфазное питание?

Трехфазная цепь обеспечивает большую удельную мощность, чем однофазная цепь при той же силе тока, что позволяет снизить размер и стоимость проводки. Кроме того, трехфазное питание упрощает балансировку нагрузок, сводя к минимуму гармонические токи и потребность в больших нейтральных проводах.

Нужно ли нам трехфазное питание?

Большинству небольших домов и квартир не требуется трехфазное питание, так как все их бытовые приборы и электропитание будут прекрасно работать от однофазного питания. Но если вы ремонтируете или добавляете энергоемкие приборы, поговорите со своим электриком, чтобы узнать, нужно ли вам трехфазное питание.

240 В однофазное или трехфазное?

Электропитание

240 В используется в США и некоторых частях мира. В США 120/240 В, 1 фаза, 3 провода, является стандартом для домов, а 240 В, 3 фазы, открытый треугольник, является стандартом для небольших зданий с большими нагрузками.

Как узнать, однофазный он или трехфазный?

2) Однофазный или трехфазный – главный выключатель Другой способ отличить трехфазный от однофазного – ширина главного выключателя. Однофазные выключатели имеют ширину «один полюс», тогда как трехфазные выключатели имеют ширину «три полюса».

220 В однофазное или трехфазное?

В целом для большинства рынков значение однофазного напряжения составляет 230 В. Однако в Латинской Америке обычно можно найти однофазное напряжение в диапазоне от 115 В, 127 В, 220 В и других.Такое оборудование, как освещение, микроволновые печи, автоматические ворота, портативное сварочное оборудование и т. д. питается от однофазного напряжения.

Можно ли получить однофазное напряжение 220 В от трехфазного?

Поскольку у вас есть три ветви на 220 В фаза-фаза (A-B, B-C, C-A), вы можете получить однофазное напряжение 220 В, просто подключившись к любым двум — и ТОЛЬКО двум — из трех проводов. Это все, что вам нужно. Ничего больше. Напряжение 220 В было бы «плавающим» и опасным.

Как получить 3 фазы 220В?

НЕВОЗМОЖНО.Причина проста: трехфазное питание имеет как минимум 3 жилы (провода). Лампа на 220 вольт имеет только две точки для подключения. Если лампа подключена к двум проводам трехфазной системы, она использует только однофазное питание.

Что такое 3-фазная 4-проводная распределительная система?

Трехфазная, 4-проводная распределительная система В этой системе используются фазные обмотки, соединенные звездой, а четвертый или нейтральный провод берется из точки звезды. Если напряжение каждой обмотки равно V, то линейное напряжение (линейное напряжение) равно √3 В, а линейное напряжение (фазное напряжение) равно V.

Как преобразовать трехфазную цепь в однофазную?

Чтобы преобразовать вашу систему в однофазную, вы можете: Использовать нейтральный провод: Хотя он может быть не таким точным, как некоторые другие методы, использование нейтрального провода и игнорирование двух других фаз в трехфазной линии питания может преобразовать систему.

Как мне получить 3-фазное питание в моем доме?

Если у вас всего несколько трехфазных единиц оборудования, вы можете использовать частотно-регулируемый привод, как описано выше, или вы можете использовать двигатель-генератор, либо статический (полупроводниковый), либо вращающийся (механический).Вы можете использовать генератор двигателей Google, и он предоставит вам всю необходимую информацию. Вы также можете приобрести трехфазный генератор.

Как получить трехфазную нейтраль?

Единственный способ получить нейтральную точку в трехфазной системе — использовать топологию «звезда». Единственный (реальный) способ преобразовать топологию «треугольник» в топологию «звезда» — это использовать трансформатор «треугольник-звезда» (также известный как трансформатор «треугольник-звезда»).

Как преобразовать трехфазную батарею в однофазную?

Если 3-фазное зарядное устройство имеет 3 одинаковых трансформатора, вы подключаете каждый трансформатор отдельно к одной фазе. Вы берете 2 питающих провода, идущих к каждому трансформатору, и подключаете их к 2 ножкам одной фазы. Каждый трансформатор делается таким образом.

Почему нет нейтрали на 220В?

A: Поскольку подаваемое трехфазное напряжение состоит из трех напряжений, сдвинутых по фазе на 120° друг от друга. Следовательно, в любой момент времени ток будет возвращаться от нагрузки к источнику по крайней мере через один фазный провод без необходимости использования нейтрального проводника или заземляющего проводника.

В чем разница между 3-х фазным 3-х проводным и 4-х проводным?

3-фазная 3-проводная система включает все фазы, то есть R Y и B, в то время как в 3-фазной 4-проводной системе присутствует дополнительная нейтраль N. Трехпроводная система используется специально для передачи, так как она более экономична. также используется в 3-фазных двигателях с нагрузкой, соединенной треугольником.

Имеет ли 3 фазы 480В нейтраль?

480 В, 3 фазы, треугольник, представляет собой 3-проводную конфигурацию питания и не включает нейтральный провод. Большинство энергосистем на 480 В не являются конфигурацией треугольника, поскольку напряжение между фазой и землей составляет 480 В или выше 300 В.

Как проверить автоматический выключатель с помощью цифрового мультиметра?

Будет мудро, если вы научитесь проверять автоматический выключатель с помощью цифрового мультиметра. Если вы знаете, как это сделать, вы можете выполнить базовое устранение неполадок, не вызывая электрика, что сэкономит ваше время и деньги.

Необходимые инструменты

Инструменты, необходимые для проверки автоматического выключателя:

  • Цифровой мультиметр
  • Плоская отвертка, чтобы открыть коробку автоматического выключателя

Вы можете использовать цифровой мультиметр любого типа или марки для измерения любого тока.Важно, чтобы вы знали правильную настройку для вашего приложения, чтобы предотвратить поломку мультиметра. Вы можете посмотреть этот видеоурок от Ratchets and Wrenches, чтобы узнать, как проверить напряжение переменного тока с помощью цифрового мультиметра.

Как проверить автоматический выключатель с помощью цифрового мультиметра

Вы можете проверить автоматический выключатель с помощью цифрового мультиметра двумя способами.

Вы можете проверить напряжение вашего автоматического выключателя прямо в панели. Вы должны быть осторожны при этом, так как вы будете работать с электричеством под напряжением.Если напряжение равно нулю или ниже стандартного, возможно, ваш автоматический выключатель неисправен.

Вы также можете найти неисправный автоматический выключатель, проверив его сопротивление с помощью цифрового мультиметра. Этот метод лучше всего рекомендуется для замены автоматического выключателя перед его установкой в ​​панель. Это также более безопасный способ проверки автоматических выключателей, так как для их проверки не требуется питание под напряжением.

Пошаговые инструкции по проверке напряжения автоматического выключателя

Шаг 1. Разомкните автоматический выключатель

Отвинтите крышку автоматического выключателя с помощью плоской отвертки. Обязательно придерживайте его перед тем, как выкрутить последний винт, чтобы предотвратить несчастные случаи. При открытии панели автоматического выключателя лучше иметь некоторую помощь, чтобы она не упала.

Шаг 2. Установите мультиметр на переменное напряжение

Поверните шкалу мультиметра на переменное напряжение, затем вставьте черный щуп в общую клемму розетки, а красный щуп — в клемму розетки напряжения. Обратите внимание, что некоторые цифровые мультиметры требуют установки соответствующего напряжения.Если это так, установите циферблат мультиметра на более высокое напряжение, чем у вас есть (обычно 120 В).

После правильной настройки устройства можно переходить к следующему шагу.

Шаг 3. Проверка автоматического выключателя

Чтобы проверить напряжение однополюсного автоматического выключателя, вам необходимо подключить черный или общий провод к заземлению панели выключателя. После этого подключите красный провод к горячему проводу автоматического выключателя, который вы хотите проверить. Показание должно быть около 120 вольт для однополюсного выключателя.

Если ваши показания очень низкие или нулевое напряжение, ваш автоматический выключатель неисправен и его необходимо заменить.

Чтобы проверить двухполюсный автоматический выключатель на 220 В, вам необходимо подключить красный и черный провода цифрового мультиметра непосредственно к клемме выключателя. Показание должно быть около 240 вольт, и вы должны проверять свой двухполюсный выключатель один за другим.

Чтобы проверить одну сторону двухполюсного автоматического выключателя, подсоедините общий провод к заземлению панели, а горячий провод — непосредственно к одной стороне клеммы автоматического выключателя, затем подключите другую клемму для проверки другой стороны двухполюсный выключатель.Они оба должны быть около 125 вольт.

Если другая сторона вашего двухполюсного выключателя равна нулю, у вас неисправен автоматический выключатель, и вам требуется замена.

Для получения дополнительной информации вы можете посмотреть это видеоруководство, созданное TheElectricalDoctor, чтобы узнать, как проверить автоматический выключатель с помощью цифрового мультиметра.

Как проверить сопротивление автоматического выключателя

Чтобы проверить сопротивление автоматического выключателя, установите мультиметр в омах или параметрах сопротивления.

Затем вставьте один провод в зажим или клемму питания, а другой — в винтовую клемму. Он должен иметь показания сопротивления при включении выключателя и не иметь значения при его выключении.

Выполните ту же процедуру при проверке двухполюсного выключателя. Если он не имеет сопротивления при включении или не имеет сопротивления при выключении, ваш автоматический выключатель неисправен и его необходимо заменить.

Прежде чем покупать новый, вы можете рассмотреть десять лучших автоматических выключателей, которые я использовал в своих проектах.В этой статье я указываю плюсы и минусы каждого типа автоматических выключателей, чтобы дать вам представление о лучшем автоматическом выключателе для себя.